

 © 2017 SCTE-ISBE and NCTA. All rights reserved.

A Practical Approach to

Virtualizing DOCSIS 3.1 Network Functions

A Technical Paper prepared for SCTE/ISBE by:

David S. Early
Data Scientist

Applied Broadband, Inc.
2741 Mapleton Ave
Boulder, CO 80304

720-470-7460
david@appliedbroadband.com

Paul E. Schauer

Distinguished Engineer
Comcast

183 Inverness Dr W,
Englewood, CO 80112

303-372-1215
paul_schauer@comcast.com

Jason K. Schnitzer

Founder
Applied Broadband, Inc.

2741 Mapleton Ave
Boulder, CO 80304

720-838-4465
jason@appliedbroadband.com

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 2

Table of Contents
Title Page Number
Introduction __ 4

Service Provider DevOps ___ 4

Microservices: __ 6

Building Modular Distributed Applications ___ 6

Containers: __ 6

Practical Architecture for Network Virtualization __ 6

The Rise of REST ___ 7

DOCSIS 3.1 Management Data___ 7
1. Proactive Network Management (PNM) __ 7

1.1. DOCSIS 3.1 PNM Data Collection Workflow ___________________________________ 8
1.2. D3.1 CM PNM File Data ___ 9

2. DOCSIS Common Collection Framework (DCCF) _____________________________________ 10

An Example DOCSIS 3.1 Virtualized Microservice ___ 11
3. DCCF Microservices Architecture ___ 11

3.1. Software Modules ___ 11
4. DCCF Deployment and Scale __ 12
5. DCCF Features and Functions ___ 15
DCCF Microservice Example __ 16

Conclusion __ 20

Abbreviations __ 21

Bibliography & References ___ 21

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 3

List of Figures
Title Page Number
Figure 1 - Building Networked Applications from Microservices and Containers 6

Figure 2 - CM and CCAP test points as illustrated in [1](Figure 9.1) 8

Figure 3 - CableLabs Common Collection Framework Architecture 11

Figure 4 - Basic DCCF installation 13

Figure 5 - Distributing the DCCF modules 14

Figure 6 - Distributed DCCF with Multiple TFTP Service containers and Load Balancing 15

Figure 7 - Retrieving CM Topology Information for a CCAP from DCCF 17

Figure 8 - Requesting CM DS Rx MER Measurement Data From DCCF 18

Figure 9 - Retrieving CM DS MER Measurement Data From DCCF 19

Figure 10 - Example OFDM MER for three different CM devices 20

List of Tables

Title Page Number
Table 1 - Defined CM PNM Tests 9

Table 2 - DCCF v1.0 REST API commands 16

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 4

Introduction
There is broad consensus amongst the networking community that programmable network architectures
(including SDN and NFV) represent the next stage of connected infrastructure evolution. Benefits for
providers are many, stemming from innovative new approaches that re-factor the development and
deployment of networks and services.

The service provider’s ability to rapidly and continuously develop and deploy new software and tools
necessary to realize these objectives is central to the success of this model. Not only will the network see
technical change with the introduction of virtualization, but the service provider’s organization will require
significant changes as well.

This paper presents a structured approach to the evolution of virtualization within the service provider’s
practice. We establish criteria for the virtualization of network functions within the broadband access
network. In doing so, we provide system considerations for the tradespace between the use of centralized
and distributed deployment architectures. We provide an overview of Service Provider DevOps (SP-
DevOps) and how it can be applied within the cable service provider environment for the continuous
deployment of virtualized networks and services.

We present a practical example to illustrate key concepts, developing a simple microservice that provides
an implementation of the CableLabs DOCSIS 3.1 Common Collection Framework (DCCF) software
system. Use of this this DOCSIS 3.1 microservice will be shown using a container architecture within a
cable operator provider’s cloud infrastructure.

Service Provider DevOps
In contemporary software development, it’s almost impossible to ignore the term DevOps, a portmanteau
of “Development” and “Operations.” DevOps represents a practice within Information Technology (IT)
that defines an organizational model for collaboration between software development and software
operations.

