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Introduction 
In recent years, Network Function Virtualization (NFV) has been introduced into the Telecom industry to 
deliver reliable and efficient commercial networking services in programmable standard hardware 
systems, called Virtualized Network Functions (VNFs). NFV promises benefits in the savings of 
operational and capital expenditure (OpEx and CapEx), as well as the increased automation, operations 
simplification, business agility, and faster time to market. 

The cloud native microservices container architecture was originated from the webscale providers such as 
Amazon, Google, and Netflix. The approach of cloud native is to break down a monolithic application 
into small microservices and deploy as containers in the cloud. One of the attractions of this approach is 
that applications can be tested in an iterative and distributed model, without taking applications offline. In 
the cloud world, large scale applications have been developed, tested, and deployed with more agility 
using this distributed model. 

Since 2016, several large service providers have publicly embraced the move to a microservices 
architecture in the telco cloud. [1] There have been announcements from major service providers to use 
containers to build out their network function virtualization infrastructure. Some key telecommunications 
equipment suppliers are using microservices to implement some of their software. Open-source initiatives 
are moving towards microservices and containers. In NFV space, there is a trend of moving from the 
virtual appliance based solutions to the cloud native approach, which is referred to as the Cloud Native 
NFV.  

The NFV world has been following ETSI NFV references. However, most of the ETSI published 
documents were based on case studies and Proof of Concepts built on virtual appliances. There is a gap 
between ETSI NFV and the cloud native approach. With more and more cloud native solutions appear in 
NFV, there is a need to augment the existing ETSI NFV specifications so as to continue guiding the NFV 
world towards interoperability and standardization.  

To support this effort, this paper identifies the elements in the ETSI NFV Management and Orchestration 
(MANO) reference architecture that need to be adjusted when applying the cloud native approach in 
NFV. We also propose a pragmatic software architecture that realizes the NFV MANO functionality 
using the cloud native approach. With the focus on the network service design and deployment, which is 
the core functionality of the NFV Management and Orchestration systems, we exercise the TOSCA 
language for the service modeling in the cloud native environment.  

The Cloud Native Trend in NFV 
Since 2012, driven by leading telecoms network operators, the European Telecommunication Standards 
Institute (ETSI) has been working on NFV requirement prioritization, high level architectural framework 
definition, development guideline specification, and Proof of Concept organization. ETSI has published a 
series of documentation and specifications in these related efforts. The documentation has been widely 
referenced and adopted in the NFV space. 

What ETSI NFV advocates has been the moving of network functions from specialized proprietary 
hardware to virtualized software that can be deployed on standard hardware equipment. [2] Now, with the 
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cloud native adoption in NFV, we observed that the network functions together with the MANO systems 
are moving into the cloud as a form of microservices containers. 

 
Figure 1 - The Trend of the Cloud Native NFV 

As described in Figure 1, with the Network Virtualization Approach, which ETSI-NFV has been focusing 
on, the classical network appliances with non-commodity hardware move to the software based virtual 
appliances deployed in the standard equipment. With the cloud native approach, the network functions, 
which were implemented as monolithic applications, now are broken down into smaller microservices, 
and deployed as containers in both the public and private clouds. Leveraging Continuous Integration and 
Deployment (CI/CD), these microservices containers are orchestrated and deployed with automation. The 
independent software vendors who used to produce full-fledged network functions now become the 
vendors of smaller microservices.  

