
IMPROVING CUSTOMER EXPERIENCE THROUGH
COOPERATIVE IN-HOME CACHING AND PRE-POSITIONING (CIHCP)

John Jason Brzozowski
Jan van Doorn
Comcast Cable

Abstract

While discussions of content delivery often
center on backbone architecture, a substantial
portion of the cost of delivering content from
Internet peering points to subscribers is spent
on Access Networks.. Content Delivery
Networks (CDNs) have done a good job
optimizing backbone traffic, but to date, there
has been less innovation around optimizing
traffic flows at level of Metro and Access
Networks, which represents a major
opportunity.

ISP networks, including Metro and Access
Networks, are scaled for peak usage, and are
underutilized at off-peak times. In this way,
user demand and usage is to some degree,
predictable.

 In this paper we explore a potential
method of cooperative in-home caching and
pre-positioning. This approach seeks to
leverage the predictable nature of user
demand to reduce the highest peaks, by pre-
caching content in the home during the traffic
valleys. In this paper we explore only the
potential technical function of a cooperative
in-home caching and prepositioning
approach. Related issues such as cache
management, telemetry, and application
interfaces would be the subject of future work
on this topic.

INTRODUCTION

 Traffic patterns in ISP IP networks are very
predictable, with high peaks at primetime and
low valleys late at night / early morning. See
Figure 1 for a typical example of traffic in an
ISP’s network segment. In most ISP networks
it is not uncommon for traffic peaks to

represent three times their corresponding
valleys. Obviously, the network has to be
scaled to at least the highest peak in these
normal traffic patterns. Specific events, like a
software or a game release, can spike these
peaks even higher: 1.5x the normal daily peak
is not unheard of, so for the ISP to maintain
quality of service in those cases it would need
to scale the network much higher than even
these daily peaks. It follows that there is
unused capacity in the ISP network for a very
large percentage of the day.

Figure 1: Typical traffic pattern

 CDNs do important work in reducing
backbone or transit traffic but that is typically
the smallest portion of the network cost and
they are often not in the optimal position in
the network. One of the goals and ongoing
challenges has been to move content delivery
to be as close to the end user as possible. In
many cases the deepest (meaning closest to
the customer) caches are outside of the ISP
network. Recently, many ISPs have started
deploying CDN caches deeper in their
networks. Even when deployed in the ISP
network, the caches require extensive Metro
resources and are still “above” the CMTS
driving most of the costs of delivering the
bytes to the customer (i.e. below the CMTS
[1].)

 Individual bandwidth usage is, to a certain
degree, predictable as well. For IP video, a

2016 Spring Technical Forum Proceedings

viewer who scheduled a DVR recording for a
certain show is most likely going to watch
that show. After seeing episode 1 through 4 of
a series, it is likely that episode 5 is next.
Some OTT video providers have a “My List”
or “Watch List” feature that the viewer can
use to queue things to watch later – the videos
queued here are likely to be watched by this
person. For software releases, a person who
downloaded MacOS 10.11.3 is likely going to
download version 10.11.4 of that same OS
shortly after it is released. Similarly, a
household that has several devices of the same
make and model, i.e. iPhone6, is likely to
download the same update to each and every
device. Other possible use cases of
cooperative in-home caching and pre-
positioning could be cloud-based backups that
can be scheduled for upload overnight instead
of when children are actively gaming online
and pre-positioning of popular game release,
or updates, gradually in advance of the
official release date.

 Individuals and families also often have
unused storage and computing resources in
their home. The household PC is often sitting
idle, as is the game console’s storage. Those,
along with retail devices, like Network
Attached Storage (NAS) appliances, represent
opportunities to leverage large amounts of
idle in-home storage.

 In this paper we try to make use of the
above observations by exploring on-demand
and pre-caching of content at low traffic times
in an in-home cache; for the purposes of this
paper it is assumed that the cache is customer-
owned and maintained equipment, which
cooperates with either the CDN or the client.
However, the technological concepts detailed
here apply equally to operator-provided in-
home cache appliances.

In all cases, these models are premised on a
cooperative, opt-in approach that would
involve the participation of customers, content
providers and ISPs.