Though DevOps is a popular topic in software engineering research, it currently lacks a widely accepted
standard definition. The following is a common definition of DevOps based on a novel analysis of peer-
reviewed articles:

“DevOps is a development methodology aimed at bridging the gap between Development and Operations,
emphasizing communication and collaboration, continuous integration, quality assurance, and delivery,
with automated deployment utilizing a set of development practices”. [1]

The goal of DevOps is to “bridge the gap” between the internal functions responsible for producing software
and the functions charged with running it. Major Internet software, services, and cloud provider companies
have adopted DevOps practices to improve the velocity and quality of software development and delivery
within their practice [2][3].

With success as a model for software development in large internet enterprises, it has been proposed that
DevOps may be useful within the service provider environment as well (including DOCSIS access
networks). Though many of the DevOps concepts readily apply, it is worth examining some key differences
between target infrastructures. Broadband access service providers have the following distinct

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 5

requirements, relative to most other organizations implementing DevOps principles. Notable differences
between service provider access network environments and Internet enterprise networks include:

- A high cost of operation in terms of time and human/financial resources due to the physical

management of distributed network nodes. Access Network service providers supervise a
management domain that extends beyond a centralized facility (e.g. Data Center), to intelligent
devices at the edge of the network with execution environments extending through the cable plants
and into each broadband subscriber’s home.

- Limited visibility of distributed network and service states that make it difficult to assure the Quality
of Experience (QoE).

- Difficulties in pinpointing the cause and location of problems (troubleshooting) and debugging.

- Difficulties in deploying services quickly and frequently, e.g. due to the validation of service

integration or regression testing.

This short list of maladies, shared within large scale Information Systems (ISs) development and operations,
is not unlike those faced by service providers when capturing the limitations born of current network
management systems and organizational practices. In recognizing this, service providers and network
engineering researchers have begun to evaluate the applicability of DevOps practices to analogous
challenges of scale and complexity inherent in both traditional (hardware physical element centric) and
more contemporary (software virtual element centric network architectures.

It has been noted that though similar management automation goals exist within the programmable network
infrastructure domain, service providers face challenges unique to access network systems. Where DevOps
was formed from IT organizations working within concentrated data center environments, large service
providers operate an inherently more geographically distributed system. Project UNIFY [4] proposes a list
of four key characteristics of telecommunications networks making them different from IT organization
data centers. These include:

- Higher spatial distribution with lower levels of path and equipment redundancy;
- High availability;
- Strictly controlled latency;
- Larger number of distributed datacenters.

However different, greater similarities have motivated new research into the applicability of DevOps
principles in a service provider environment. When applying key concepts of DevOps to the Service
Provider domain, the integration of these models took the form of Service Provider DevOps (SP-DevOps).
The adjusted model proposes the following aspirations:

- Iterative Development / Incremental feature content
- Continuous deployment
- Automated processes
- Holistic/Systemic views of development and deployment/operation.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 6

The UNIFY project represents a first attempt to codify SP-DevOps practices in the form of a standards-
based approach. The initiative aims at applying DevOps concepts to telecom operator networks and
supporting the idea of fast network reconfiguration.

Microservices:
Building Modular Distributed Applications

Microservices are small, purposeful modules of software executing in a distributed environment.
Microservices can be used to build larger applications (northbound) that implement specific business
solutions through interactions with the network operator’s back-office infrastructure. The microservices
architectural model is heralded to be a more agile approach to complex system development while being
better aligned with the goals of SP-DevOps and a continuous deployment model.

Figure 1 - Building Networked Applications from Microservices and Containers

Containers:
Practical Architecture for Network Virtualization

Containerization, also called container-based virtualization, is an OS-level virtualization method for
deploying and running distributed applications without launching an entire Virtual Machine (VM) for each
application. Instead, multiple isolated systems, called containers, are run on a single control host and access
a single kernel.

Microservices are often executed in containers. Containers offer a new form of system virtualization that
significantly reduces the resource cost and complexities of their VM predecessors. Where VMs embody a
complete executing environment and copy of the OS, containers perform execution isolation (virtualization)

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 7

at the OS level. In this way, a single OS instance can support multiple containers, each with a microservice
executing inside [5].

