
VIRTUAL MACHINE PLACEMENT STRATEGIES FOR VIRTUAL NETWORK
FUNCTIONS

Adam Grochowski
Juniper Networks

 Abstract

Current Virtual Machine (VM) scheduling
services, such as Openstack’s Nova only have
awareness of the CPU, RAM, and storage
utilization from a hypervisor perspective.
While this has proven to be sufficient for
traditional cloud applications and their
associated workloads, as they are rarely
limited by network bandwidth, Virtual
Networks Functions (VNFs) by comparison
require fairly static and known quantities of
CPU, memory and storage. However,
properly placing their workloads depends
upon a knowledge of hypervisor network
resources and external network topology.

This paper will compare and contrast
traditional cloud workloads and their
placement with VNF workloads and their
respective placement. We will discuss why
theoretical extensions to cloud management
software are needed to improve placement,
quality of service and utilization of commodity
hardware.

VNF/NFV BACKGROUND

 Network Functions Virtualization (NFV) is
an effort originally proposed by the European
Telecommunications Standard Institute
(ETSI) at the SDN and OpenFlow World
Congress in 2012. [1]. The objective or focus
of the NFV initiative, is to use standard
virtualization technology to consolidate
various network equipment types onto a
common platform that can be easily
distributed throughout the network. The NFV
platform comprises high capacity servers,
switches and storage, which will utilize
software applications running on virtual

machines to perform functions like routing,
switching and security. These platforms can
then be located in the datacenter, head end, or
on the end users’ premises.

 Service Providers will benefit from NFV in
the following ways. First and foremost, NFV
provides for the ability to increase agility and
the velocity of new service deployment,
improving time to market. Virtualizing
network equipment improves the ability to
automate, which allows for faster service
instantiation. NFV can help operators by
reducing the required initial investment in
equipment cost and power consumption as
many network functions can be combined
onto standard servers. As in traditional cloud
application environments, services can be
more quickly and even automatically scaled
to meet increased demand.

 With NFV service providers now have the
ability to create virtual devices providing
network services on demand that can be
dynamically inserted into the end-user’s path.

CURRENT WORKLOAD SCHEDULING

 The industry has been moving toward
Openstack as the standard for managing cloud
computing platforms for private and many
public cloud installations. Therefore, because
Openstack is becoming the de-facto standard
and it shares many things in common with
other cloud management packages, this paper
will use Openstack and its components as a
representative example of cloud management
software.

2016 Spring Technical Forum Proceedings

 Before we dive into how cloud workload
scheduling works, it is important to
understand how cloud management platforms
are structured. Openstack, as an example,
comprises several sub projects, which
represent the required functions or systems
that manage the different aspects of a cloud
installation [2]. These projects and their
codenames are listed below:

Network – Neutron
Compute – Nova
Authentication – Keystone
UI – Horizon
Storage – Swift, Cinder
Image Service – Glance
Telemetry – Ceilometer, Gnocchi

 Figure 1: Openstack components. Source: openstack.org

 All of these subprojects work in concert to
orchestrate the placement and instantiation of
a virtual machine as well as its associated
network, storage, and other required
resources. This placement is broadly based
on the following: Availability zone, available
RAM, storage, compute availability, custom
filters (NB: additional items exist but for the
purposes of this paper the most common
metrics are referenced). When a user issues a
request for a new virtual machine be created,
the scheduler will check for available
resources, select the appropriate hypervisor to
service the request, and trigger the VM
creation/boot on the selected host from a
virtual image.

TRADITIONAL CLOUD WORKLOADS

 Servicing VM requests based on the above
metrics has proven adequate for traditional
cloud workloads, since memory has in general
been the primary point of contention for web-
based apps and services, followed by the
availability of CPU and storage resources.

 In the case of traditional cloud workloads,
per-node bandwidth utilization is an
infrequent issue, and on the occasion that it is,
‘noisy neighbors’ are usually prevented from
affecting other workloads with virtual switch
based QoS, or by over-provisioning
hypervisor resources.

NFV Requirements

With the entrance of NFV into the equation,
requirements for scheduling need to be re-
considered. Providers are starting to move
network functions into the virtual world.
These functions include, but are not limited
to:

Firewalls
Intrusion detection and prevention systems
Route reflector
WAN acceleration appliances

 In general, purpose built VNFs have
fixed/known requirements for CPU, storage,
and memory that can be scheduled by VM
orchestrators such as Openstack Nova. It is
important to note that in the case of NFV
oversubscription does need to be considered.
In the world of networking, sharing CPU
cores or RAM will create sub-optimal
network performance, so this does need to be
taken into account when making scaling
decisions.

2016 Spring Technical Forum Proceedings

 Additionally, the network requirements for
each subscriber can vary greatly. As an
example, the requirements for a small
business, branch office, or residential
customer might require a virtual firewall
capable of passing an average of 25 Mbps
(IMIX), while a business providing free Wi-Fi
to customers would potentially need far more
bandwidth. At the time of this writing, Nova
does not have the ability to schedule based on
network utilization or for VNF workloads,
this is a gap that needs to be addressed.