 A comprehensive in-home caching strategy
including content pre-positioning is mutually
beneficial to multiple stakeholders across the
Internet ecosystem. The primary beneficiary
is the consumer, who will realize the benefits
of massively improved performance,
efficiency, and a heightened customer
experience. Content owners who elect to
participate can benefit by way of increased
delivery efficiency by transmitting fewer
copies of the same content to a single
household, and off-peak content delivery
infrastructure, which manifests lower costs
and improved customer satisfaction.
Broadband network operators with the ability
to deliver content off-peak can especially
benefit, by way of overall network
performance and capacity management. Tests
have illustrated that a basic in-home caching
solution minimally yields a 300% increase in
download performance when in- home
caching is utilized. The evolution of in-home
caching to include off-peak content pre-
positioning introduces the additional benefit
of delivering content when network utilization
is lower, which helps to utilize valuable
network resources when demand is at its
lowest.

 The rest of this paper is organized as
follows: First we examine the different types
of HTTP proxies in use today, and how CDNs
utilize them. Then we explore the options
available to insert the in-home proxy into the
client’s request path. Next, we describe a
prototype implementation that was built to
help think through the problems and options.
We conclude with final thoughts and
suggested future work.

HTTP/1.1 AND PROXY/CACHES

 This section is an abbreviated version of a
section of the Traffic Control documentation
written by one of the authors of this paper [2].
The main function of a CDN is to proxy
requests from clients to origin servers and

2016 Spring Technical Forum Proceedings

cache the results. To proxy, in the CDN
context is to obtain content using HTTP from
an origin server on behalf of a client. To cache
is to store the results so they can be reused
when other clients are requesting the same
content. There are three types of proxies in
use on the Internet today: The “reverse
proxy,” the “forward proxy,” and the
“transparent proxy.” They are described
below.

Reverse Proxy

 A reverse proxy acts on behalf of the
origin server. The client is mostly unaware it
is communicating with a proxy and not the
actual origin. The typical use case for the
reverse proxy is a CDN - to the end user, a
CDN appears as a reverse proxy because it
retrieves content from the origin server, acting
on behalf of that origin server. The client
requests a URL that has a hostname which
resolves to the reverse proxy's IP address and,
in compliance with the HTTP 1.1 [3]
specification, the client sends a Host: header
to the reverse proxy that matches the
hostname in the URL. The proxy looks up this
hostname in a list of mappings to find the
origin hostname; if the hostname of the Host
header is not found in the list, the proxy will
send an error (404 Not Found) to the client.
If the supplied hostname is found in this list of
mappings, the proxy checks the cache, and
when the content is not already present, it
connects to the origin the requested Host:
header maps to and requests the path of the
original URL, providing the origin hostname
in the Host: header. The proxy then stores
the content for this URL in cache and serves
the contents to the client. When there are
subsequent requests for the same URL, a
caching proxy serves the content out of cache
thereby reducing latency and network traffic.

 For a reverse proxy to be injected into the
path of delivery the content owner changes
the delivery URL to not point to the origin
server, but to the CDN, and the CDN is

configured to map this delivery URL back to
the origin.

Forward Proxy

 A forward proxy acts on behalf of the
client. The origin server is mostly unaware of
the proxy; the client requests the proxy to
retrieve content from a particular origin
server. The typical use case for the forward
proxy is an organization trying to save on
Internet resources, either bandwidth or
address space. In a forward proxy scenario,
the client is explicitly configured to use the
proxy's IP address and port as a forward
proxy. The client always connects to the
forward proxy for content. The content
provider does not have to change the URL the
client obtains, and is unaware of the proxy in
the middle.

 For a forward proxy to be injected into the
delivery path, the client is configured with the
forward proxy information, and often, for
what domains to use it.

Transparent Proxy

 In the Transparent proxy case, neither the
content owner nor the clients are aware that
the proxy is in the path. The traffic is
intercepted by putting the cache directly in the
path as a router, or by a router with a special
configuration to intercept traffic and redirect it
to the proxy. The typical use case of the
transparent proxy is a school or business that
wants to force all Internet traffic through the
proxy to be able to block some sites (parental
controls) and to share Internet resources.