The Rise of REST
The REpresentational State Transfer (REST) protocol has risen to become the de facto choice for web
development with the evolution of Inter-Process Communication (IPC) to make use of text-based
serialization formats, like XML and JSON. Protocols such as SOAP allowed IPC across HTTP, and soon
web developers were not just building web applications that served content to browsers, but web services
that performed actions and delivered data to other programs. This services-based architecture proved to be
very powerful, as it eliminated dependencies on shared code libraries, and allowed application developers
to further decouple their application components. The SOAP protocol and the related WS-* standards soon
became increasingly complex and heavily dependent on specific implementations in application servers, so
developers migrated to the much lighter-weight REST protocol. As the use of mobile devices exploded,
and as web interface development switched to AJAX and JavaScript frameworks, application developers
started to make extensive use of REST for transmitting data between the client devices and the web servers.

In popular Software Defined Network (SDN) architectures such as OpenDaylight [6] and ONOS [7], REST
has become a critical infrastructure component, extended by the IETF to support configuration management
concepts by offering a lighter-weight transport to NETConf’s more cumbersome transactional model [8].
As we will see in the example provided, the use of REST lends itself well to microservices based
architectures and to key SP-DevOps development and delivery principles.

DOCSIS 3.1 Management Data
1. Proactive Network Management (PNM)
The DOCSIS 3.1 Physical Layer (PHY) specification introduces a new network management technique for
gathering highly valuable operational data from CCAP and CM devices [9]. The Proactive Network
Maintenance (PNM) data can be sourced from the CCAP, the CM or as a collaboration of both CCAP and
CM and for larger data sets delivers bulk data faster than traditional data collection methods (e.g. SNMP)
via TFTP file transfers. Error! Reference source not found.2 illustrates the various test points and test
functions defined in the specification (sourced from [9]).

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 8

Figure 2 - CM and CCAP test points as illustrated in [1](Figure 9.1)

These features provide capabilities similar to test and measurement equipment without the limitations
associated with this type of testing (e.g. cost, limited deployment, limited access). By placing the test
functions in the system to be tested and providing easily accessible methods of data acquisition, PNM data
represents a valuable source of operational information for the MSO to identify physical layer anomalies
and proactively address issues that affect access network performance and service quality.

1.1. DOCSIS 3.1 PNM Data Collection Workflow

Collection of DOCSIS 3.1 PNM data from a DCOSIS 3.1 CM device involves the following steps:

1. SET via SNMP any configuration parameters for the test:
a. Configuration parameters may include offsets, windows, timeouts, etc.
b. For tests that return a file, set a filename and TFTP service IP.

2. Trigger the test via SNMP set to the CM device:

a. All tests include a “TriggerEnable” field to initiate the test.

3. Collect the data:
a. For file-based data, part of the SET step is setting a TFTP destination. The data, when

complete, will be forwarded to this TFTP service
b. For SNMP based data, the data must be retrieved from the device via SNMP.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 9

These steps are non-trivial, order-dependent steps for obtaining PNM data – making this a prime
candidate for a distributable microservice providing a uniform user interface for gathering and using PNM
data.

1.2. D3.1 CM PNM File Data

Note that the specific definitions of these data sources can be found in [10] and [11]. Please refer to the
most recent version of this document for a full definition of the test, its data sources, and content.

Table 1 - Defined CM PNM Tests
PNM Test Source Note1

CM Symbol Capture PNM File Analyze the response of the cable plant from the CM's
perspective based on a sample symbol captured at the CCAP
and CM. Paired with the CCAP equivalent below.

CM Channel Coefficient
Estimates

PNM File CM estimate of the downstream channel response
coefficients, typically used for the CM’s downstream
equalizer.

CM Ds Constellation
Display

PNM File CM downstream constellation display providing received
QAM constellation points.

CM Ds OFDM Rx MER PNM File Measurements of the receive modulation error ratio (Rx
MER) for each subcarrier

CM Ds Histogram PNM File Measurement of nonlinear effects in the channel such as
amplifier compression and laser clipping. CM captures the
histogram of time domain samples at the wideband front end
of the receiver (full downstream band).

CM Pre-equalizer
Coefficients

PNM File CM upstream pre-equalizer coefficients. The CM pre-
equalizer coefficients and the CMTS upstream adaptive
equalizer coefficient update values, when taken together
describe the linear response of
the upstream cable plant for a given CM.

CM FEC Summary PNM File A series of codeword error rate measurements on a per
profile basis over a set period of time (10min or 24hr).

