

 © 2017 SCTE-ISBE and NCTA. All rights reserved.

Bridging the Gap Between ETSI-NFV and Cloud
Native Architecture

A Technical Paper prepared for SCTE/ISBE by

YuLing Chen
Senior Technical Leader

Cisco Systems Inc.
375 East Tasman Drive

San Jose CA 95134
408-393-5606

yulingch@cisco.com

Alon Bernstein
Distinguished Engineer

Cisco Systems Inc.
375 East Tasman Drive

San Jose, CA 95134
alonb@cisco.com

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 2

Table of Contents
Title Page Number
Introduction __ 4

The Cloud Native Trend in NFV ___ 4

ETSI NFV Adaptation to the Cloud Native Architecture _______________________________________ 6

Proposed ETSI MANO Reference Architecture Augmentation for Cloud Native NFV ________________ 6

Cloud Native NFV MANO Software Architecture __ 9
1. Network Service Design Phase ___ 10
2. Run-time Execution Phase __ 10

Service Design and Deployment using TOSCA Modeling Language ___________________________ 12
1. Service Design and Deployment Process Flow _______________________________________ 12
2. Network Service Modeling using TOSCA ___ 13
3. TOSCA and YANG __ 14
4. TOSCA for Cloud Native NFV __ 15
5. Example of using TOSCA Modeling Language _______________________________________ 16

Conclusion __ 20

Abbreviations __ 21

Bibliography & References ___ 21

Appendix 1. Cloud Native CMTS System Orchestrator TOSCA Model __________________________ 23

Appendix 2. Cloud Native CMTS System Orchestrator TOSCA Custom Types ___________________ 25

List of Figures

Title Page Number
Figure 1 - The Trend of the Cloud Native NFV 5

Figure 2 - Proposed ETSI MANO Reference Architecture Augementation for Cloud Native NFV 8

Figure 3 - A pragmatic NFV Software Architecture in the Cloud Native Environment 10

Figure 4 - Service Design and Deployment Process Flow 12

Figure 5 - TOSCA to support portable NFV applications[6] 14

Figure 6 - Using TOSCA and YANG in different perspectives of NFV applications[5] 15

Figure 7 - Visulized TOSCA custom types for CMTS System Orchestrator 17

Figure 8 - The TOSCA model of an example CMTS System Orchestrator 18

Figure 9 - TOSCA definition of the RPD to the CCMTS Connection in the Cloud Native Environment 19

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 3

List of Tables
Title Page Number
Table 1 - TOSCA custom types to support network services modeling in an example CMTS System

Ochestrator 16

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 4

Introduction
In recent years, Network Function Virtualization (NFV) has been introduced into the Telecom industry to
deliver reliable and efficient commercial networking services in programmable standard hardware
systems, called Virtualized Network Functions (VNFs). NFV promises benefits in the savings of
operational and capital expenditure (OpEx and CapEx), as well as the increased automation, operations
simplification, business agility, and faster time to market.

The cloud native microservices container architecture was originated from the webscale providers such as
Amazon, Google, and Netflix. The approach of cloud native is to break down a monolithic application
into small microservices and deploy as containers in the cloud. One of the attractions of this approach is
that applications can be tested in an iterative and distributed model, without taking applications offline. In
the cloud world, large scale applications have been developed, tested, and deployed with more agility
using this distributed model.

Since 2016, several large service providers have publicly embraced the move to a microservices
architecture in the telco cloud. [1] There have been announcements from major service providers to use
containers to build out their network function virtualization infrastructure. Some key telecommunications
equipment suppliers are using microservices to implement some of their software. Open-source initiatives
are moving towards microservices and containers. In NFV space, there is a trend of moving from the
virtual appliance based solutions to the cloud native approach, which is referred to as the Cloud Native
NFV.

The NFV world has been following ETSI NFV references. However, most of the ETSI published
documents were based on case studies and Proof of Concepts built on virtual appliances. There is a gap
between ETSI NFV and the cloud native approach. With more and more cloud native solutions appear in
NFV, there is a need to augment the existing ETSI NFV specifications so as to continue guiding the NFV
world towards interoperability and standardization.

To support this effort, this paper identifies the elements in the ETSI NFV Management and Orchestration
(MANO) reference architecture that need to be adjusted when applying the cloud native approach in
NFV. We also propose a pragmatic software architecture that realizes the NFV MANO functionality
using the cloud native approach. With the focus on the network service design and deployment, which is
the core functionality of the NFV Management and Orchestration systems, we exercise the TOSCA
language for the service modeling in the cloud native environment.