 For a transparent proxy to be injected into
the path, a network administrator in the layer
3 network path needs to configure the
interception.

 Even though caching and proxying are
distinctly different functions, in the rest of this
paper we will refer to a cache as the

2016 Spring Technical Forum Proceedings

combination of these two functions in one
device or piece of software running on a multi
purpose computer.

CDN INTEGRATION

 An in-home cache needs to be inserted into
the CDN delivery path (with the cooperation
of the CDN of course). In this section, we
describe the options that were evaluated.
Before we do that, we first look at how a
CDN normally gets inserted into the request
path. The client will do a DNS address lookup
of the hostname of the content URL, and in
most cases the CDN is authoritative for the
domain-name used in the content URL. The
CDN can do one of 2 things. For short-lived
sessions, the CDN will return an IP address of
an edge cache that is closest to the local DNS
(LDNS) server that handles the DNS
resolution for it. This is often referred to as
DNS content routing. DNS content routing is
low-latency, but has some disadvantages: the
CDN doesn’t actually know the client’s IP
address, only the IP of the LDNS server, and
the client could have a remote LDNS
configured, such as Google’s public DNS [4],
moreover, the CDN only knows the hostname
of the content URL, not the path. To address
this, some CDNs will send the IP address of a
content router in response to the DNS query
of the hostname in the content URL. The
client will now connect to this content router
and this router will send a HTTP 302 redirect
to the client based on the actual client IP
address and the requested content – a much
more informed decision that enables better
localization and content affinity. This is often
referred to as HTTP content routing. DNS
content routing is usually preferred for objects
and images in web pages, since there are
usually many of these in a web page, and the
added latency of the 302 redirect is too costly.
For video and game or software downloads,
the added latency is not that much overhead
compared to the expected download time, and
the added precision is worth the extra round
trip to the content router.

 Next, we look at the options of inserting an
in-home cache into the client request flow.

1) Domain Name System
In this case, the CDN authoritative DNS
server will respond with a CNAME to a
.local address that the in-home cache
advertises using mDNS, and has a reverse
proxy rule for. The biggest advantage of this
approach is the simplicity, but that is also it’s
drawback – there is no way the CDN can
determine what client is getting the DNS
response (only the DNS caching server or
LDNS server knows), so the CDN will have
to send this response to everyone asking for
the address of this name, regardless of
presences of the local proxy. HTTP only
allows for A/AAAA records in resolving
hostnames, and while you can send multiple
IP addresses in the answer to an A/AAAA
query, these answer records don’t allow for
any prioritization. This means we can’t send a
DNS response to instructs the client to first try
the in-house cache, and if that fails, then try
the CDN cache higher in the network.

2) HTTP 302 Redirect
With HTTP 302 redirect, we can target
individual clients, and we can send the 302 to
a URL that “points to” the in-house cache.
The advantage here is that we now can only
redirect to the local cache if it is running and
“registered” with the CDN, and only for
content that is known to be cached, since the
registration could tell the CDN content router
what content is pre-cached. The disadvantage
is that the CDN now needs to keep track of all
the clients that have an active caching proxy
in their home, as we as the content that is pre-
cached. At scale, this could be a challenge.

3) Transparent Proxy
Transparent caching could be an interesting
option, but we are looking to do this in
cooperation with the content owner, and, with
the advent of HTTPS in standards [5, 6] and
practice [7] it seems that transparent proxies

2016 Spring Technical Forum Proceedings

are becoming more and more difficult (if not
impossible) to implement without major
security compromises.

4) DNS Intercept
In this scenario, the DNS request for the CDN
domain is intercepted by software on the in-
house cache using ARP (Address Resolution
Protocol) spoofing, special software on the
router, or even on the LDNS server itself. For
domains that have content pre-cached, a
CNAME response is sent to the client that
points to a .local name the cache is advertising
using mDNS. Another variant of this method
is the Smart DNS proxy method, where the
client is configured with LDNS servers that
send the proxy’s IP address in response to a
DNS query for certain origin / CDN domains.
Finally, interaction between the local in-home
cache and the local DNS server can also be
leveraged to update the local DNS with the
IPv6 and/or IPv4 address of the in-home
cache. Often the home gateway or wireless
gateway in the house is configured as the
LDNS server for all downstream clients, and
it simply forwards all DNS requests to the
ISP’s LDNS servers. This local LDNS server
in the gateway could be modified to be
authoritative for a domain that is not .local
(and thus doesn’t have the mDNS quirks and
drawbacks), for instance cache.lan.
When the in-home cache pre-caches content
for a domain, it updates the gateway and the
CDN serving this domain with that
information, and this update would ensure that
the LDNS server in the gateway is able to
resolve the CNAME response that was
provided by the authoritative CDN DNS
server locally.