CM Spectrum Analysis PNM File CM downstream spectrum analysis function, each
measurement is a data collection event that provides the
energy content of the signal at each frequency within a
specified range.

CM OFDM MER Margin SNMP An estimate of the MER margin available on the
downstream data channel with respect to a candidate
modulation profile. This is similar to the MER Margin
reported in the OPT-RSP Message
[MULPIv3.1].

CM OFDM Required
QAM MER

SNMP Calculated Required Average MER based on the bit loading
for the profile and the Required MER per Modulation Order
provided in the CmDsOfdmRequiredQamMer Table.

1 Paraphrased from [7]

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 10

2. DOCSIS Common Collection Framework (DCCF)
Introduced early in 2017, the CableLabs DOCSIS 3.1 Common Collection Framework (DCCF) was
introduced to abstract the complexity of low-level data collection in DOCSIS 3.1 network deployments.

CableLabs Proactive Network Maintenance (PNM) [PNM] program has been met with measurable success
by Cable operators working to enhance best practices for DOCSIS 3.0 network operations. With the
introduction of D3.1, it is anticipated that PNM adoption will increase while network data complexity and
volumes will rise.

In addition, new platforms that enhance visibility into other critical segments within the service provider
access network infrastructure, both wireless and wireline, will also be addressed by companion PNM
initiatives. In doing so, the Cable operator will be enabled with a common platform and methodology upon
which to build enhanced applications to support current and future operational use cases. Potential network
infrastructures within the operator’s management domain that would benefit from common PNM practices
could include Wi-Fi, MOCA, R-PHY, and optical.

It is expected that multiple network technologies will be under PNM management within an operator’s
infrastructure at the same time. It is also understood that different network types will expose different forms
of operational instrumentation based on information models inherent to their design and deployment
disposition. In addition, over the course of broadband network evolution, a number of different network
management protocols have been adopted to manage D3.1 networks.

Though data is collected from the same network, it is often gathered by multiple protocols (SNMP, TFTP,
SYSLOG) embedded in disparate and closed network management systems. This adds to the burden of
network data collection, making holistic visibility unattainable.

In order to motivate wider adoption of PNM practices across current and emerging network technologies,
it has been proposed that a structured approach to network data collection would accelerate development
and deployment by abstracting the complexities of multi-network visibility through the support of standard
network information models and protocols. The Common Collection Framework (CCF) provides a
structured approach to the collection of data from standards-based network deployments.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 11

Figure 3 - CableLabs Common Collection Framework Architecture

As the name indicates, the DCCF is concerned with connecting D3.1 management applications with data
instrumented by the underlying D3.1 network plane. This restricts the DCCF to the following subset of
logical components described in the CCF architecture:

• D3.1 PMA and D3.1 PNM applications.
• D3.1 network data service.
• SNMP, TFTP, and SYSLOG protocol modules.
• D3.1 CCAP and CM devices.

The overall DCCF architecture follows the model described for CCF in the preceding sections.

An Example DOCSIS 3.1 Virtualized Microservice
In this section, we bring together the concepts introduced earlier in the form of a basic DOCSIS 3.1
virtualized microservice using the DCCF software system.

3. DCCF Microservices Architecture

3.1. Software Modules

The DCCF design is well-suited for deployment as a scalable microservice. DCCF consists of three (3)
primary modules:

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 12

1. DCCF REST API (RA) - All user REST requests are directed to the DCCF RA. The RA acts as
a request router, forwarding any incoming requests to the correct destination. Requests are
forwarded to the Workflow Controller via an internal REST interface.

2. DCCF Workflow Controller (WC) - The WC manages the execution of individual tasks against
network devices or external data sources.

a. The WC contains “Drivers” for different network operations. The first driver is an SNMP
driver. Future drivers might include:

i. Interfaces to provisioning systems
ii. Data retrieval from other data sources (DB, other collection systems)

iii. IPDR collection (most likely through file import)
b. Each driver is made up of one or more driver modules that performs an action. These are

interchangeable as long as the input and output formats remain the same. This means that
in most cases, a single action/function can be updated without resetting the system.

3. DCCF TFTP Service (TFTP) - This is a TFTP service customized for specific file management
functions required by DCCF. It is a service for requests to PUT files from remote devices such as
CMs, and for GET requests from the DCCF for retrieving remove file.