More specifically, we observed the adoption of the cloud native solutions in the following NFV areas: 

• VNFs 
o More and more VNFs are broken down into smaller microservices containers. 
o More and more NFV applications are packaged as microservices containers and deployed 

in the cloud native environment. 
• MANOs 

o More and more NFV Management and Orchestration systems are deployed in the 
microservice container environment 

• VIMs 
o Container orchestrators such as Kubernetes and Docker Swarm appear in NFV 

applications 
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ETSI NFV Adaptation to the Cloud Native 
Architecture 

ETSI NFV ISG has published a series of specifications including the ETSI MANO GS (Group 
Specification) Network Functions Virtualisation (NFV); Management and Orchestration. [3] The 
specification lays out the NFV MANO objectives and concepts, defines the high level reference 
architectural framework, and specifies the information elements in an NFV MANO system .ETSI 
Management and Orchestration Architectural Framework 

ETSI NFV reference architectural framework defines three functional blocks in the NFV-MANO domain: 
NFV Orchestrator (NFVO), VNF Manager(s) (VNFMs), and Virtualized Infrastructure Manager(s) 
(VIMs).   

• NFV Orchestrator (NFVO) 

NFVO is responsible for the on-boarding of a new Network Service (NS) composed of multiple VNFs, 
VNF forwarding graph, Virtual Links, and, as an option, Physical Network Functions (PNFs). The 
orchestrator also controls the life cycle of the Network Service, validates and authorizes NFVI resource 
requests, manages global resources, as well as the policy of the Network Service instances.  

• VNF Manager(s) (VNFMs) 

The VNFM focuses on the life cycle management of individual VNF instances. A VNF manager takes the 
responsibility of the management of a single VNF instance, or the management of multiple VNF 
instances of the same type. VNFM also serves as an overall coordination and adaptation role for 
configuration and event reporting between the VIM and the EM systems of traditional operator 
architectures.  

• Virtualized Infrastructure Manager(s) (VIMs) 

The VIM is responsible for controlling and managing the NFVI compute, storage and network resources. 
At the same time, it collects performance measurements in the infrastructure and makes the data available 
from other functional blocks for monitoring purposes.  

The NFV-MANO architectural framework also identifies main reference points for the exchange of data 
between the corresponding defined functional blocks.  

Proposed ETSI MANO Reference Architecture 
Augmentation for Cloud Native NFV  

As a standard specification, ETSI focuses on high level architecture, development guidelines, and 
interoperability enabled by open interfaces. Most of the specifications in ETSI MANO GS continue 
serving the purpose when applying to the Cloud Native NFV. Nevertheless, augmentation is needed in 
some areas because of the differences between the VM based and cloud native solutions. 
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In the cloud native architecture, the network functions are deployed in the cloud as microservices 
containers. The granularity of the deployed instances is much smaller based on microservices design and 
implementation. A VNF in ETSI context would contain multiple microservice containers working 
together in the cloud native context. This adds complexity to the management and orchestration of the 
system. The fully distributed architecture, coordination and communication among the microservices, 
fault monitoring and recovery in smaller but more specific portion of the software, all contribute to the 
complexity of the MANO system. 

On the other hand, the cloud native architecture brings advantages to NFV MANO systems including 
some critical pain points.  One pain point in the VM based solutions is to provide high availability to the 
service providers by spawning new instances in the cases of faults, failures or scaling out to handle larger 
workloads. The time needed for spinning up a new VM has been the bottleneck in the VM based 
solutions. Using the cloud native approach, because the granularity of the independent unit for recovering 
or scaling out is much smaller, and the container start/stop is much faster, the latency of spawning a new 
network function composed of a set of microservice container instances is much smaller than that in the 
VM based solutions.   

To highlight the differences between the VM based solution and the cloud native based approach in NFV, 
we propose the Cloud Native NFV high level reference architecture with the revised terminologies as an 
augmentation to the original ETSI NFV MANO reference architecture, which is illustrated in Figure 2. 

As described in the diagram, The Network Function Cloud Infrastructure (NFCI) contains the public 
cloud and the private cloud(s) with containerization layer(s) to provide the infrastructure for the network 
services deployed as containers in the Cloud Native architecture. On top of the NFCI, a set of 
microservice containers work together to realize the functionality provided by a Cloud Network Function 
(CNF). Each microservice in a CNF is called a Cloud Network Function MicroService (CNFMS). A list 
of CNFs chain together with traffic flowing through the network functions becomes a CNFFG.  