The Cloud Native Trend in NFV
Since 2012, driven by leading telecoms network operators, the European Telecommunication Standards
Institute (ETSI) has been working on NFV requirement prioritization, high level architectural framework
definition, development guideline specification, and Proof of Concept organization. ETSI has published a
series of documentation and specifications in these related efforts. The documentation has been widely
referenced and adopted in the NFV space.

What ETSI NFV advocates has been the moving of network functions from specialized proprietary
hardware to virtualized software that can be deployed on standard hardware equipment. [2] Now, with the

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 5

cloud native adoption in NFV, we observed that the network functions together with the MANO systems
are moving into the cloud as a form of microservices containers.

Figure 1 - The Trend of the Cloud Native NFV

As described in Figure 1, with the Network Virtualization Approach, which ETSI-NFV has been focusing
on, the classical network appliances with non-commodity hardware move to the software based virtual
appliances deployed in the standard equipment. With the cloud native approach, the network functions,
which were implemented as monolithic applications, now are broken down into smaller microservices,
and deployed as containers in both the public and private clouds. Leveraging Continuous Integration and
Deployment (CI/CD), these microservices containers are orchestrated and deployed with automation. The
independent software vendors who used to produce full-fledged network functions now become the
vendors of smaller microservices.

More specifically, we observed the adoption of the cloud native solutions in the following NFV areas:

• VNFs
o More and more VNFs are broken down into smaller microservices containers.
o More and more NFV applications are packaged as microservices containers and deployed

in the cloud native environment.
• MANOs

o More and more NFV Management and Orchestration systems are deployed in the
microservice container environment

• VIMs
o Container orchestrators such as Kubernetes and Docker Swarm appear in NFV

applications

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 6

ETSI NFV Adaptation to the Cloud Native
Architecture

ETSI NFV ISG has published a series of specifications including the ETSI MANO GS (Group
Specification) Network Functions Virtualisation (NFV); Management and Orchestration. [3] The
specification lays out the NFV MANO objectives and concepts, defines the high level reference
architectural framework, and specifies the information elements in an NFV MANO system .ETSI
Management and Orchestration Architectural Framework

ETSI NFV reference architectural framework defines three functional blocks in the NFV-MANO domain:
NFV Orchestrator (NFVO), VNF Manager(s) (VNFMs), and Virtualized Infrastructure Manager(s)
(VIMs).

• NFV Orchestrator (NFVO)

NFVO is responsible for the on-boarding of a new Network Service (NS) composed of multiple VNFs,
VNF forwarding graph, Virtual Links, and, as an option, Physical Network Functions (PNFs). The
orchestrator also controls the life cycle of the Network Service, validates and authorizes NFVI resource
requests, manages global resources, as well as the policy of the Network Service instances.

• VNF Manager(s) (VNFMs)

The VNFM focuses on the life cycle management of individual VNF instances. A VNF manager takes the
responsibility of the management of a single VNF instance, or the management of multiple VNF
instances of the same type. VNFM also serves as an overall coordination and adaptation role for
configuration and event reporting between the VIM and the EM systems of traditional operator
architectures.

• Virtualized Infrastructure Manager(s) (VIMs)

The VIM is responsible for controlling and managing the NFVI compute, storage and network resources.
At the same time, it collects performance measurements in the infrastructure and makes the data available
from other functional blocks for monitoring purposes.

The NFV-MANO architectural framework also identifies main reference points for the exchange of data
between the corresponding defined functional blocks.

Proposed ETSI MANO Reference Architecture
Augmentation for Cloud Native NFV

As a standard specification, ETSI focuses on high level architecture, development guidelines, and
interoperability enabled by open interfaces. Most of the specifications in ETSI MANO GS continue
serving the purpose when applying to the Cloud Native NFV. Nevertheless, augmentation is needed in
some areas because of the differences between the VM based and cloud native solutions.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 7

In the cloud native architecture, the network functions are deployed in the cloud as microservices
containers. The granularity of the deployed instances is much smaller based on microservices design and
implementation. A VNF in ETSI context would contain multiple microservice containers working
together in the cloud native context. This adds complexity to the management and orchestration of the
system. The fully distributed architecture, coordination and communication among the microservices,
fault monitoring and recovery in smaller but more specific portion of the software, all contribute to the
complexity of the MANO system.

On the other hand, the cloud native architecture brings advantages to NFV MANO systems including
some critical pain points. One pain point in the VM based solutions is to provide high availability to the
service providers by spawning new instances in the cases of faults, failures or scaling out to handle larger
workloads. The time needed for spinning up a new VM has been the bottleneck in the VM based
solutions. Using the cloud native approach, because the granularity of the independent unit for recovering
or scaling out is much smaller, and the container start/stop is much faster, the latency of spawning a new
network function composed of a set of microservice container instances is much smaller than that in the
VM based solutions.