4. DCCF Disk Cache (DC) - This is the local data storage associated with each WC. The RA does
not have a DC. The DC is not meant to be long term storage, and any long-term storage needs to
be done external to the DCCF. The DC has no software component.

Each module of the DCCF can be updated independent of the others, as long as the interface characteristics
(parameters in and out) remain the same.

4. DCCF Deployment and Scale
Error! Reference source not found.4 shows a simple standalone DCCF installation, with all modules
located in a single container. An obvious deployment case for testing, it also represents the most atomic
deployment possible with an assumed 1:1 relationship with a CCAP. Using an external proxy router for
incoming requests, an entire production environment could be made of small, more atomic installations.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 13

Figure 4 - Basic DCCF installation

As each module is a standalone entity, they may be distributed in different containers. Error! Reference
source not found. shows a distribution of the RESTful, WC, and TFTP services.

This configuration introduces the concept of a remote TFTP service which requires a new Driver module,
a “GetTFTP” module, to retrieve files from the remote TFTP service. When a file arrives from a remote
device, the TFTP service sends a REST alert to the WC which triggers a GetTFTP action to retrieve the file
and store it in the local cache.

Configuring a remote TFTP service requires some minor changes to the DCCF configuration file. Also
note this example maintains a 1:1 relationship between RA and WC: One RA serves one WC.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 14

Figure 5 - Distributing the DCCF modules

Finally, a fully distributed deployment is illustrated in Error! Reference source not found.. This is not
possible with the current version 1.0 of DCCF, due to an immature routing function in the RA, but is
totally supported with the current architecture:

1. Multiple RAs, mostly likely served by a simple commercial load balancer, take incoming user
REST requests.

2. The routing in the RA distributes the requests so the correct WC.

3. The WC performs the actions requested, storing and making available data in the local DC.

4. TFTP activity is managed through one or more remote TFTPs (each WC configured to use an
appropriate TFTP service).

By controlling the resources associated with the virtualized WC, this deployment strategy gives excellent
horizontal scaling options as well as offering multiple options for physical distribution in the operations
network and container environment.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 15

Figure 6 - Distributed DCCF with Multiple TFTP Service containers and Load Balancing

5. DCCF Features and Functions
The DCCF REST API implements a growing number of useful commands for the exploration and
management of DOCSIS 3.1 networks. Table 2 shows a summary of available DCCF operations available
as of release 1.0.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 16

Table 2 - DCCF v1.0 REST API commands

Operation Description

POST /dccf/ccaps/(CCAP)/cmPNMDsRxMer
Initiate collection of cmPNMDsRxMer data
for CMs devices listed in attached JSON file.

POST /dccf/ccaps/(CCAP)/cmPNMFecSum Initiate collection of cmPNMFecSum data
for CMs listed in attached JSON file.

POST /dccf/ccaps/(CCAP)/initialize Add new CCAP to DCCF.
POST /dccf/ccaps/(CCAP)/registered31cms Create/update list of D3.1 CMs on CCAP.

POST /dccf/ccaps/(CCAP)/topology Create/update CCAP topology information
(Multiple GET options).

POST
/dccf/ccaps/(CCAP)/cms/(CMMAC)/cmDeltaDsFecStats

Poll the latest cmDeltaDsFecStats (SNMP)
data (GET retrieves data).

POST /dccf/ccaps/(CCAP)/cmPNMDsRxMer

Initiate collection of cmPNMDsRxMer data
for CMs listed in attached JSON file (GET
retrieves data).

POST
/dccf/ccaps/(CCAP)/cms/(CMMAC)/cmPNMDsRxMer

Initiate collection of cmPNMDsRxMer data
from specified CM (GET retrieves data).

POST /dccf/ccaps/(CCAP)/cmPNMFecSum
Initiate collection of cmPNMFecSum data
for CMs listed in attached JSON file (GET
retrieves data).

POST
/dccf/ccaps/(CCAP)/cms/(CMMAC)/cmPNMFecSum

Initiate collection of cmPNMFecSum data
from specified CM (GET retrieves data)

GET /dccf/jobs/(JOBID) Return status information for specified
JOBID.