SCHEDULING OPTIONS

 Since we have established different
scheduling needs for traditional cloud
workloads vs. VNF, we can consider some
options to make the cloud orchestration
software take available network bandwidth
into consideration.

 Turning again to Openstack as our
example, we can look at the workflow of the
filter scheduler, which makes the decision on
workload placement. When a new instance is
created a series of filters are applied in order
to choose the appropriate hypervisor upon
which to place that instance. Filters are
binary, either a host passes filtering or it’s
rejected from consideration.
Current filters include [5]:

AggregateCoreFilter
AggregateDiskFilter
AggregateImagePropertiesIsolation
AggregateInstanceExtraSpecsFilter
AggregateIoOpsFilter
AggregateMultiTenancyIsolation
AggregateNumInstancesFilter
AggregateRamFilter
AggregateTypeAffinityFilter
AllHostsFilter
AvailabilityZoneFilter
ComputeCapabilitiesFilter
ComputeFilter

CoreFilter
NUMATopologyFilter
DifferentHostFilter
DiskFilter
GroupAffinityFilter
GroupAntiAffinityFilter
ImagePropertiesFilter
IsolatedHostsFilter
IoOpsFilter
JsonFilter
MetricsFilter
NumInstancesFilter
PciPassthroughFilter
RamFilter
RetryFilter
SameHostFilter
ServerGroupAffinityFilter
ServerGroupAntiAffinityFilter
SimpleCIDRAffinityFilter
TrustedFilter
TypeAffinityFilter

 During the scheduling process, these filters
are applied based on resources requested.
Additional weights are applied, and finally
workloads are created on the appropriate
compute nodes.

The following diagram shows the filtering
workflow. [5]:

 Figure 2: Filtering Workflow. Source: openstack.org

2016 Spring Technical Forum Proceedings

NetworkBWFilter

 The contention of this paper is Network
awareness is a requirement of NFV, and is
absent from the metrics currently used to
schedule virtual workloads.
 One proposed solution is to create a a new
filter that would allow the scheduler to take
network requirements into account during into
the decision making process. Taking the
operative example from the functionality of
the IoOpsFilter, a filter such as
NetworkBwFilter would be created. As part
of the NetworkBwFilter, a max_bw_per_host
would be set to specify a high water mark
allowable on a particular compute host.

 When the request for a new VM
instantiation is made, a required amount of
bandwidth for that workload would be
specified. As with existing filters, each time a
host is selected for placement of VNFs, those
resources are consumed virtually, and
subsequent host selections can be adjusted
accordingly. This would guarantee that the
amount of requested bandwidth would never
exceed that which is available.

TelemetryFilter

 Another possibility is to create a filter that
would take into account usage data from a
telemetry package (e.g. ceilometer) and use
actual usage data to make host filtering
decisions. This would allow for even more
efficient use of network bandwidth.

 This filter could even make decisions
based on the results of API calls to external
systems. An example of this type of operation
would be that during the workload creation
process, the scheduler makes API calls to a
network analytics server.
Utilization information gathered from the

network analytics system could be applied as
either a weight or a filter during the
scheduling process.

 Figure 3: External Interaction with Network Analytics

 Since reducing contention between
workloads is a primary concern, continual
monitoring would be required, with the
potential need to re-spawn workloads
elsewhere and redirect traffic to them when
utilization changes.

 Note: There exists a blueprint within
Openstack for ‘Utilization aware scheduling’.
Which is meant to take into account transient
resources, allowing decisions to be made
based upon gathered usage statistics. [3] Work
on the network monitor portion of Utilization
aware scheduling appears to have been
abandoned[4]. Were this work to continue, it
would be a positive step in the goals laid out
by this paper, at least where the Openstack
project is concerned.

SUMMARY AND CONCLUSION

 This paper has compared and contrasted
traditional VM workload scheduling with the
requirements of NFV applications and
included a high level discussion of potential
solutions. A gap exists in current cloud

2016 Spring Technical Forum Proceedings

management software which needs to be
addressed in order to make it more suitable
for NFV applications. Taking network
utilization into account during workload
scheduling decisions can improve ROI for
standard hardware by providing the ability to
more densely pack virtual workloads and
avoid stranded resources.

REFERENCES

[1] Chiosi, Margaret, et. al, (2012). Network
Functions Virtualisation, An Introduction,
Benefits, Enablers, Challenges & Call for
Action, SDN and OpenFlow World Congress,
Darmstadt-Germany
[2] http://docs.openstack.org/icehouse/training
-guides/content/operator-getting-started.html
[3] https://wiki.openstack.org/wiki/Utilization
AwareScheduling
[4] https://review.openstack.org/#/c/44007/
[5] http://docs.openstack.org/liberty/config-
reference/content/section_compute-
scheduler.html

2016 Spring Technical Forum Proceedings