NFV Orchestrator (NFVO), CNF Manager (CNFM), and Cloud Infrastructure Manager (CIM) are the 
functional blocks of NFV MANO systems. The NFV MANO system communicates with OSS/BSS, 
CNFs in CNFFG, and NFCI through interfaces to manage and orchestrate the network services provided 
by the network functions deployed as microservices in the NFCI. 
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Figure 2 - Proposed ETSI MANO Reference Architecture Augementation for Cloud Native 

NFV 

The detailed description of each functional block and component in Figure 2 is as follows:  

• Cloud Network Function MicroService (CNFMS) 

CNFMSs are the microservice containers from which a Cloud Network Function is composed. 

• Cloud Network Function (CNF) 

CNFs are the network functions deployed in the cloud as microservices, usually in container format. 

• Network Function Cloud Infrastructure (NFCI) 

NFCI provides the underline physical infrastructure for the network functions. This includes the hardware 
equipment for the computer, networking, storage, as well as the containerization layer on top of the 
hardware platform. CNFs are deployed on top of the NFCI. 

• Cloud Infrastructure Manager (CIM) 

CIM is responsible for controlling and managing the NFCI compute, storage and network resources, as 
well as scheduling the microservice containers in the cloud. It manages the lifecycle of the containers in 
the cloud. 

CIM also collects performance measurements in the infrastructure including container level, and makes 
the data available for other functional blocks for monitoring purposes.  

Other responsibilities of CIM include virtual networking control and management, as well as the 
southbound integration with various network controllers to achieve the physical network control and 
management capabilities. 
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Examples of the CIMs available in the market are Kubernetes, AWS ECS, and Docker Swarm. 

• Cloud Network Function Manager (CNFM) 

CNFM focuses on the life cycle management of individual CNF instances. In the cloud native 
architecture, a CNF is usually composed of a set of containers that implement a network function. A CNF 
manager takes the responsibility of the management of the multiple container instances of the same 
network function. To control the lifecycle of the CNFs, CNFM works closely with CIM, which manages 
the lifecycle of the individual container of the CNF.  

CNFM also serves as an overall coordination and adaptation role for configuration and event reporting 
between the CIM and the EM systems of traditional operator architectures.  

• NFV Orchestrator (NFVO) 

The NFVO continues serving the responsibility of on-boarding a new Network Service (NS) composed of 
multiple CNFs, CNF forwarding graph, Virtual Links, and, as an option, Physical Network Functions 
(PNFs).  The orchestrator also controls the life cycle of the Network Service including instantiation, 
scale-in/out or up/down, performance measurements, event correlation and termination. Further key 
operational functions are global resource management, validation and authorization of NFCI resource 
request, as well as policy management of Network Service instances.  

• Cloud Network Function Forwarding Graph (CNFFG) 

The CNFFG contains a list of CNFs and the virtual links among the CNFs and the physical endpoints. 

Cloud Native NFV MANO Software Architecture 
As a standard specification, ETSI focuses on high level architecture, development guidelines, and 
interoperability among systems produced from different vendors. In order for the industry to generate real 
products in microservices container architecture, we further refine and develop the functional blocks into 
micro services, helping to implement and realize the functionality mentioned in the previous section. We 
also realized that a real NFV MANO product needs to address more operational issues and challenges 
than what ETSI has specified. This includes the design phase support, network control in the cloud native 
environment, data collection, monitoring, and analytics. [4] 

Figure 3 illustrates a pragmatic NFV MANO architecture using the cloud native approach. 
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Figure 3 - A pragmatic NFV Software Architecture in the Cloud Native Environment 

Figure 3 contains the microservices for the NFV Management and Orchestration in both the Design Phase 
and the Runtime Execution Phase. The design phase generates the network services model to be deployed 
onto the target private or public cloud(s). The Runtime execution phase contains the microservices for the 
network service deployment, orchestration, lifecycle management, network control, monitoring, and 
analytics. Besides the functional services, there are a set of common infrastructure services for all the 
microservices containers in the cloud native architecture environment. 

