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 Abstract 
 
     We describe an integrated platform that 
aggregates consumption data from multiple 
sources towards building a unified model for 
collaborative filtering for more accurate user 
and content representations. The goal is to 
provide a framework that combines various 
signals spanning explicit ratings, implicit 
information of watching behaviors and meta-
content information in a single model that 
potentially goes beyond the usual goal of 
maximizing consumption and incorporates 
metrics that capture “likeness” and 
“discovery”. We also feed the usage data 
back into meta-content to determine more 
accurate content representations that aid in 
targeting content-based recommendations 
more effectively.  
 
 
 

INTRODUCTION 
 
     Recommendation systems are becoming an 
increasingly key component in many media 
and entertainment content retrieval systems by 
providing a powerful, efficient method for 
users to easily sift through large catalogs of 
media content and finding valuable 
programming [1-3]. Within the last couple of 
decades, several algorithms have been 
developed that leverage metadata, such as 
information on programs, casts and genres, 
and user consumption data to provide users 
with more targeted content recommendations 
through these recommendation systems [4-5]. 
However, in most systems, much of the 
viewership data is typically implicit in nature, 
and models that are based on over-simplified 
estimations of viewing behavior are often not 
wholly comprehensive and intuitive. A user is 

further predisposed to watch certain shows 
and channels often based on pure habit, 
content they are already aware of, or the sheer 
popularity of a show, and these aspects are 
usually unaccounted in the recall score of a 
recommender system. 
 
     In this paper we discuss a unified 
framework that aggregates consumption data 
from multiple sources and fuses them with 
meta-content to create an efficient 
recommendations framework capable of both 
significant discovery and high precision. First, 
we begin with the cold start problem where no 
consumption data is available, and create a 
baseline recommendation model that applies 
word-to-vector [6] factors solely from 
metadata content. An aggregation process is 
used to accumulate these word-level vectors 
to content level factors for each show and 
channel potentially consumed. Next, we 
derive the usage factors for each media asset 
considering both explicit and implicit ratings 
from various sources. While the explicit 
ratings provide a more direct notion of 
"likeness", the implicit signals only provide a 
measure of watching behavior. We discuss 
methods to correlate these notions of likeness 
and watching attributes in a more formal way. 
 
     A central part of the framework for 
merging consumption data from multiple 
sources is the Rovi Knowledge Graph that 
incorporates factual information of all 
‘known’ or ‘named’ things. This includes all 
movies and TV shows, music albums and 
songs, as well as all known people such as 
actors, musicians, celebrities, music bands, 
known companies and businesses, places, 
sports teams, tournaments and players, etc. 
All the facts pertaining to these entities are 
synthesized from multiple publicly available 
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sources such as Wikipedia, Freebase, and 
many others and correlated so as to create a 
unique smart tag (with a unique identifier) to 
represent each entity in the Rovi Knowledge 
Graph. The main utility of the knowledge 
graph for our problem is in aiding to merge 
information across different data sources. We 
have a merge system that can take any data 
source and does a best-effort to merge the 
entities in that data source with the underlying 
knowledge graph. Such a system makes the 
aggregation easier since different data sources 
have variations in referring to entities and 
carry different level of meta-information.  
 
     One often encounters rich meta-content 
associated with media assets, such as genre, 
keywords, and description. However, the 
relevance or weight of each individual piece 
of meta-content (for finding similar movies or 
recommendations) is often lacking, missing or 
wrong due to multiple sources, algorithms, 
and/or manual entry. For example, a show is a 
comedy but exactly how funny and how it 
impacts other comedies is more of a viewing 
sentiment. Usage data, on the other hand, 
provides a different kind of information in 
conveying what programs co-occur in 
watching behavior across users. Analysis of 
usage data involves very different techniques 
and algorithms from those for analyzing meta-
content. There has been some effort in the 
context of recommendations wherein one uses 
meta-content to filter in the post-process of 
the collaborative filtering algorithm or mixes 
results coming from collaborative filtering 
and meta-content algorithms. However, no 
prior efforts make use of usage data to better 
understand metadata relevance and enrich 
meta-content directly. It would be desirable if 
usage data along with the implicit/explicit 
ratings of users could be leveraged to 
determine the relevant weights of different 
pieces of meta-content.  
 