To highlight the differences between the VM based solution and the cloud native based approach in NFV,
we propose the Cloud Native NFV high level reference architecture with the revised terminologies as an
augmentation to the original ETSI NFV MANO reference architecture, which is illustrated in Figure 2.

As described in the diagram, The Network Function Cloud Infrastructure (NFCI) contains the public
cloud and the private cloud(s) with containerization layer(s) to provide the infrastructure for the network
services deployed as containers in the Cloud Native architecture. On top of the NFCI, a set of
microservice containers work together to realize the functionality provided by a Cloud Network Function
(CNF). Each microservice in a CNF is called a Cloud Network Function MicroService (CNFMS). A list
of CNFs chain together with traffic flowing through the network functions becomes a CNFFG.

NFV Orchestrator (NFVO), CNF Manager (CNFM), and Cloud Infrastructure Manager (CIM) are the
functional blocks of NFV MANO systems. The NFV MANO system communicates with OSS/BSS,
CNFs in CNFFG, and NFCI through interfaces to manage and orchestrate the network services provided
by the network functions deployed as microservices in the NFCI.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 8

Figure 2 - Proposed ETSI MANO Reference Architecture Augementation for Cloud Native

NFV

The detailed description of each functional block and component in Figure 2 is as follows:

• Cloud Network Function MicroService (CNFMS)

CNFMSs are the microservice containers from which a Cloud Network Function is composed.

• Cloud Network Function (CNF)

CNFs are the network functions deployed in the cloud as microservices, usually in container format.

• Network Function Cloud Infrastructure (NFCI)

NFCI provides the underline physical infrastructure for the network functions. This includes the hardware
equipment for the computer, networking, storage, as well as the containerization layer on top of the
hardware platform. CNFs are deployed on top of the NFCI.

• Cloud Infrastructure Manager (CIM)

CIM is responsible for controlling and managing the NFCI compute, storage and network resources, as
well as scheduling the microservice containers in the cloud. It manages the lifecycle of the containers in
the cloud.

CIM also collects performance measurements in the infrastructure including container level, and makes
the data available for other functional blocks for monitoring purposes.

Other responsibilities of CIM include virtual networking control and management, as well as the
southbound integration with various network controllers to achieve the physical network control and
management capabilities.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 9

Examples of the CIMs available in the market are Kubernetes, AWS ECS, and Docker Swarm.

• Cloud Network Function Manager (CNFM)

CNFM focuses on the life cycle management of individual CNF instances. In the cloud native
architecture, a CNF is usually composed of a set of containers that implement a network function. A CNF
manager takes the responsibility of the management of the multiple container instances of the same
network function. To control the lifecycle of the CNFs, CNFM works closely with CIM, which manages
the lifecycle of the individual container of the CNF.

CNFM also serves as an overall coordination and adaptation role for configuration and event reporting
between the CIM and the EM systems of traditional operator architectures.

• NFV Orchestrator (NFVO)

The NFVO continues serving the responsibility of on-boarding a new Network Service (NS) composed of
multiple CNFs, CNF forwarding graph, Virtual Links, and, as an option, Physical Network Functions
(PNFs). The orchestrator also controls the life cycle of the Network Service including instantiation,
scale-in/out or up/down, performance measurements, event correlation and termination. Further key
operational functions are global resource management, validation and authorization of NFCI resource
request, as well as policy management of Network Service instances.

• Cloud Network Function Forwarding Graph (CNFFG)

The CNFFG contains a list of CNFs and the virtual links among the CNFs and the physical endpoints.

Cloud Native NFV MANO Software Architecture
As a standard specification, ETSI focuses on high level architecture, development guidelines, and
interoperability among systems produced from different vendors. In order for the industry to generate real
products in microservices container architecture, we further refine and develop the functional blocks into
micro services, helping to implement and realize the functionality mentioned in the previous section. We
also realized that a real NFV MANO product needs to address more operational issues and challenges
than what ETSI has specified. This includes the design phase support, network control in the cloud native
environment, data collection, monitoring, and analytics. [4]

Figure 3 illustrates a pragmatic NFV MANO architecture using the cloud native approach.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 10

Figure 3 - A pragmatic NFV Software Architecture in the Cloud Native Environment

Figure 3 contains the microservices for the NFV Management and Orchestration in both the Design Phase
and the Runtime Execution Phase. The design phase generates the network services model to be deployed
onto the target private or public cloud(s). The Runtime execution phase contains the microservices for the
network service deployment, orchestration, lifecycle management, network control, monitoring, and
analytics. Besides the functional services, there are a set of common infrastructure services for all the
microservices containers in the cloud native architecture environment.