1. Network Service Design Phase 
One of the key functionality of NFV MANO is the Network Service Orchestration. Before the MANO 
can orchestrate the virtual and physical network services, we first need to design the services with rules 
and policies to indicate how the services are being deployed at run-time. 

The Service Design microservice provides interfaces, usually in a visual studio way, for the user to design 
and model the network services and store them into a network service catalog (NS Catalog). The 
definition of the services need to specify how and when the CNFs are realized in a target environment. In 
particular, the definition would need to include the logical catalog items, together with selected 
workflows and instance configuration data, completely defines how the deployment, activation, and life-
cycle management of CNFs are accomplished.  

To facilitate the portability of the service design, it is desired to use a standard modeling language to 
describe the service definition. With such definition, any NFV orchestrator that is compliant with the 
standard modeling language can take the service specification and deploy into the target cloud 
environment.  

2. Run-time Execution Phase 
Various microservices work together during run-time to realize the functionality of the network service 
deployment, configuration, monitoring, and data analytics.  
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Taking the generated service definition as the Network Service Descriptor (NSD) and Cloud Network 
Function Descriptor (CNFD), the Service Orchestrator executes the workflow specified in NSD and 
works with other microservices to control the lifecycle of the network service; the Dashboard visualizes 
the topology of the network with basic monitoring of the health of the system; the Global Resource 
Manager allocates both the system resources and the network application resources; the CNF Manager 
deploys and manages the lifecycle of the Cloud Network Functions; the CNF Network Controller focuses 
on the control and management of the virtual networking among the CNF instances; and the Device Life 
Cycle Manager manages the physical life cycle of the devices.  

Container networking in the cloud native environment is important to NFV applications. Since the CIM is 
realized by third party container orchestration tools, and most of the tools lack the full-fledged networking 
feature including policies and security support across different compute nodes, we would need to plug in 
various types of Network Controllers to augment the capability needed for the network functions 
deployed in the cloud. 

The CNF Network Controller stitches the network connectivity between microservice containers. Usually 
there are two types of network traffic going through between CNFs: the control traffic and the data traffic. 
The control traffic usually requires lower bandwidth with relatively longer latency. The data traffic 
requires higher bandwidth with lower latency. Most container orchestration tools contain sufficient 
support for the control traffic. However, for data traffic, specialized CNF controllers will work with high 
speed virtual routers to realize the data plane acceleration in the cloud native environment.  

The Data Center Network Controller and Access Network Controller are southbound plugins to the CIM 
to provide the physical networking to virtual networking mapping in the NFV system. 

Telemetry and Analytics microservices work together to realize the collection, streaming, storage, and 
analytics of the operational data collected from the network. 

Besides the functional services to achieve the NFV MANO capabilities, there are a set of common 
services that are particularly important in microservice container architecture. 

The messaging bus enables the loosely coupled integration architecture in microservice container 
environment using publish/subscribe way of the inter container communication. Another important role of 
the messaging bus is to support large amount of telemetry data pushed from the network functions. The 
scalability and performance of the messaging bus is critical to the success of the cloud native architecture. 
Currently Kafka is one of the most popular messaging tools that are widely used in the microservices 
container environment. 

Logging and tracing help with efficient and effective troubleshooting across distributed microservies. 
Open source tools such as fluentd, ELK, open tracing, and zipkin are popular ones to enable centralized 
logging and cross service tracing capabilities. 
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Service Design and Deployment using TOSCA 
Modeling Language 

Network Service design and deployment is fundamental to NFV MANO functionalities. As the result 
from the service design, network service descriptor is generated. At run time, the NFV Orchestrator 
deploys the network service as CNF instances in the cloud native environment. 