 
 
 

OVERALL ARCHITECTURE 
 
     We begin by describing the key steps 
involved in merging deep and dynamic 
metadata with usage data across various data 
sources. These steps are described in brief 
below and will be discussed in further detail 
in the following sections. 
 
Step 1: We first merge the assets from the 
data source into the central knowledge graph, 
to enable infusing of usage and meta-
information to and from the knowledge graph. 
This step serves a dual purpose. Firstly, it 
helps in augmenting the meta-content of the 
assets in terms of keywords, genres and deep-
descriptors from the knowledge graph and 
hence aids in getting more accurate factors 
derived from meta-content representations. 
Secondly, it aids in merging the usage factors 
from this data source with usage factors from 
other data-sources that are also merged with 
the central knowledge graph. 
 
Step 2: Using word-representations, we next 
determine the meta-content factors 
corresponding to the media-assets for cold-
start baseline with no or minimal usage data. 
The word2vec model developed in [1] is used 
to determine the word-representations 
corresponding to each of the meta-content 
information and these are aggregated to form 
a vector for each asset in K-dimensional 
vector space. 
 
Step 3: Next, we build a model that merges 
implicit and explicit information from 
multiple data sources  and fuse them into the 
meta-content factors to create more accurate 
asset representation. This naturally results in a 
model to estimate “likeness” from user-
watching behavior even in absence of explicit 
information.  
 
Step 4: Finally we feed the usage data back 
into meta-content in the form of coefficient 
weights of each individual meta-content factor 
involved in each asset. This enables the 
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creation of more accurate representation of the 
individual meta-content factors that further 
increase the precision in content-based 
recommendations. 
 

MERGING INTO KNOWLEDGE GRAPH 
 
     The Rovi Knowledge Graph is a dynamic 
system that has been created by synthesizing 
multiple metadata sources and evolving and 
refreshed continuously over time. Each smart 
tag in the Knowledge Graph has rich meta-
content built by a combination of manual 
tagging and automatic aggregation from 
multiple sources along with several machine-
learning algorithms.  
 

 
Fig 1: Merging of assets from multiple data sources 

into a central knowledge graph 

      Fig 1 below shows the merging of 
information from various sources into the 
central knowledge graph. While certain meta-
content fields, such as cast-members, roles, 
and release year are unambiguous, while other 
fields such as genres and keywords are more 
subjective. These fields are assigned using a 
combination of manual tagging and automatic 
aggregation from multiple sites like 
Wikipedia and Freebase. Genres can also be 
assigned by tagging directly from keywords 
gleaned from descriptions or plots. This is 
done using machine-learning algorithms by 
first determining the set of keywords 

associated with a genre, using movies known 
to have that genre, and then predicting them 
on other movies that have a strong overlap in 
keywords with the genre keywords. 
 
     The core part of building the Knowledge 
Graph is a “merge” function that takes in any 
source and tries to map the entities in that 
source with the entities in the existing graph. 
Whenever a new entity, such as movie or 
personality, is merged with an existing smart 
tag, the metadata corresponding to the smart 
tag gets augmented from the entity. If the new 
entity does not get merged with any smart tag, 
then a new smart tag is created for the entity 
in the KG. An important aspect of the 
merging is the allowance of slight variations 
in the meta-content fields between the two 
assets. For example, the titles can differ 
slightly due to several reasons. One reason for 
the difference in titles is the fact that some 
sources put the season number and episode 
numbers in the title, while other sources only 
put the episode title in the title. Sometimes 
they may differ due to some lexical error or 
absence of common words like articles. 
Release year could also vary by one or two 
units, and sometimes cast members could be 
be missing. All such variations are considered 
during the merge process by considering all 
the fields simultaneously and coming with a 
combined match score considering all fields. 
Following are 2 examples of approximate 
matching with inexact titles which got 
matched due to matching of other fields: 
 