DCCF Microservice Example
With the concepts of D3.1, PNM, DCCF, and microservices in hand, we can now proceed with a simple
example using the DCCF software (release 1.0) running on a virtualized host within a container
environment.

The DCCF is running on a host (DCCF_HOST) with SNMP and TFTP access to a DOCSIS 3.1 network.
This first query (figure x) is executed in the DCCF client terminal using the curl (https://curl.haxx.se)
command utility to generate the REST API CM topology discovery command over HTTP. In this example,
the DCCF returns a list of all D3.1 CM devices registered on the CCAP (CCAP_IP) is returned describing
each by MAC address.

Figure 7 shows a request for a single CM’s Downstream Receive MER report. In this example, a client
executes a curl command which sends the REST API request to request CM PNM data for the device. The
DCCF returns an acknowledgement that the command has been received and is in process.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 17

To retrieve the CM PNM MER measurement data requested, a final REST command is sent via curl from
the client’s terminal. The command is sent to the DCCF which returns the current data of the CM’s
Downstream RX MER in an efficiently compressed and archived format.

[dccf_host]$ curl -X GET
http://${DCCF_HOST}:8888/dccf/ccaps/${CCAP_IP}/registered31cms
{
 "function": "wc_get_ccaps_registered31cms",
 "json_data": [
 "AC202E772B70",
 "F8A097EF242C",
 "1CABC0B999E4",
 "F8A097EF24B3",
 "64777D90D8C0",
 "64777DE45830",
 "A84E3FCA5B50",
 "1CABC0B99AC6",
 "AC202E772D60",
 "1CABC0B99AF0",
 "1CABC0B99ADC",
 "1056118A0B9E",
 "AC202E7727E0",
 "64777DE45890",
 "64777D5EC500"
],
 "message": "wc_get_ccaps_registered31cms: Completed on CCAP Status code: 200",
 "results_in": [
 "json_data"
],
 "status": "OK",
 "status_code": 200
}

Figure 7 - Retrieving CM Topology Information for a CCAP from DCCF

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 18

[dccf_host]$ curl -X POST
http://${DCCF_HOST}:8888/dccf/ccaps/${CCAP_IP}/cms/${CM_MAC}/cmPNMDsRxMer
{
 "function": "ra_post_ccaps_cms_pnm",
 "json_data": {
 "function": "wc_route_handler",
 "json_data": "{\"name\": \"cmPnmFile\", \"initialTime\": \"2017-07-20
20:36:20\", \"currentState\": \"ACCEPTED\", \"action\": \"cmPnmFile\", \"jobid\":
\"20170721003620_4b70b0bd_010010010001\", \"ccap\": \"010010010001\",
\"updateTime\": \"2017-07-20 20:36:20\"}",
 "message": "wc_route_handler: Completed cmPnmFile on CCAP",
 "results_in": [
 "json_data"
],
 "status": "OK",
 "status_code": 200
 },
 "message": "ra_post_ccaps_cms_pnm: POST
http://${DCCF_HOST}:8888/dccf/ccaps/${CCAP_IP}/cms/1CABC0B99AF0/cmPnmFile/4
workflow_controller response status code: 200",
 "results_in": [
 "json_data"
],
 "status": "OK",
 "status_code": 200
}

Figure 8 - Requesting CM DS Rx MER Measurement Data From DCCF

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 19

In this way, we have demonstrated remote interaction with a virtualized DOCSIS 3.1 microservice that
provides visibility into the network while abstracting the complexity of low level data collection and
topology discovery. DOCSIS network functions and applications can now be developed without requiring
low-level access network data collection capabilities. The remainder of this example will present a simple
DOCSIS 3.1 application that displays the OFDM DS MER data returned by the DCCF microservice.

To illustrate the CM MER data content, Figure 10 shows visualizations for three CM devices created with
a simple Python script that retrieves data from the DCCF REST interface and generates a graph using an
open source visualization library.