1. Service Design and Deployment Process Flow 
The process flow of the Network Service Design and Deployment is described in Figure 4. The first step 
is to design the service using visualization tools in the Design Studio. The Design Studio is a graphical 
interface for the user to define the network services that contain the network nodes and the relations 
among them as links. A typical graphical Design Studio provides a set of drag and drop tools to help 
make the modeling process easy and intuitive to the user. During this process, the user enters the 
workflow definition, service template definition, and policy description as the input. As the result from 
this step, a Network Service Descriptor (NSD) will be generated and stored in a database called NS 
Catalog. At run time, as part of the NFVO, a NS Deployer would read the NSD from the catalog. The NS 
Deployer decomposes, translates, and converts the NSD into CNFD and stores it into the database called 
CNFD Catalog. The CNFD contains the specifications of the Cloud Network Functions that are ready for 
being deployed in the cloud. After that, the CNF Deployer reads the CNFD from the catalog and converts 
it into the executable artifacts accepted by the target cloud provider. Finally, the CNF Deployer 
communicates with the CIM to deploy the workload into the cloud. 

Figure 4 describes the process flow of the Network Service Design and Deployment. 

 
Figure 4 - Service Design and Deployment Process Flow 

In the process described above, if the descriptor of the Network Service (NSD) and Cloud Network 
Function (CNFD) is specified in a standard modeling language, any NFV MANO that is compliant with 
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such standard language will be able to deploy the workload into the cloud. This has been the goal of 
TOSCA modeling language. 

2. Network Service Modeling using TOSCA 
Topology and Orchestration Specification for Cloud Applications (TOSCA) is a standard modeling 
language managed by industry group OASIS that can be used to orchestrate NFV services and 
applications. TOSCA delivers a declarative description of the application topology for a network or cloud 
environment that includes all its components, which may include the need for load balancing, networking, 
computing resources, and other software. It can also be used to define the workflows that need to be 
automated in the cloud.  

The TOSCA modeling language includes concepts such as nodes and relationships, whereby a node is an 
infrastructure such as network, subnet, or a server software component. TOSCA can help define how 
these nodes and services work together. TOSCA uses templates to automate the configuration of these 
relationships. 

TOSCA facilitates high levels of service portability, making services portable to any cloud or application 
that is TOSCA compatible. The data model also enables easier migration of applications. It is inherently 
infrastructure-agnostic, and thus is extensible to enable the automation of software-defined networks, in 
combination with NFV and clouds, to simplify end-to-end service orchestration for cloud and telco 
operators. 

Figure 5 illustrates how to use TOSCA modeling language to model NFV Network Services and achieve 
the portability of deploying the same services in different cloud providers. [6] As described in the 
diagram, a CNFFG defined in TOSCA language can be deployed by a TOSCA compliant orchestration 
engine to different types of Cloud Providers such as AWS, Kubernetes, or Docker Swarm. The TOSCA 
compliant orchestration engine applies the necessary automatic matching, translation and optimization 
between the application requirements and the NFV infrastructure capabilities provided by the target cloud 
providers to achieve the portability. 

TOSCA supports XML, JSON, and YAML implementation of the data model. With the industry trend 
moving to microservices container architecture, more and more TOSCA implementation products started 
the effort in deploying TOSCA defined services as microservice containers in the cloud native 
environment. 
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Figure 5 - TOSCA to support portable NFV applications[6] 

3. TOSCA and YANG 
YANG is a data modeling language used to describe configuration and state information. It was published 
by Internet Engineering Task Force (IETF) in 2010. YANG has been used to model networking devices 
and services – i.e., an object and its attributes. YANG defines the data models that are manipulated 
through the NETCONF protocol.  

There has been a battle between using TOSCA or YANG modeling languages in the NFV context. These 
two modeling languages are not competitors but complementary to each other in different perspectives. 
TOSCA focuses more on the network topology, cloud workload, workflow representation, and 
deployment artifacts specification of the network services. The goal of TOSCA is to prepare a declarative 
specification for the workload being deployed in the cloud. YANG focuses more on the configuration of 
the network functions in the cloud. YANG provides the ability to easily configure network devices in a 
human readable fashion. 