BUILDING WORD-REPRESENTATIONS 

FROM META-DATA 
 
     We now describe the step of determining 
the baseline factors for the media-assets from 
meta-content. These factors are especially 
useful in cold-start situations with no or 
minimal usage information. Over time the 
usage information from multiple data sources 
play a key role in how the asset factors 
evolve; nonetheless the meta-content factors 
remain valuable to bias recommendations 
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towards more meta-content oriented discovery 
without losing high precision. In our 
collaborative filtering algorithm, we represent 
meta-content information of each unique 
media-asset as a weighted combination of 
individual meta-content pieces, such as genre, 
category, and keywords. Each individual 
piece of meta-content can be represented as a 
vector in a K-dimensional vector space (K is 
usually 100-300). Each asset vector is then a 
weighted sum of individual vectors and hence 
also a vector in this space. The individual 
vectors could have been determined 
independently by other known algorithms 
based on co-occurrences of terms in large 
corpus (such as word2vec [6]).  
 
     While a naïve algorithm in determining the 
asset vector could be to just average over all 
the vectors of keywords and genres, there are 
several problems in this approach. Firstly, not 
all keywords are of same importance and 
some keywords may be noisy and unrelated to 
the theme of the movie. Secondly, the genre 
vectors are not readily available in the 
word2vec model and needs to be explicitly 
computed from the movies. To address the 
first problem, we process the movie keywords 
to form keyword clusters based on the 
closeness of the keyword-vectors and then 
filter those keywords that don’t fall in a 
significant weighted cluster. For the second 
problem, we treat a genre as a collection of 
movies and hence cluster all the keywords 
across all the movies belonging to that 
category. The top keyword clusters found by 
this clustering are then used to find the final 
genre vectors. After we determine the 
keyword and genre vectors, we can then find 
the final asset vectors as a linear combination 
of the corresponding keyword and genre 
vectors. While these asset vectors are a good 
starting point in our collaborative filtering 
model, it may not be the most accurate 
representation due to the lack of knowledge of 
the genre and keyword cluster weighting 
coefficients. We will discuss techniques to 

optimally determine those weights in a later 
section.  
 

MULTI DATA-SOURCE 
COLLABORATIVE FILTERING MODEL 

 
 As mentioned earlier, one of the main 
challenges in doing collaborative filtering is 
the lack of explicit ratings in dealing with 
usage data from many data sources. Most of 
this usage data results from linear TV 
watching behavior where the users are limited 
in content choice and no explicit feedback is 
provided that indicates how much the user 
liked a particular show or movie. We also get 
(to a lesser extent) usage data that involves 
VOD (video on-demand). Though the signals 
from VOD (and DVR) do provide a greater 
correlation to user liking behavior, they too 
are not as accurate as explicit ratings due to 
the limitation in the number of media assets in 
typical VOD catalogs. At best, they capture 
the kinds of genres and categories that the 
user typically watches, but fails to capture 
more fine-grained likeness or dis-likeness 
within a category. So the most valuable 
information that we get is the usage data from 
a couple of sources that involve explicit 
ratings. However, the amount of this kind of 
usage data is a lot less compared to the usage 
data relating to linear TV and VOD. The 
challenge then is to build a model that can 
unify all these forms of usage data and 
provide a model to carry over information 
from data source to augment the usage factors 
in another source.   
 