[dccf_host]$ curl -vv GET
http://${DCCF_HOST}:8888/dccf/ccaps/${CCAP_IP}/cms/${CM_MAC}/cmPNMDsRxMer >
/tmp/pnm_dsrxmer.tar.gz
* Trying ${DCCF_HOST}...
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0*
Connected to ${DCCF_HOST} (${DCCF_HOST}) port 8888 (#0)
> GET /dccf/ccaps/${CCAP_IP}/cms/1CABC0B99AF0/cmPNMDsRxMer HTTP/1.1
> Host: ${DCCF_HOST}:8888
> User-Agent: curl/7.49.0
> Accept: */*
>
* HTTP 1.0, assume close after body
< HTTP/1.0 200 OK
< Content-Type: application/x-tar
< Content-Disposition: attachment; filename=wc_get_ccaps_cms_pnm-cmPNMDsRxMer-
1CABC0B99AF0_MOST_RECENT_None_None.tar.gz
< Last-Modified: Fri, 21 Jul 2017 00:37:33 GMT
< Expires: Fri, 21 Jul 2017 12:37:33 GMT
< Content-Length: 2145
< Date: Fri, 21 Jul 2017 00:37:33 GMT
< ETag: "1500597453.866377-2145-3238667453"
< Cache-Control: max-age=43200, public
< Server: Werkzeug/0.11.11 Python/3.5.2
<
{ [1024 bytes data]
100 2145 100 2145 0 0 81342 0 --:--:-- --:--:-- --:--:-- 85800
* Closing connection 0

Figure 9 - Retrieving CM DS MER Measurement Data From DCCF

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 20

Figure 10 - Example OFDM MER for three different CM devices

Conclusion
We’ve presented a practical example to illustrate key concepts of virtualizing DOCSIS 3.1 network
functions. We presented a simple microservice that provides an implementation of the CableLabs DOCSIS
3.1 Common Collection Framework (DCCF) software system. Use of this DOCSIS 3.1 microservice was
shown using a container architecture within a cable operator’s cloud infrastructure.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 21

Abbreviations
PNM Proactive Network Management
CM Cable Modem
CCAP Converged Cable Access Platform
DUT Device Under Test
CMTS Cable Modem Termination System
SNMP Simple Network Management Protocol
MSO Multiple System Operator
DCCF DOCSIS Common Collection Framework
CCF Common Collection Framework
MSA Microservice Architecture
PO Profile Optimizer
POC Proof of Concept

Bibliography & References
[1] Teaching Agile Development with DevOps in a Software Engineering and Database Technologies
Practicum, 3rd International Conference on Higher Education Advances, HEAd’17 Universitat
Politecnica de Valencia, Valencia, 2017, Mason, Robert T., Masters, William and Stark, Alan

[2] From Virtual Machines to Containers and Micro-Services: The Next Generation of Virtualization

[3] http://about.att.com/innovationblog/08252015nextgenerati, August 25, 2015, By Andre
Fuetsch

[4] http://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/UNIFY-
WP4%20M4_1%20SP-
DevOps%20concept%20evolution%20and%20initial%20plans%20for%20prototyping.pdf

[5] https://www.opencontainers.org/

[6] https://www.opendaylight.org/

[7] http://onosproject.org/

[8] https://tools.ietf.org/html/rfc6241

[9] Physical Layer Specification, CM-SP-PHYv3.1-I11-170510, May 10, 2017, Cable Television
Laboratories, Inc.

[10] Cable Modem Operations Support System Interface Specification, CM-SP-CM-OSSIv3.1-I06-
151210, May 10, 2017, Cable Television Laboratories, Inc.

[11] CCAP™ Operations Support System Interface Specification, CM-SP-CCAP-OSSIv3.1-I09-170510,
May 10, 2017, Cable Television Laboratories, Inc.

https://www.opendaylight.org/

	Introduction
	Service Provider DevOps
	Microservices:
	Building Modular Distributed Applications
	Containers:
	Practical Architecture for Network Virtualization
	The Rise of REST
	DOCSIS 3.1 Management Data
	1. Proactive Network Management (PNM)
	1.1. DOCSIS 3.1 PNM Data Collection Workflow
	1.2. D3.1 CM PNM File Data

	2. DOCSIS Common Collection Framework (DCCF)

	An Example DOCSIS 3.1 Virtualized Microservice
	3. DCCF Microservices Architecture
	3.1. Software Modules

	4. DCCF Deployment and Scale
	5. DCCF Features and Functions
	DCCF Microservice Example

	Conclusion
	Abbreviations
	Bibliography & References