Because of YANG’s strength is in configuring networking devices while TOSCA’s strength is 
orchestration, we suggest using TOSCA in NFVO and CNFM, while using YANG for the configuration 
of CNFs and PNFs in NFV MANO architectural framework. [5] Figure 6 illustrates the idea of using both 
TOSCA and YANG in different functional blocks of the ETSI NFV MANO reference architecture. 
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Figure 6 - Using TOSCA and YANG in different perspectives of NFV applications[5] 

4. TOSCA for Cloud Native NFV 
The TOSCA metamodel uses the concept of service templates to describe cloud workloads as a topology 
template, which is a graph of node templates modeling the components that the workload is made up of, 
and as relationship templates modeling the relations between those components. TOSCA further provides 
a type system of node types to describe the possible building blocks for constructing a service template, as 
well as relationship types to describe possible kinds of relations. Both node and relationship types may 
define lifecycle operations to implement the behavior an orchestration engine can invoke when 
instantiating a service template.  

An orchestration engine processing a TOSCA service template uses the mentioned lifecycle operations to 
instantiate single components at runtime, and it uses the relationship between components to derive the 
order of component instantiation. Network Service workflow can be modeled using TOSCA leveraging 
the relationship modeling capabilities from TOSCA. 

The TOSCA simple profile defines a number of base node types and relationship types to be supported by 
each compliant environment. Furthermore, it is envisioned that a large number of additional types for use 
in service templates will be defined by a community over time. At the same time, TOSCA is highly 
customizable with type inheritance capabilities built in the language. Specialized TOSCA engines can 
build the support for customized node types and relationship types to satisfy the needs. 

TOSCA has been popular in the network service modeling in NFV. OASIS published the TOSCA Simple 
Profile for Network Functions Virtualization (NFV) Version 1.0 in May 2017. [8] However, the 
specification is VM based without the microservices container support. There is a need for extending the 
TOSCA specifications to support the Cloud Native NFV. With the strong growth of the Cloud Native 
NFV in the Telco space, this could be the next step from OASIS in the near future. 

Before we have a set of TOSCA base node types and base relationships types defined by OASIS for the 
Cloud Native NFV, we can leverage the generic TOSCA base types with customization. Recently, there 
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has been research looking into how to use customized types in TOSCA to model generic applications 
deployed as Docker containers in the cloud [9][10]. We can take the same approach while adding 
additional custom types needed in the Cloud Native NFV context. 

5. Example of using TOSCA Modeling Language  
In this section, we will exercise an example using TOSCA modeling language to design and deploy a 
network service in a CMTS orchestration system. The goal is to illustrate the approach of using TOSCA 
to model the Network Service that contains sufficient information for the NFVO to deploy in a cloud 
native environment. 

In this example, we will model a Physical Network Function called Remote PHY Device (RPD), which 
connects to a Cloud Network Function called Cloud Cable Modem Termination Service (CCMTS) to 
consume the CMTS services. To make it simple, we assume the CCMTS contains only one microservice 
container. We also assume that the CCMTS will need to be deployed as a Docker container in the cloud. 
The lifecycle of CCMTS and RPD needs to be specified in the service model. 

To achieve the above goal, after analysis, we decided to add four node types and two artifact types to the 
existing TOSCA base type definition included in the TOSCA Simple Profile in YAML Verion 1.0 [7]. 
The current TOSCA relationship types defined in the referred document are sufficient to support the 
relation definition between the nodes.   

Table 1 describes the custom types that we need to add to the TOSCA base type definition.  