     There are several models existing that 
convert the ratings (explicit or implicit) to 
similarities between media assets. These 
include Pearson correlation coefficient, cosine 
similarity, log-likelihood and jaccard 
coefficient. Yet another interesting coefficient 
is a notion of probabilistic similarity as 
discussed in [7] referred as ProbSim in 
sections below. During merging ratings from 
multiple sources, the data sources explicit 
ratings are given a higher weight than data 

2016 Spring Technical Forum Proceedings



sources with implicit ratings. We also treat 
VOD/DVR watching as a more explicit intent 
and give higher weight to those data points. 
The final result of merging all these forms of 
usage data is a NxN similarity matrix where 
each element (i, j) gives the similarity 
between the items i and j. The similarity 
matrix can either be created with only explicit 
ratings (referred as XSim(i, j)) or implicit 
ratings (referred as ISim(i, j)) or combining 
both (referred just as Sim(i, j)). 
 
     Our next step is to determine the factors 
for the media-assets that most closely match 
these similarities derived from the usage data.  
The starting point for the asset vectors are the 
factors determined in the previous section 
from the word-representations corresponding 
to the meta-content. The asset vectors are then 
let to vary so as to match the usage 
similarities as much as possible in an iterative 
fashion. For every item-item pair, the 
corresponding item factors are made to come 
closer or away from each other based on how 
much the cosine distance between the asset 
vectors match the computed item-item 
similarity. These final asset vectors represent 
a more accurate representation that reflects 
usage based similarity and simultaneously 
remaining as close to the meta-content 
representation as possible. Hence, these form 
an ideal representation for hybrid 
recommendations.  
 
     We next use these similarities to create a 
model to determine explicit user likeness from 
implicit watching behavior. While explicit 
ratings were unambiguously absorbed in the 
similarity computation, implicit watching 
were accompanied with several signals that 
needed to be translated to some form of 
implicit rating in a systematic fashion. Some 
of the these signals include duration of 
watching, number of times/episodes watched, 
number of similar items user has watched 
around that asset, the price the user paid for 
watching, the average rating users have rated 
that particular item in other data sources, 

popularity of the asset, etc. The goal is then to 
build a model that uses these signals and uses 
a model to create an optimal expression for 
“implied rating” or “likeness”. For this 
purpose, we create a model that translates the 
implicit ratings to similarities and then match 
them with the similarities obtained from 
explicit ratings. Figure 2 shows the model that 
is used for this purpose. 
 

 
Fig 2: Merging usage from multiple data sources 

with explicit and implicit ratings 

 
     In the above figure, we aggregate the raw 
user event data in the first or bottommost 
layer, L1. Examples of explicit indicators 
include specific data that contain explicit 
information such as ratings on the scale of 1-5 
in increments of a half-star, or a like/not (0/1) 
binary indicator. This would comprise an 
explicit (input) vector Xui (d) . Example of 

implicit indicators for user-item interaction 
would include implicit watching signals such 
as the ones described earlier. This would 
comprise an implicit vector I. The next layer 
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L2 contains a mapping from consumption 
details provided by L1 (both )(dIui

v
 and 

)(dXui

v
) to the output to a form of preference 

or likeness of a user u to item i, rui (d)  in the 

data source d. If the data set d  involved is an 
explicit one, the mapping is often 
straightforward. However, for implicit data 
sets, the mapping is more challenging and the 
mapping would be in the form of a 
(preference) model taking various forms 

that ultimately depends on a set 

of trainable weights W
v

. Different functions 
can be used for various embodiments of fI  

which represent trainable W
v

 in different 
ways. For example, we can use a linear 
estimator with a sigmoid function at the 
output node, a general regression neural net, a 
random forest, or various others. 
 