With the growing and pervasive deployment
of Domain Name System Security Extensions
(DNSSEC) it is important to note that some
DNS approaches outlined here may no longer
be viable or the use of the same may become
increasingly complex. Cooperative in-home
caching and pre-positioning that properly
integrates every player in the content

ecosystem could conceivably incorporate the
use and support of DNSSEC including any
local DNS infrastructure in the home.
However, it is important to note that the use
of DNSSEC may not be strictly required by
local DNS. The detailed analysis of DNSSEC
and content caching and pre-positioning are
out of scope for this document.

5) HTTP Intercept / 302
A cache can be inserted by “snooping” the
connection that carries the HTTP GET
request, then returning a 302 to the cache on
the connection without the knowledge of the
destination server of the HTTP GET request.
This is what Laguna [8] does. This has the
same restrictions as method 3.

6) None – Client configuration and forward
proxy
In this and the next option, we don’t cooperate
with the CDN, but instead with the browser.
The browser is configured to use the in-home
proxy/cache as a forward proxy for certain
domains, or for all domains. The drawback of
this system is the client configuration, and the
fact that now the proxy is in the client path for
all requests in the configured domain.

7) None - Proxy Auto Configuration (PAC)
This option is very much like 6, but here, we
use the in-home proxy/cache as the PAC
server, and it can insert domains to
dynamically use the in-home cache, as the
content is pre-positioned. Since most PAC
systems do not have an auto update, and the
proxy configuration only gets loaded on client
start, this option does not seem to add much
over option 6.

Notes about mDNS

 The multicast Domain Name System,
(commonly referred to as mDNS) [9] is a
system for advertising and resolving host
names to IP addresses (as well as services
locally) in small networks that don’t have a
local name server. It is most often used with

2016 Spring Technical Forum Proceedings

zero configuration services like DNS service
discovery (DNS-SD) [10] or Apple’s Bonjour.
In this case we use the simplest form of
mDNS. We only use it to do hostname
advertisement, and to advertise A or AAAA
records, with no associated services.

 Using mDNS carries some drawbacks.
During testing, we found that some
applications assume it is used in conjunction
with DNS-SD, and won’t work when you just
use it for hostname resolution. Specifically,
we were not able to have a CNAME in the
unicast DNS system point to a .local
mDNS announced record, and have browsers
“follow” that CAME. This severely hampers
some of the DNS based CDN integration
options.

 In an IPv6 capable system the mDNS
announcements in the CDN integration
options could be replaced with real DNS
AAAA records that point to the IPv6 address
of the in-home cache. This has the advantage
of not requiring mDNS, but adds some scaling
and other requirements to the DNS system
overall, specifically for authoritative DNS
server operators which also tend to be content
owners and/or CDN providers.

THE PROTOTYPE SYSTEM

 The three options explored in the prototype
system outlined in this paper are option 2,
cooperation with the CDN, a combination of
option 2 and 5, where we 302 redirect to a
unicast announced DNS with gateway
modification, and option 6, cooperation with
the content consumer.

 The sequence of events when using the
system in CDN cooperation mode is depicted
in figure 2. Steps 1 through 5 are only done in
low traffic times, while the rest of the steps
can be done at peak or low traffic times.

Figure 2: in home pre-caching system with
CDN/content owner cooperation

1) The in-home cache registers with the
content owner(s).

2) The prediction engine at the content
owner instructs the in-home cache to
pre-cache an (or set of) object(s).

3) The in-home cache fetches the content
from the CDN and caches it.

4) On miss, the cache fetches the content
from the origin server.