Table 1 - TOSCA custom types to support network services modeling in an example 
CMTS System Ochestrator 

Node Types Extends  Artifact Types  
Container tosca.nodes.Root Image tosca.artifacts.Root 
Container.Executable cabu.nodes.Container Dockerfile tosca.artifacts.Root 
Software tosca.nodes.Root   
Volume tosca.nodes.Root   
Phyendpoint tosca.nodes.Root   

In the table, all the custom types extend the root Data Type in the standard TOSCA specification. The 
detailed definition of the tosca.nodes.Root can be found in [7]. The Container data type defines the basic 
meta data of the Docker container; The Docker executable container defines more data when the 
container is deployed in an actual cloud provider environment. The Software data type defines the actual 
software that runs inside a container; The Volume specifies the storage attached to the container; The 
Dockerfile and the Image are the two artifacts that the container uses for the software packaging and 
deployment; The Phyendpoint is the data type used for modeling a physical device. 

Figure 7 describes the attributes of each Node Type and Artifact Type in the above table. 



  

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 17 

 
Figure 7 - Visulized TOSCA custom types for CMTS System Orchestrator 

The above custom types help with the modeling of the CCMTS instances in the cloud. The Docker 
container and Docker executable container provide the attributes for the user to specify the ports, 
environment variables, and commands need to be executed when starting the container. Since the 
container is transient and the data needs to be stored in a Volume, the storage property of the Docker 
container and Docker executable container will allow the user to specify the Volume to be attached to the 
container. The standard lifecycle operation interfaces allow the user to plugin customized scripts to run 
during the lifecycle of the containers. 

The Physical endpoint helps with the modeling of RPDs. Although it is not part of the workload being 
deployed in the cloud, we need this entity in the data model to specify the relationship between the RPDs 
and the CCMTS instances. The attributes and the lifecycle operations of the Physical endpoint will allow 
the user to uniquely identify this physical network function, and to insert customized workflow operations 
during the deployment of the RPD. Appendix 2 specifies the detailed TOSCA YAML definition of these 
custom types. 
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Figure 8 - The TOSCA model of an example CMTS System Orchestrator 

Using the custom types, we can model the relationship between the RPDs and CCMTS instances, which 
is illustrated in Figure 8. In the diagram, CCMTS instance is a type of software node hosted on a 
CCMTS_container node with the sufficient information to spin up a microservice container in the cloud. 
This includes the Docker image file location for downloading during the deployment time, the runtime 
parameters passed to the container, the volume to store the data, which are modeled as different node and 
artifact instances using the custom types defined earlier. Moreover, the above data model specifies the 
relation between the nodes using the standard TOSCA relationship types. 
The following YAML snippets give an example of the TOSCA definition of the above model. For 
the complete definition, please refer to Appendix 1 for more details. 
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Figure 9 - TOSCA definition of the RPD to the CCMTS Connection in the Cloud Native 

Environment 

After we generate the TOSCA definition of the CMTS service, we can use a TOSCA compliant 
orchestration engine to deploy the service into the microservices container environment. For example, if 
the target deployment cloud is Kubernetes managed microservices container environment, the TOSCA 
engine converts the service definition into Kubernetes deployment scripts and instruct Kubernetes to 
deploy the specified network services into the cloud. 
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The example described in this section is extremely simple. A real world NFV service is much more 
complex. For example, a CCMTS instance in the cloud will contain a set of microservice containers to 
realize the CNF functionality.  

In this case, there are two solutions for the deployment. The first one is to model the service at CNF level 
without getting into the details of the microservice containers that CNF is composed of. In the data model, 
we rely on the life cycle operations of the CCMTS to run a script that spin up a set of microservice 
containers required by the CCMTS instance in the cloud.  

Another solution is to rely on NFVO to convert the high level network service data model into the 
detailed model that contains all the microservice container definitions deployable in the cloud. Then the 
NFVO sends the generated detailed data model to the CNF Manager, which converts the service 
definition of the CCMTS into the deployment script that the target cloud understands. Then CNFM 
instructs the CIM to deploy the CCMTS into the cloud. 