     The predicted ratings are then passed to a 
similarity layer L3, that takes the preference 
detail estimates for each ),,( diu across all 
common media assets and users, and produces 
a similarity estimate between media assets i  
and j . While different kinds of similarities 
(discussed earlier) can be used, we use 
similarities based on a weighted Pearson 
coefficient as mentioned below: 

Sim(i, j, d) =
rui

X (d)− ri
X (d)( ) ruj

X (d)− rj
X (d)( )

u∈(i, j )

U (d )

∑

rui
X (d)− ri

X (d)( )2

u∈(i, j )

U (d )

∑ ruj
X (d)− rj

X (d)( )2

u∈(i, j )

U (d )

∑

 

     It is assumed that whether similarities are 
determined using implicit or explicit data, 
they should roughly equate to the same values 
per ),( ji  pair across multiple data sets. So 
first we obtain an estimate XSim(i,j)  based on 
the usage data among data sources with 
explicit ratings. This is then compared with 
the data sources with implicit ratings and a 
difference is then used in the final layer L4 to 
compute the error between the two observed 
similarities as shown below: 

Error = XSim(i, j)− ISim(i, j, d)( )2

j=1

N

∑
i=1

N

∑
d=1

Dimplicit

∑  

     Then we can take the error, and propagate 
it backwards, layer by layer until the 
derivatives are estimated across the trainable 
weights IW

v
. The iterations are performed 

until the error is minimized to below a certain 
threshold. We then use those weights as the 
optimal coefficients to combine the implicit 
signals and create an implicit rating. 
 

FUSING USAGE INFORMATION INTO 
META-CONTENT 

 
     The collaborative filtering model used here 
is referred as Weighted Vector Collaborative 
Filtering (WVCF) where the meta-content 
information of each media-asset is represented 
as a weighted combination of individual meta-
content pieces, such as genre, category, and 
keywords and each individual meta-content 
piece is treated as a vector in a K-dimensional 
vector space. A meta-content similarity of the 
two assets is then modeled as a function of 
these individual meta-content pieces of 
information (such as a dot product). However, 
the weight coefficients for each individual 
piece of information are usually not known 
apriori and our goal is to use usage 
information to best predict these weights. 
Once these weights are determined, we can 
create more accurate item-item similarities 
and thereby more accurate recommendations.  
 
     Importantly, the WVCF baseline model 
consisting of a single trained vector per asset 
can be broken up into two finely tuned 
predictors in the modeling pipeline, one that 
targets aspects of watching (WVCF-watch), 
and one that targets liking characteristics of 
the user (WVCF-like).  Later in the results 
section is an example of recall performance 
using Gradient Boosted Trees as a local 
corrector to target both sides of precision 
(liking) and recall (watching). 
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     As described in the previous section, the 
usage information is separately modeled to 
produce item-item similarity wherein items 
watched together and similarly 
evaluated/rated (common sentiment) across 
multiple users have better usage-similarity. 
This similarity also takes into account the 
user’s sentiment along with viewing 
information (i.e. both watched and similarly 
liked/reviewed as opposed to only watched). 
All similarities are in some sense based in part 
on co-occurrence; usage-based similarity is 
the co-occurrence of users watching the same 
program, while meta-content similarity is the 
co-occurrence of some meta-content (crew or 
genre or keyword). The strength of co-
occurrence in the meta-content case is based 
on the weights of the individual meta-content 
information within that asset, while the 
strength of co-occurrence in usage-based 
similarity is governed by the user 
sentiment/rating.  
 
     The system then tries to align the media 
asset vectors as close as possible to the usage- 
based similarities. An error function is then 
constructed that compares the modeled meta-
content similarity to the usage-based 
similarity (based on co-occurrence combined 
with sentiment factors).  

E = sij − mij( )
ij

∑ 2
 

where ijs  denotes the observed “sentimental” 

similarity between items i and j  (as 
determined from usage data discussed in 
previous section) and ijm  denotes the modeled 

similarity based on the asset meta-content 
vectors. The objective in this error 
minimization is to explain the observed 
sentimental similarities between many asset 
pairs with a model that also has deeply 
embedded metadata. The modeled similarity 

ijm  defined by the dot product of asset vectors 

ia
v

 and ja
v

over all the latent factors: 

 

