
The Architecture of the Open-Source Remote Phy Device
 Alon Bernstein

Anlu Yan
 Cisco Systems

 Abstract

 Cablelabs has recently announced the
open-sourcing of the remote phy device
(RPD). This paper outlines the vision and
main components of the open software that
will drive the RPD. For those who seek an in-
depth review it’s recommended to sign up to
cablelabs openRPD project, read the
documentation and of course read the source
code !

MOTIVATION AND VISION

Open source has evolved over the years, from
a lets-all-be-friends culture of code sharing to
an economically driven joint development
framework. The original 1985 GNU
manifesto stated that “The fundamental act of
friendship among programmers is the sharing
of programs,” and that the commercialization
of software is bad. For years to follow the
mental image of an open source contributor
was that of a poorly groomed collage kid
hacking away code late at night. While there
are elements of this visual that are true, it
turns out that open source is a big business
that employs many salaried adults. “Open”
should not be confused with “free” and as we
explain in this paper at the base of it open
source is a joint development framework that
can help reduce costs, accelerate feature
development and increase software quality for
the following reasons:

1. Cablelabs members have jointly
developed specifications ever since
cablelabs was created. This has proved
a very successful model for both
operators and vendors. Open source
represents a natural next step for this
existing collaboration model since
published code can be viewed as a

super-detailed definition of how a
feature should work.

2. As the industry has experienced in the
past, publishing an interface
specification does not guarantee
smooth sailing for inter-operability
tests. Open source has great potential
in shortening the interop stage because
all vendors share the same interface
code base.

3. Open source does not mean that there
is no vendor differentiation. On the
contrary: the open source components
should focus on the functions that
provide no vendor differentiation, for
example parsing messages, reading
various sensors, writing alarms to logs
etc, thereby allowing a vendor to focus
on those features and components that
provide added value.

4. The parts of the code that are open
source get tested and deployed in a
large number of systems, not only a
single vendor system. Because of the
licensing agreement any fix to the
open source part of the code gets
committed back to the project
resulting in higher software quality
overall.

5. With open source the operator
community and vendor community
have an opportunity to closely
collaborate, this is especially relevant
as many of the larger operators are
large software development houses as
well.

6. “open source” is not only about source
code, it’s a complete SW development
environment including source control,
bug tracking and simulation code. All
of the above is supported by
Cablelabs.

2016 Spring Technical Forum Proceedings

7. And last but not least, open source is
good for the engineering staff. Their
open source contribution are the
ultimate referral tool, and the
communities that they build is a safety
net and support system.

LICESNING AND PRODUCTIZATION

Open source projects are not products. There
is no commercial support structure around
them. Open source is a base on which
products can be built. For example, the open
source code from linux.org is not used
directly. There are several commercial
distributions (e.g. redhat, android) that use the
linux kernel and provides support and
enhancements around it.
The open source licensing is put in place to
make sure there is reciprocation in the
community that the software can be used but
bug fixes and feature enhancements are
provided back to the code base. There are a
couple of licenses that are typically used in
open source projects, most notably GPL and
Apache. The Apache license is considered a
very permissive type of license.
From the licencing point of view, the
OpenRPD project consists of two parts. One
is the OpenRPD packages and the other is
enhancements and modifications to OpenWrt.
The OpenRPD packages consist of Remote
PHY specific contents, to run as user level
processes and communicates with the
OpenWrt part via IPCs. This part is licensed
under Apache 2. The OpenWrt part consists
of Linux kernel and other user level
processes, some with OpenRPD specific
modifications and enhancements. This part
retains the licenses of the original packages,
many of which are GPL.

KEY ARCHITECTURAL CHOICES

The following sections outline the main
tenants of the open RPD software and the
reasons for eastablishing them.

This document does not discuss the hardware
design of the RPD, however as a reference it’s
useful to present an overview of the hardware.
Figure 1 depicts a high level diagram of the
main hardware components in the RPD
design.

Figure 1 RPD hardware overview

For the most part the vendor specific portions
of the software are to be the drivers for the
data path, the RPD Silicon and the RF
interface. As noted later there is a common
HAL (hardware abstraction layer) that
provides a uniform, yet extensible, interface
to program and read stats from the hardware.
Many of the software modules above the HAL
are generic and provide little differentiation as
they focus on the standard
registration/authorization/authentication/etc.
processes that have been already standardized
by Cablelabs.