1. Network Service Design Phase
One of the key functionality of NFV MANO is the Network Service Orchestration. Before the MANO
can orchestrate the virtual and physical network services, we first need to design the services with rules
and policies to indicate how the services are being deployed at run-time.

The Service Design microservice provides interfaces, usually in a visual studio way, for the user to design
and model the network services and store them into a network service catalog (NS Catalog). The
definition of the services need to specify how and when the CNFs are realized in a target environment. In
particular, the definition would need to include the logical catalog items, together with selected
workflows and instance configuration data, completely defines how the deployment, activation, and life-
cycle management of CNFs are accomplished.

To facilitate the portability of the service design, it is desired to use a standard modeling language to
describe the service definition. With such definition, any NFV orchestrator that is compliant with the
standard modeling language can take the service specification and deploy into the target cloud
environment.

2. Run-time Execution Phase
Various microservices work together during run-time to realize the functionality of the network service
deployment, configuration, monitoring, and data analytics.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 11

Taking the generated service definition as the Network Service Descriptor (NSD) and Cloud Network
Function Descriptor (CNFD), the Service Orchestrator executes the workflow specified in NSD and
works with other microservices to control the lifecycle of the network service; the Dashboard visualizes
the topology of the network with basic monitoring of the health of the system; the Global Resource
Manager allocates both the system resources and the network application resources; the CNF Manager
deploys and manages the lifecycle of the Cloud Network Functions; the CNF Network Controller focuses
on the control and management of the virtual networking among the CNF instances; and the Device Life
Cycle Manager manages the physical life cycle of the devices.

Container networking in the cloud native environment is important to NFV applications. Since the CIM is
realized by third party container orchestration tools, and most of the tools lack the full-fledged networking
feature including policies and security support across different compute nodes, we would need to plug in
various types of Network Controllers to augment the capability needed for the network functions
deployed in the cloud.

The CNF Network Controller stitches the network connectivity between microservice containers. Usually
there are two types of network traffic going through between CNFs: the control traffic and the data traffic.
The control traffic usually requires lower bandwidth with relatively longer latency. The data traffic
requires higher bandwidth with lower latency. Most container orchestration tools contain sufficient
support for the control traffic. However, for data traffic, specialized CNF controllers will work with high
speed virtual routers to realize the data plane acceleration in the cloud native environment.

The Data Center Network Controller and Access Network Controller are southbound plugins to the CIM
to provide the physical networking to virtual networking mapping in the NFV system.

Telemetry and Analytics microservices work together to realize the collection, streaming, storage, and
analytics of the operational data collected from the network.

Besides the functional services to achieve the NFV MANO capabilities, there are a set of common
services that are particularly important in microservice container architecture.

The messaging bus enables the loosely coupled integration architecture in microservice container
environment using publish/subscribe way of the inter container communication. Another important role of
the messaging bus is to support large amount of telemetry data pushed from the network functions. The
scalability and performance of the messaging bus is critical to the success of the cloud native architecture.
Currently Kafka is one of the most popular messaging tools that are widely used in the microservices
container environment.

Logging and tracing help with efficient and effective troubleshooting across distributed microservies.
Open source tools such as fluentd, ELK, open tracing, and zipkin are popular ones to enable centralized
logging and cross service tracing capabilities.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 12

Service Design and Deployment using TOSCA
Modeling Language

Network Service design and deployment is fundamental to NFV MANO functionalities. As the result
from the service design, network service descriptor is generated. At run time, the NFV Orchestrator
deploys the network service as CNF instances in the cloud native environment.

1. Service Design and Deployment Process Flow
The process flow of the Network Service Design and Deployment is described in Figure 4. The first step
is to design the service using visualization tools in the Design Studio. The Design Studio is a graphical
interface for the user to define the network services that contain the network nodes and the relations
among them as links. A typical graphical Design Studio provides a set of drag and drop tools to help
make the modeling process easy and intuitive to the user. During this process, the user enters the
workflow definition, service template definition, and policy description as the input. As the result from
this step, a Network Service Descriptor (NSD) will be generated and stored in a database called NS
Catalog. At run time, as part of the NFVO, a NS Deployer would read the NSD from the catalog. The NS
Deployer decomposes, translates, and converts the NSD into CNFD and stores it into the database called
CNFD Catalog. The CNFD contains the specifications of the Cloud Network Functions that are ready for
being deployed in the cloud. After that, the CNF Deployer reads the CNFD from the catalog and converts
it into the executable artifacts accepted by the target cloud provider. Finally, the CNF Deployer
communicates with the CIM to deploy the workload into the cloud.