     We next break down the asset vectors into 
individual metadata components consisting of 
keywords and genres:   
 

aif = vi
genreswif

genres + vi
keywif

key

    

wif
genres = vg

genrewgf
genre

g∈i

genres in i

∑  

        
wif

keywords = vk
keywordwkf

keyword

k∈i

keywords in i

∑  

where wif denotes the total genre and keyword 

factors, and vi denotes the corresponding 

weights of those fields. The model continues 
to extend so far as metadata is available. 
Unknown components can also be added to 
address when metadata is lacking or 
unavailable.  We then break down the genre 
and keyword vectors further into factors 
corresponding to individual genre and 
keywords. Next we minimize the error 
function using stochastic gradient descent that 
changes the weights of the individual meta-
content components so that the net error 
between the meta-content similarities and 
usage-based similarities is minimized. After 
iterating over all the usage data, the individual 
meta-content weights are stored as the best 
predictors for the corresponding meta-data 
relevance for the media-asset. 
 

RESULTS 
 
     Table 1 below shows 10 examples of the 
most similar shows based on the cosine 
similarity between sentiment vectors prior to 
training the model using only a small subset 
of the terms in each aif .  This is using only 

raw source combined with weighted word 
vectors without the use of metadata filtering 
based on advanced tags, moods or deep 
descriptors. So the starting point aif  used for 

training each media asset vector is already 
capable of overcoming cold-start issues.  
 

mij = aif ajf

f

∑

2016 Spring Technical Forum Proceedings



     Table 2 below and Figure 3 demonstrate 
the trained accuracy of our model for various 
number of meta-content factors. Recall@K 
for various values of K was computed over a 
VOD data set.  Note the objective here was to 
show that precision and recall can be 
contained within a vector rather than a 
similarity matrix without significant loss, 
while holding metadata seamlessly across 
usage spaces as vectored sub-components.  
Further improvements are seen using WVCF-
watch and WVCF-like (beyond the vector). 
With the vector, other training was based on 
15K assets and 1 million users over the span 
of a year. It appears little is lost in 
performance when comparing the current 
method to a purely usage based approach such 
as ProbSim, which has proven to be a top 
method in recommender systems space in 
terms of precision/recall.  
 
     Embedded into our model is the potential 
to also normalize to a space that can be 
consistent across multiple usage data sets.  So 
when recommending an asset that is either 
completely new or not yet popular, this model 
will tend to significantly outperform purely 
usage-based approaches. 

 
Table 1:  Example most similar shows using meta-

content tags before training usage data 

Model 
Recall@K 

K=5 K=10 K=25 K=50 K=100 
Probsim 0.192 0.286 0.445 0.551 0.681 
WVCF, 

F=20 0.163 0.249 0.365 0.452 0.575 
WVCF, 

F=50 0.163 0.266 0.392 0.495 0.626 
WVCF, 
F=100 0.186 0.289 0.425 0.528 0.664 

WVCF, 
F=300 0.206 0.296 0.432 0.551 0.678 

Table 2: Recall performance of WVCF vs Probsim 

 

 

Fig 3: Recall performance of WVCF baseline vs 
Probsim for various factors, prior to local affects 

      
     The difference between WVCF and 
ProbSim becomes more prominent when we 
consider the “discovery” factor along with 
recall precision. This factor is based on how 
many overall programs of the corpus get 
recommended in recall to a set of users. It has 
been noted that models like ProbSim have an 
extremely low diversity since most of the  
recommendations are based from the top 1% 
popular programs.  
 
     Table 3 shows the top 15 programs from 
the bottom quartile of the MovieLens (20M, 
shows having less than 100 ratings discarded) 
dataset using the total number of positive and 
negative ratings and sorting by the ratio of 
positive ratings to the total number of ratings. 
While these “hidden gems” are virtually never 
recommended by the ProbSim model, they do 
have a high positive rating (though overall 
number of ratings is small), and are therefore 
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appropriate for more targeted user-
recommendations. This is versus at least 4% 
hidden gem recommended for a modified 
approach, and thus capable to have a better 
spread in recommendations w.r.t. the 
discovery of “long-tail” programs. 
 