5) The in-home cache registers the pre-
cached content with the CDN’s
content router. In an IPv4 system, the
registration will likely arrive at the
CDN’s content router using the same
IPv4 NAT address that the client will
use. In an IPv6 system, it will need to
tell the CDN content router the
delegated prefix. At this time, the in-
home cache also adds an mDNS
announcement of the content URLs
hostname with a .local appended
(<original FQDN>.local).

6) The client requests the content from
the CDN

7) The CDN content router, knowing that
this content is pre-cached at the in-
home cache, redirects the client to
<original FQDN>.local

8) The client fetches the content from the
in-home cache

9) On miss, the in-home cache fetches
the content from the CDN cache.

2016 Spring Technical Forum Proceedings

 Another similar option is the use of unicast
DNS. This approach shares many similarities
with that of the mDNS-based solution. The
authoritative DNS server for the origin
content must still be able to detect and reply
accordingly to end user and in-home cache
requests separately. An example sequence of
events in this option is show in figure 3:

Figure 3: option 2 and 5 combined

1. The in-home cache registers with the
content owner(s).

2. The in-home cache must publish itself
to the local, unicast DNS server in the
customer’s premises. This could very
well be an API or dynamic update to
the DNS server running within the Wi-
Fi router or a standalone DNS server.
The in-home cache would update DNS
with an FQDN that is resolvable
locally (i.e. cache.lan.) and that
would be used by the authoritative
DNS server as a CNAME to redirect
content requests to.

3. The prediction engine at the content
owner instructs the in-home cache to
pre-cache (a set of) objects. This is
the same whether unicast DNS or
mDNS is used.

4. The in-home cache fetches the content
from the CDN and caches it.

5. On miss, the cache fetches the content
from the origin server.

6. As part of the registration the in-home
cache can for example be added to an
authoritative view that will allow it to
properly resolve DNS for the content
origins, instead of the resolution that
will redirect content requests to the
local, in-home cache by default. In an
IPv4 system, the registration will
likely arrive at the CDN’s content
router using the same NAT address
that the client will use. In an IPv6
system, it will need to tell the CDN
content router the delegated prefix. At
this time, the in-home cache is
expected to be resolvable using a local
FQDN, i.e. cache.lan.

7. The client requests the content from
the CDN

8. The CDN content router, knowing that
this content is pre-cached at the in-
home cache, 302 redirects the client to
cache.lan. with the same path.
Conversely, the CDN's authoritative
DNS servers may use CNAME
resource records to re-direct the client
content request to the local, in-home
cache.

9. The client fetches the content from the
in-home cache

10. On miss, the in-home cache fetches
the content from the CDN cache.

 Separately, option 6 has also been
implemented and assessed. This is the option
where the content consumer is cooperating
with the in-home caching system.

2016 Spring Technical Forum Proceedings

Figure 4: in home pre-caching with content
consumer cooperation

1) The end user configures the client to
use the in-home cache as a proxy for
certain domains.

2) The end-user tells the in-home cache
what to pre-cache, or the in-home
caches uses the “watch list” for the
content to pre-cache.

3) The in-home cache pre-caches the
content.

4) On miss the CDN cache fetches the
content from the origin.

5) The client requests the content with
the original CDN hostname, but the
client will use the configured forward
proxy, and thus go through the in-
home cache.

6) On miss, the in-home cache fetches
the content from the CDN cache.

 Candidate requirements for the end-to-end
system are listed below:

Secure
Security and privacy are of paramount
importance for a system like this. This
applies equally to content consumers and
creators.

Open
The system must be based on open standards,
and must completely comply with the same.
Ideally key elements of the solution itself may
be open sourced and/or include open APIs
(application programming interfaces) to

enable wide spread adoption and seamless
integration. Some of the CDN integration
options that intercept traffic are disqualified
by this requirement, since they create traffic
patterns that violate the specification.

Non-intrusive
The system must be seamless to the end-user
once installed, and even more so if failures
were to occur; there must be no impact to the
customer experience. The last thing we want
is for a failure in this system to prevent
viewers from accessing content they would’ve
otherwise been able to access.

Scalable
A CDN often serves many millions of users
simultaneously. A cooperative in-home
caching and pre-positioning system needs to
scale to the same numbers.