Figure 4 describes the process flow of the Network Service Design and Deployment.

Figure 4 - Service Design and Deployment Process Flow

In the process described above, if the descriptor of the Network Service (NSD) and Cloud Network
Function (CNFD) is specified in a standard modeling language, any NFV MANO that is compliant with

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 13

such standard language will be able to deploy the workload into the cloud. This has been the goal of
TOSCA modeling language.

2. Network Service Modeling using TOSCA
Topology and Orchestration Specification for Cloud Applications (TOSCA) is a standard modeling
language managed by industry group OASIS that can be used to orchestrate NFV services and
applications. TOSCA delivers a declarative description of the application topology for a network or cloud
environment that includes all its components, which may include the need for load balancing, networking,
computing resources, and other software. It can also be used to define the workflows that need to be
automated in the cloud.

The TOSCA modeling language includes concepts such as nodes and relationships, whereby a node is an
infrastructure such as network, subnet, or a server software component. TOSCA can help define how
these nodes and services work together. TOSCA uses templates to automate the configuration of these
relationships.

TOSCA facilitates high levels of service portability, making services portable to any cloud or application
that is TOSCA compatible. The data model also enables easier migration of applications. It is inherently
infrastructure-agnostic, and thus is extensible to enable the automation of software-defined networks, in
combination with NFV and clouds, to simplify end-to-end service orchestration for cloud and telco
operators.

Figure 5 illustrates how to use TOSCA modeling language to model NFV Network Services and achieve
the portability of deploying the same services in different cloud providers. [6] As described in the
diagram, a CNFFG defined in TOSCA language can be deployed by a TOSCA compliant orchestration
engine to different types of Cloud Providers such as AWS, Kubernetes, or Docker Swarm. The TOSCA
compliant orchestration engine applies the necessary automatic matching, translation and optimization
between the application requirements and the NFV infrastructure capabilities provided by the target cloud
providers to achieve the portability.

TOSCA supports XML, JSON, and YAML implementation of the data model. With the industry trend
moving to microservices container architecture, more and more TOSCA implementation products started
the effort in deploying TOSCA defined services as microservice containers in the cloud native
environment.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 14

Figure 5 - TOSCA to support portable NFV applications[6]

3. TOSCA and YANG
YANG is a data modeling language used to describe configuration and state information. It was published
by Internet Engineering Task Force (IETF) in 2010. YANG has been used to model networking devices
and services – i.e., an object and its attributes. YANG defines the data models that are manipulated
through the NETCONF protocol.

There has been a battle between using TOSCA or YANG modeling languages in the NFV context. These
two modeling languages are not competitors but complementary to each other in different perspectives.
TOSCA focuses more on the network topology, cloud workload, workflow representation, and
deployment artifacts specification of the network services. The goal of TOSCA is to prepare a declarative
specification for the workload being deployed in the cloud. YANG focuses more on the configuration of
the network functions in the cloud. YANG provides the ability to easily configure network devices in a
human readable fashion.

Because of YANG’s strength is in configuring networking devices while TOSCA’s strength is
orchestration, we suggest using TOSCA in NFVO and CNFM, while using YANG for the configuration
of CNFs and PNFs in NFV MANO architectural framework. [5] Figure 6 illustrates the idea of using both
TOSCA and YANG in different functional blocks of the ETSI NFV MANO reference architecture.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 15

Figure 6 - Using TOSCA and YANG in different perspectives of NFV applications[5]

4. TOSCA for Cloud Native NFV
The TOSCA metamodel uses the concept of service templates to describe cloud workloads as a topology
template, which is a graph of node templates modeling the components that the workload is made up of,
and as relationship templates modeling the relations between those components. TOSCA further provides
a type system of node types to describe the possible building blocks for constructing a service template, as
well as relationship types to describe possible kinds of relations. Both node and relationship types may
define lifecycle operations to implement the behavior an orchestration engine can invoke when
instantiating a service template.

An orchestration engine processing a TOSCA service template uses the mentioned lifecycle operations to
instantiate single components at runtime, and it uses the relationship between components to derive the
order of component instantiation. Network Service workflow can be modeled using TOSCA leveraging
the relationship modeling capabilities from TOSCA.