     Figure 4 shows the variation among users 
in MovieLens [9] for their preference in 
watching different grades of popular shows.  
Recommender systems targeted to high recall 
and high precision tend to overshoot for the 
most popular shows (Q1) to score well on 
recall (and precision automatically since there 
are not many “2” or lower ratings for most 
popular shows), while not discovering quality 
shows at lower popularity.  
  

Title(i) N(i) 
Rating 
Avg(i) 

G(i) 
+ve 

rating 

B(i)     
-ve 

rating 
P(i) = 

G(i)/N(i) 
Intimate 
Strangers 126 3.655 117 2 0.9832 
Follow the 
Fleet 118 3.712 111 2 0.9823 
Ax, The 
(couperet, 
Le) 114 3.807 107 2 0.9817 
One Man 
Band 105 3.895 98 2 0.9800 
Angels' 
Share 105 3.710 96 2 0.9796 
Queen of 
Versailles, 
The 144 3.628 137 3 0.9786 
Yes Men 
Fix the 
World, The 194 3.843 179 4 0.9781 
Big Clock, 
The 162 3.756 153 4 0.9745 
Hundred-
Foot 
Journey, 
The 156 3.750 143 4 0.9728 
Short Film 
About 
Love, A 224 4.025 214 6 0.9727 
Our Man in 
Havana 153 3.748 142 4 0.9726 
Pixar Story, 
The 186 3.747 177 5 0.9725 

Criss Cross 115 3.639 103 3 0.9717 
Advise and 
Consent 183 3.811 170 5 0.9714 
Something 
the Lord 
Made 214 3.895 199 6 0.9707 

Table 3: 15 Hidden Gems in the fourth quartile of 
popularity in MovieLens 

 

  
Fig 4: Popularity effect by quartile in MovieLens 

 
     To address the above issue, we introduce a 
penalty for not matching the user’s overall 
popularity preferences over multiple bins 
using a loss such as: 

∑
=

−−=
Nbins

b

bupbuPuLOSS
1

),(),(1)( α  

      Averaged over all u  users, with 1=α  and 
10=binsN  popularity bins, for example, the 

new recall score is normalized to better match 
user distribution )(uP

r

 with the recommended 
distribution )(up

r
. This penalty reduces 

Probsim’s recall score over MovieLens from 
roughly 0.3 to 0.1, with Q4 hidden gems still 
at nearly 0%. Furthermore, different shows 
and movies have quite different popularity 
characteristics across data sets, both explicit 
and implicit.  To this extent, recall scores 
should be penalized even further to remove 
arbitrary popularity artifacts associated with 
each data set.  Although the choice of  α  was 
arbitrary in this case, without having a 
“budget” to place recommendations into 
popularity bins which fits known user 
preferences, the model otherwise appears 
lacking in diversity and drastically under-
recommends hidden gems, for the short-
sighted purpose of scoring high recall. 
 
    If the model were tweaked for purely high 
recall, where watching is predicted rather than 
liking (to find hidden gems), Figure 5 below 
shows example performance of  WVCF-watch 
along with liking and the combination of 
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like/watch.  Figure 6 shows the precision 
equivalent.  Here Gradient Boosted trees take 
the baseline WVCF (vector only), one movie 
at a time, and apply the baseline predictor as 
an attribute for that movie.  It then expands 
the input deck to also include many attributes 
in the surrounding neighborhood of ratings. 
This produces a very strong estimator targeted 
to watching.  In this case, Figure 5 shows 
SVD (F=100) versus Probsim versus WVCF-
watch for the (budgeted) popularity bin of the 
top 25 most popular shows.  Recall/Precision 
points were tallied based on each user/item 
sample in the cross validation being 
somewhere in that bin (with the predictor 
answering which movie was watched of the 
25).  The important thing here is that with 
both WVCF-watch and WVCF-like, the 
underlying recommender engine can control 
effects such as the dial for liking and 
watching, compared to other models with high 
precision/recall that only provides a single 
answer (both like and watch simultaneously).   
 