In the CNF Manager, we can either incorporate a third party TOSCA compliant orchestration engine or 
develop a TOSCA orchestration engine from scratch to parse the TOSCA definition based on the 
predefined node types and relationship types. There are open source TOSCA engines and TOSCA parsers 
available in the market including Cloudify, Tacker, and Open-O. [11] [12] [13] 

Conclusion 
Cloud Native NFV is the next wave in the telecommunication and network function virtualization space. 
At this early stage of Cloud Native NFV, we observe the gaps between the ETSI NFV references and this 
newly introduced approach in NFV. This includes: 

1. ETSI NFV specification focuses on virtual appliances based solutions, and lacks the information 
and guidelines to support the cloud native architecture and environment. 

2. ETSI NFV specification focuses on the service deployment and orchestration. A pragmatic NFV 
application needs to address other perspectives including service design, modeling, monitoring, 
and analytics. 

3. Network Service design and modeling needs a standard modeling language. Current ETSI NFV 
compliant service design tool TOSCA is a good candidate but lacks the support for Cloud Native 
NFV.  

This paper helps to bridge the gap between ETSI NFV and the Cloud Native NFV by identifying elements 
in the ETSI specification that needs to be augmented to support the microservices container environment. 
We also proposed a pragmatic software architecture to illustrate a Cloud Native NFV MANO system. 
Because using a standard modeling language for Network Service design is critical to the portability and 
interoperability of NFV MANO systems, we proposed using TOSCA modeling language and explained 
how to use its customization capabilities to support the Cloud Native NFV. 

Cloud Native NFV is still in its infant stage. The purpose of this paper is to share the observations, 
practices, and examples in the related areas to help with the building of actual products using this 
approach. We believe with more and more NFV applications using the cloud native approach, more and 
more tools to support the NFV applications in the related areas will appear. More and more best practices 
discussions, guidelines, and specifications will be generated towards the eventual interoperability and 
standardization in the Cloud Native NFV. 
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Abbreviations 
CIM Cloud Infrastructure Manager 
CCMTS Cloud Cable Modem Termination System 
CMTS Cable Modem Termination System 
CNF Cloud Network Function 
CNFMS Cloud Network Function MicroService 
CNFM Cloud Network Function Manager 
CNFFG Cloud Network Function Forwarding Graph 
EM Element Manager 
ETSI European Telecommunications Standards Institute 
ETSI ISG  ETSI Industry Specification Group  
ETSI ISG GS ETSI ISG Group Specification 
IETF Internet Engineering Task Force 
MANO Management and Orchestration 
NFCI Network Function Cloud Infrastructure 
NFV Network Function Virtualization 
NFVI Network Function Virtualization Infrastructure 
NFVO Network Function Virtualization Orchestrator 
NS Network Service 
NSD Network Service Descriptor 
PNF Physical Network Function 
RPD Remote PHY Device 
TOSCA Topology and Orchestration Specification for Cloud Applications 
VIM Virtualized Infrastructure Manager 
VM Virtual Machine 
VNF Virtualized Network Function 
VNFD Virtualized Network Function Descriptor 
VNFM Virtualized Network Function Manager 
VNFFG Virtualized Network Function Forwarding Graph 
AP access point 
bps bits per second 
FEC forward error correction 
HFC hybrid fiber-coax 
HD high definition 
Hz hertz 
ISBE International Society of Broadband Experts 
SCTE Society of Cable Telecommunications Engineers 
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Appendix 1. Cloud Native CMTS System 
Orchestrator TOSCA Model 
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Appendix 2. Cloud Native CMTS System 
Orchestrator TOSCA Custom Types 
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cabu.nodes.phyendpoint: 

  derived_from: tosca.nodes.Root 

 

  attributes: 

    mac_address: 

      type: string 

    ip_address:: 

      type: string 

     

  properties: 

     mac_address: 

      type: string 

      required: yes 

     ip_address: 

      type: string 

      required: false 

 

   requirements: 

     -connection: 

        capability: tosca.capabilities.Endpoint 

        occurences: [0, UNBOUNDED] 

        node: tosca.nodes.Root 

        relationship: tosca.relationships.ConnectsTo 

 

   capabilities: 
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