The TOSCA simple profile defines a number of base node types and relationship types to be supported by
each compliant environment. Furthermore, it is envisioned that a large number of additional types for use
in service templates will be defined by a community over time. At the same time, TOSCA is highly
customizable with type inheritance capabilities built in the language. Specialized TOSCA engines can
build the support for customized node types and relationship types to satisfy the needs.

TOSCA has been popular in the network service modeling in NFV. OASIS published the TOSCA Simple
Profile for Network Functions Virtualization (NFV) Version 1.0 in May 2017. [8] However, the
specification is VM based without the microservices container support. There is a need for extending the
TOSCA specifications to support the Cloud Native NFV. With the strong growth of the Cloud Native
NFV in the Telco space, this could be the next step from OASIS in the near future.

Before we have a set of TOSCA base node types and base relationships types defined by OASIS for the
Cloud Native NFV, we can leverage the generic TOSCA base types with customization. Recently, there

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 16

has been research looking into how to use customized types in TOSCA to model generic applications
deployed as Docker containers in the cloud [9][10]. We can take the same approach while adding
additional custom types needed in the Cloud Native NFV context.

5. Example of using TOSCA Modeling Language
In this section, we will exercise an example using TOSCA modeling language to design and deploy a
network service in a CMTS orchestration system. The goal is to illustrate the approach of using TOSCA
to model the Network Service that contains sufficient information for the NFVO to deploy in a cloud
native environment.

In this example, we will model a Physical Network Function called Remote PHY Device (RPD), which
connects to a Cloud Network Function called Cloud Cable Modem Termination Service (CCMTS) to
consume the CMTS services. To make it simple, we assume the CCMTS contains only one microservice
container. We also assume that the CCMTS will need to be deployed as a Docker container in the cloud.
The lifecycle of CCMTS and RPD needs to be specified in the service model.

To achieve the above goal, after analysis, we decided to add four node types and two artifact types to the
existing TOSCA base type definition included in the TOSCA Simple Profile in YAML Verion 1.0 [7].
The current TOSCA relationship types defined in the referred document are sufficient to support the
relation definition between the nodes.

Table 1 describes the custom types that we need to add to the TOSCA base type definition.

Table 1 - TOSCA custom types to support network services modeling in an example
CMTS System Ochestrator

Node Types Extends Artifact Types
Container tosca.nodes.Root Image tosca.artifacts.Root
Container.Executable cabu.nodes.Container Dockerfile tosca.artifacts.Root
Software tosca.nodes.Root
Volume tosca.nodes.Root
Phyendpoint tosca.nodes.Root

In the table, all the custom types extend the root Data Type in the standard TOSCA specification. The
detailed definition of the tosca.nodes.Root can be found in [7]. The Container data type defines the basic
meta data of the Docker container; The Docker executable container defines more data when the
container is deployed in an actual cloud provider environment. The Software data type defines the actual
software that runs inside a container; The Volume specifies the storage attached to the container; The
Dockerfile and the Image are the two artifacts that the container uses for the software packaging and
deployment; The Phyendpoint is the data type used for modeling a physical device.

Figure 7 describes the attributes of each Node Type and Artifact Type in the above table.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 17

Figure 7 - Visulized TOSCA custom types for CMTS System Orchestrator

The above custom types help with the modeling of the CCMTS instances in the cloud. The Docker
container and Docker executable container provide the attributes for the user to specify the ports,
environment variables, and commands need to be executed when starting the container. Since the
container is transient and the data needs to be stored in a Volume, the storage property of the Docker
container and Docker executable container will allow the user to specify the Volume to be attached to the
container. The standard lifecycle operation interfaces allow the user to plugin customized scripts to run
during the lifecycle of the containers.

The Physical endpoint helps with the modeling of RPDs. Although it is not part of the workload being
deployed in the cloud, we need this entity in the data model to specify the relationship between the RPDs
and the CCMTS instances. The attributes and the lifecycle operations of the Physical endpoint will allow
the user to uniquely identify this physical network function, and to insert customized workflow operations
during the deployment of the RPD. Appendix 2 specifies the detailed TOSCA YAML definition of these
custom types.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 18

Figure 8 - The TOSCA model of an example CMTS System Orchestrator

Using the custom types, we can model the relationship between the RPDs and CCMTS instances, which
is illustrated in Figure 8. In the diagram, CCMTS instance is a type of software node hosted on a
CCMTS_container node with the sufficient information to spin up a microservice container in the cloud.
This includes the Docker image file location for downloading during the deployment time, the runtime
parameters passed to the container, the volume to store the data, which are modeled as different node and
artifact instances using the custom types defined earlier. Moreover, the above data model specifies the
relation between the nodes using the standard TOSCA relationship types.
The following YAML snippets give an example of the TOSCA definition of the above model. For
the complete definition, please refer to Appendix 1 for more details.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 19