OPERATING SYSTEM

The base OS for the openRPD is openWRT,
an embedded operating system based on
Linux kernel. While openWRT was originally
designed for home gateways it is a good base
for the openRPD because its designed for
embedded systems and has and active
community around it and a rich library (more
then 3500 packages) that guarantees its
longevity as a platform and the ability to add
capabilities into it.

MODULARITY, MODULARITY,
MODULARITY

2016 Spring Technical Forum Proceedings

The key to a successful project, and an open
source project specifically, is a modular
design. This is critical because of several
reasons:

1. For openRPD vendors developing a
product in parallel to the open source
system. Certain modules can be
implemented in a proprietary way
because of time to market pressure or
other reasons. If the base infrastructure
is modular it’s easy to swap these
components if and when an open
source equivalent exists.

2. The same argument applies in the
reverse as well. A vendor may start
with an open source module and later
replace it with a proprietary one.

The main modules for the open RPD are
depicted in Figure 2 and for the most part
correspond to the Remote phy architecture as
defined by cablelabs in the remote phy
specitication specification
(http://www.cablelabs.com/specification/remo
te-phy-specification/):

Figure 2 Main software modules for open
RPD

To assure modularity the system components
communicate over a bus as depicted in
Figure 3:

Figure 3 Bus architecture for open source
RPD

The IPC technology used for open RPD is
ZeroMQ. It’s a high-speed asynchronous
message library designed for distributed
applications and for modularity reasons we
treat our components as part of a distributed
system even if physically located on the same
hardware. ZeroMQ also provides sub/sub and
push/pull capabilities for message exchange.
With ZeroMQ different modules can be
developed in different programming
languages and easily swapped into and out of
an implementation.

A modular design requires a small overhead
because modules communicate over a
message infrastracture instead of sending
messages directly. However this is relativity
insignificant and as Donald Knuth has
declared “premature optimization is the
root of all evil”. Clean separation of modules
is key to the success for both the RPD open
source and RPD products based on it.

GOOGLE PROTOCOL BUFFERS

For internal communications over ZeroMQ
the RPD software uses Google protocol
buffers (GBP). GBP is a method for
serializing data and looks a little bit like
JSON definition, mostly used for defining
messages in a distributed system.
This choice of GBP further supports the
modularity as well since its endian-
independent, programming language
independent and processor independent

2016 Spring Technical Forum Proceedings

DATABASE

OpenRPD includes a small database (DB) as
a generic service which different processes
can use in specific ways. One common use is
to store persistent data. Persistent data can be
used for fast error recovery in cases of process
crash. As we can see in the following section
the DB plays a critical role in the hardware
abstraction layer (HAL) process.

HARDWARE ABSTRACTION LAYER

There is a lot of innovation that can occur at
the RPD layer with new technologies coming
along such as DOCSIS 3.1 and Full-Duplex
DOCSIS. To help accelerate this innovation
the open RPD project defines a HAL
(hardware abstraction layer) that would make
it easy to register multiple drivers from
multiple vendors onto the same platform
framework. These drivers can be different
implementations of existing physical layers or
new ones.

Figure 4 Hardware Abstraction Layer

A key part of the HAL is the database (DB).
The HAL uses the DB in the following way:
 - GCP may use DB to store shadow data.
- The HAL may use DB to manage data
transactions, i.e. GCP stores data in the DB
and HAL can pick it from the DB in the
following way:

• Each HAL app client (GCP, DEPI,
etc.) registers it’s supported
notification message type to HAL

• Each driver registers its supported
message to HAL

• Using a set of notifications the client
app knows when the HAL has new
data and vice versa.

.

BUILD ENVIROMENT

As open source project is more than a
collection of files. It includes a build
environment, a bug tracking environment and
a test harness. All the above are considered
part of the open RPD software.

CONCLUSION

Open source is the next step in vendor and
operator collaboration, bringing more
consistency and interoperability then the
traditional specification writing process and at
overall lower cost of implemetation. The open
RPD project is hosted and supported by
Cablelabs. Readers are encouraged to contact
CableLabs and become active contributors to
the openRPD project !

REFERNCES

1. openWRT : https://openwrt.org
2. google protocol buffers :

https://developers.google.com/protoco
l-buffers/

3. ZeroMQ : http://zeromq.org
4. Cablelabs remote phy specifications :

http://www.cablelabs.com/specificatio
n/remote-phy-specification/

1588

DEPI/UEPI

DB Service

HAL
DB Shim

DB
shim

DB
shim

Manager

DB shim

User Space
Driver 1

User Space
Driver 2

User Space
Driver n

GCP DB
shim

2016 Spring Technical Forum Proceedings