     Table 4 below shows the results of 
applying the 208 word emotions vocabulary 
from [10] using pre-trained word vectors to 
MovieLens usage within a modified SVD 
framework. As these moods serve as 
additional metadata, the experiment here 
shows the power of Word Vectors fused into 
the model. The training process tuned the 
relevance of each vocabulary word vector to 
each movie, within SVD latent movie factors, 
to best model explicit likes. For top word 
ranking, interesting patterns emerge between 
overall, most popular, and gems.  For example 
“contrary” and “bored” is universally 
important, “obnoxious” matters for most 
popular, and “powerful” really applies to 
gems. 
 

 
Fig 5: MovieLens Recall@K for top 25 Most 

Popular bin during “budgeted” recall 

 

Fig 6: MovieLens Precision for top 25 Most Popular 
bin during “budgeted” recall 

 
   

Rank Overall Popular Gems 

1 contrary lazy honest 

2 angry inconsiderate contrary 

3 brilliant pity cordial 

4 wonder obnoxious powerful 

5 bored annoyed lucky 

6 insightful woeful wise 

7 rough haughty aggressive 

8 affectionate uncertain sad 

9 weird alive nasty 

10 folksy silly folksy 

Table 4: Relevance of emotions/feeling/mood word 
vectors trained over MovieLens usage 
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CONCLUSION 
 
     In this paper, we experiment with the idea 
of providing powerful recommendations 
ranging from discovery to high precision 
across an arbitrary space of multimedia assets. 
We discuss a unified framework that 
aggregates consumption data from multiple 
sources and fuses them with meta-content to 
obtain more accurate content and user 
representations. The explicit ratings are used 
to convert the implicit watching user behavior 
to a notion of "likeness" based on ground-
truth. The usage information is then used to 
feedback into the meta-content to determine 
more accurate weights of the individual meta-
content factors thereby enabling richer 
content-content recommendations. 
 
Methods within the unified framework were 
applied to MovieLens data to frame some 
common issues involved in the tradeoff 
between discovery (of hidden gems) versus 
recall/precision. Both watching WVCF-watch 
and liking WVCF-like models provide further 
flexibility to personalize recommendations.  
By budgeting  recall to within the same 
popularity bins, hidden gems are not as likely 
to be ignored due to a prediction of not 
watching caused by a lack of awareness of the 
(unpopular) show’s existence.  Modifications 
to scoring functions were discussed to better 
personalize recommendations to best fit each 
user’s watching preferences for maximal 
viewing enjoyment.  An example fusion of 
word vectors to explicit ratings usage was 
provided based on a specified vocabulary, 
with patterns provided overall, for most 
popular shows, and gems.  This is 
complementary to tag fusion, as in this case 
each vocabulary word was universally applied 
to each show. 
 
There are several interesting directions in 
which our research can continue in the future. 
Care was taken to seamlessly convert all 
available data spaces, including metadata, into 
factored components, but integrated local 

effects such as [8] as well temporal effects can 
be better added. Even though the choice of 
gradient boosted trees works well for WVCF-
watch and WVCF-like, other local correctors 
and stacking may further be beneficial. 
Another key issue is extensive data of explicit 
ratings are usually not available in linear 
content. Additional ways may exist, such as 
latent factor and nearest neighbor 
combinations, to close the gap between an 
arbitrary notion of “liking” in implicit space 
and explicit and/or ground truth. Another area 
of research is to further formalize the notion 
of “discovery” and relating it to likeness and 
precision. Further modifications of recall 
scores based on popularity biases between 
data spaces may help also. It will be 
interesting to see how this can then be used to 
create a parameter knob that can be controlled 
to either increase discovery vs. precision in 
recommendations. 
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