Figure 9 - TOSCA definition of the RPD to the CCMTS Connection in the Cloud Native

Environment

After we generate the TOSCA definition of the CMTS service, we can use a TOSCA compliant
orchestration engine to deploy the service into the microservices container environment. For example, if
the target deployment cloud is Kubernetes managed microservices container environment, the TOSCA
engine converts the service definition into Kubernetes deployment scripts and instruct Kubernetes to
deploy the specified network services into the cloud.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 20

The example described in this section is extremely simple. A real world NFV service is much more
complex. For example, a CCMTS instance in the cloud will contain a set of microservice containers to
realize the CNF functionality.

In this case, there are two solutions for the deployment. The first one is to model the service at CNF level
without getting into the details of the microservice containers that CNF is composed of. In the data model,
we rely on the life cycle operations of the CCMTS to run a script that spin up a set of microservice
containers required by the CCMTS instance in the cloud.

Another solution is to rely on NFVO to convert the high level network service data model into the
detailed model that contains all the microservice container definitions deployable in the cloud. Then the
NFVO sends the generated detailed data model to the CNF Manager, which converts the service
definition of the CCMTS into the deployment script that the target cloud understands. Then CNFM
instructs the CIM to deploy the CCMTS into the cloud.

In the CNF Manager, we can either incorporate a third party TOSCA compliant orchestration engine or
develop a TOSCA orchestration engine from scratch to parse the TOSCA definition based on the
predefined node types and relationship types. There are open source TOSCA engines and TOSCA parsers
available in the market including Cloudify, Tacker, and Open-O. [11] [12] [13]

Conclusion
Cloud Native NFV is the next wave in the telecommunication and network function virtualization space.
At this early stage of Cloud Native NFV, we observe the gaps between the ETSI NFV references and this
newly introduced approach in NFV. This includes:

1. ETSI NFV specification focuses on virtual appliances based solutions, and lacks the information
and guidelines to support the cloud native architecture and environment.

2. ETSI NFV specification focuses on the service deployment and orchestration. A pragmatic NFV
application needs to address other perspectives including service design, modeling, monitoring,
and analytics.

3. Network Service design and modeling needs a standard modeling language. Current ETSI NFV
compliant service design tool TOSCA is a good candidate but lacks the support for Cloud Native
NFV.

This paper helps to bridge the gap between ETSI NFV and the Cloud Native NFV by identifying elements
in the ETSI specification that needs to be augmented to support the microservices container environment.
We also proposed a pragmatic software architecture to illustrate a Cloud Native NFV MANO system.
Because using a standard modeling language for Network Service design is critical to the portability and
interoperability of NFV MANO systems, we proposed using TOSCA modeling language and explained
how to use its customization capabilities to support the Cloud Native NFV.

Cloud Native NFV is still in its infant stage. The purpose of this paper is to share the observations,
practices, and examples in the related areas to help with the building of actual products using this
approach. We believe with more and more NFV applications using the cloud native approach, more and
more tools to support the NFV applications in the related areas will appear. More and more best practices
discussions, guidelines, and specifications will be generated towards the eventual interoperability and
standardization in the Cloud Native NFV.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 21

Abbreviations
CIM Cloud Infrastructure Manager
CCMTS Cloud Cable Modem Termination System
CMTS Cable Modem Termination System
CNF Cloud Network Function
CNFMS Cloud Network Function MicroService
CNFM Cloud Network Function Manager
CNFFG Cloud Network Function Forwarding Graph
EM Element Manager
ETSI European Telecommunications Standards Institute
ETSI ISG ETSI Industry Specification Group
ETSI ISG GS ETSI ISG Group Specification
IETF Internet Engineering Task Force
MANO Management and Orchestration
NFCI Network Function Cloud Infrastructure
NFV Network Function Virtualization
NFVI Network Function Virtualization Infrastructure
NFVO Network Function Virtualization Orchestrator
NS Network Service
NSD Network Service Descriptor
PNF Physical Network Function
RPD Remote PHY Device
TOSCA Topology and Orchestration Specification for Cloud Applications
VIM Virtualized Infrastructure Manager
VM Virtual Machine
VNF Virtualized Network Function
VNFD Virtualized Network Function Descriptor
VNFM Virtualized Network Function Manager
VNFFG Virtualized Network Function Forwarding Graph
AP access point
bps bits per second
FEC forward error correction
HFC hybrid fiber-coax
HD high definition
Hz hertz
ISBE International Society of Broadband Experts
SCTE Society of Cable Telecommunications Engineers

Bibliography & References
[1] Microservices architecture in the Telco Cloud, SDX Central; Available from
https://www.sdxcentral.com/nfv/definitions/microservices-architecture-telco-cloud/

[2] Network Function Virtualization – Introductory White Paper; Available at
https://portal.etsi.org/nfv/nfv_white_paper.pdf

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiY6vGqk6vVAhXnsVQKHXDbALQQFggyMAA&url=http%3A%2F%2Fwww.etsi.org%2F&usg=AFQjCNEJx3QZM-PWsQgThIi_YPo13eFpOQ
https://www.sdxcentral.com/nfv/definitions/microservices-architecture-telco-cloud/
https://portal.etsi.org/nfv/nfv_white_paper.pdf

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 22

[3] Network Function Virtualization Management and Orchestration Group Specification; European
Telecommunications Standards Institute (ETSI) Group Specification;2014; Available from
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-
MAN001v010101p.pdf

[4] OpenNetwork Automation Platform, ONAP Wiki; Available from

https://wiki.onap.org/display/DW/Architecture

[5] TOSCA vs. Netconf – a Comparison, SDX Central; Available from
https://www.sdxcentral.com/nfv/definitions/tosca-vs-netconf-comparison/

[6] Making TOSCA Truly Portable, Nati Shalom, May 12, 2016; Available from
http://cloudify.co/2016/05/12/making-tosca-truly-portable-openstack-cloud-nfv-open-source-
orchestration.html

[7] TOSCA Simple Profile in YAML Verion 1.0; Available from

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd02/TOSCA-Simple-Profile-
YAML-v1.0-csprd02.html

[8] TOSCA Simple Profile for Network Functions Virtualization (NFV) version 1.0; Available from
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html

[9] Orchestrating applications with TOSCA and Docker, Luca Rinaldi; Available from

https://core.ac.uk/download/pdf/79623650.pdf

[10] Docker.io; Available from https://www.docker.com/what-docker

[11] Cloudify.co; Available from http://cloudify.co/

[12] Tacker – OpenStack NFV Orchestration; Available at https://wiki.openstack.org/wiki/Tacker

[13] OpenO.org; https://www.open-o.org/

http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
https://wiki.onap.org/display/DW/Architecture
https://www.sdxcentral.com/nfv/definitions/tosca-vs-netconf-comparison/
http://cloudify.co/2016/05/12/making-tosca-truly-portable-openstack-cloud-nfv-open-source-orchestration.html
http://cloudify.co/2016/05/12/making-tosca-truly-portable-openstack-cloud-nfv-open-source-orchestration.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd02/TOSCA-Simple-Profile-YAML-v1.0-csprd02.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd02/TOSCA-Simple-Profile-YAML-v1.0-csprd02.html
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html
https://core.ac.uk/download/pdf/79623650.pdf
https://www.docker.com/what-docker
http://cloudify.co/
https://wiki.openstack.org/wiki/Tacker
https://www.open-o.org/

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 23

Appendix 1. Cloud Native CMTS System
Orchestrator TOSCA Model

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 24

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 25

Appendix 2. Cloud Native CMTS System
Orchestrator TOSCA Custom Types

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 26

cabu.nodes.phyendpoint:

 derived_from: tosca.nodes.Root

 attributes:

 mac_address:

 type: string

 ip_address::

 type: string

 properties:

 mac_address:

 type: string

 required: yes

 ip_address:

 type: string

 required: false

 requirements:

 -connection:

 capability: tosca.capabilities.Endpoint

 occurences: [0, UNBOUNDED]

 node: tosca.nodes.Root

 relationship: tosca.relationships.ConnectsTo

 capabilities:

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 27

	Introduction
	The Cloud Native Trend in NFV
	ETSI NFV Adaptation to the Cloud Native Architecture
	Proposed ETSI MANO Reference Architecture Augmentation for Cloud Native NFV
	Cloud Native NFV MANO Software Architecture
	1. Network Service Design Phase
	2. Run-time Execution Phase

	Service Design and Deployment using TOSCA Modeling Language
	1. Service Design and Deployment Process Flow
	2. Network Service Modeling using TOSCA
	3. TOSCA and YANG
	4. TOSCA for Cloud Native NFV
	5. Example of using TOSCA Modeling Language

	Conclusion
	Abbreviations
	Bibliography & References
	Appendix 1. Cloud Native CMTS System Orchestrator TOSCA Model
	Appendix 2. Cloud Native CMTS System Orchestrator TOSCA Custom Types