Content-Aware
Given the fact that a large proportion of the
Internet traffic these days is video, the system
should understand popular ABR video
formats. It should understand, for instance, the
most-used manifest file formats, so that the
in-home cache can be instructed to cache a
video asset just by giving it the manifest URL.

The in-home cache requirements:

 Requirements for the in-house cache
include:

Portability
The software should run on as many operating
systems and environments as possible, with as
few dependencies as possible. While a
hardware appliance may be utilized, the in-
home caching system should be able to run on
consumer-provided hardware, such as a
personal computer or Network Attached
Storage (NAS) with sufficient capacity.

Lightweight
The software should be able to run on small
systems as a background daemon with little or

2016 Spring Technical Forum Proceedings

no noticeable impact to performance of other
tasks.

User-Friendly
The software should be easy to install and
configure. Any end-user should be able to
install and configure it in minutes, and no
additional management or maintenance
should be necessary.

 Given these requirements we decided to
implement the in-home cache using the Go
language. The Go language is supported on
many platforms, and has the big advantage
that the binaries produced are self-contained,
and not dependent on libraries or other
external files, and don’t require installation of
any packages. See github.com [12] for the
source code for the prototype in-home cache
and CDN integration implementation cited in
this paper.

Predicting what to pre-cache

 Predicting what to cache is easy when we
cooperate with the consumer and/or content
owners – the user will simply tell the system
what to cache either by directly interfacing
with the in-home cache, or by keeping a
watch list up to date. Consumers, in
cooperation, with the content owners and
broadband operators can further enhance the
in-home caching experience. People
consuming content may optionally share
additional information with the prediction
engine that can be used to more accurately
predict future video selections.

 In the case that the content owner is
providing the pre-cache instructions, the
content owner can use its own usage data to
create the pre-cache rules. How to do this in
the most optimal way is out of the scope of
this paper.

CONCLUSION

 Over the years, the way people use the
Internet has rapidly evolved -- from web
pages and email, to rich applications, video,
and interactive content. This transformation
has dramatically changed how players across
the Internet ecosystem engineer their
infrastructure, products, and services.
Modern applications and rich content has
pushed the limits of modern software and
networking technologies resulting in new,
innovative approaches to support the delivery
of the same. Innovation and engineering in
these areas has been largely focused on
increasing efficiency, lowering costs, and
ultimately improving the customer
experience.

 The approach documented in this paper is
intended to take these innovations to new
levels. A cornerstone principle of this work
has been to assess, technically, how close
content can be positioned to the consumer,
and what benefits can be expected from such
close proximity. A material and intended
byproduct of this work has been to develop a
proof-of-concept, intended to derive data that
can be used to quantify the performance and
efficiency of in-home caching and pre-
positioning. As cited in this document, the
performance improvements are non-trivial, as
are the benefits for the broadband network --
and ultimately the customer experience.

In summary, the principles outlined in this
document, when done cooperatively,
represent distinct, measurable benefits to
every stakeholder across the content
ecosystem. Cooperative in-home caching and
pre-positioning effectively represents a win-
win-win scenario for content consumers,
owners, and for those who facilitate delivery
of the same including ISPs.

REFERENCES

[1] http://traffic-control-cdn.net/
[2] [RFC2616] Fielding, R., Gettys, J.,

Mogul, J., Frystyk, H., Masinter, L.,

2016 Spring Technical Forum Proceedings

Leach, P., and T. Berners-Lee,
"Hypertext Transfer Protocol --
HTTP/1.1", RFC 2616, DOI
10.17487/RFC2616, June 1999,
http://www.rfc-editor.org/info/rfc2616

[3] https://developers.google.com/speed/p
ublic-dns/

[4] Dorwin D., Smith J., Watson M.,
Bateman A. “Encrypted Media
Extensions”, W3C Working Draft,
March 2016,
https://www.w3.org/TR/encrypted-
media/

[5] [RFC7540] Belshe, M., Peon, R., and
M. Thomson, Ed., "Hypertext Transfer
Protocol Version 2 (HTTP/2)", RFC
7540, DOI 10.17487/RFC7540, May
2015, http://www.rfc-
editor.org/info/rfc7540

[6] Dan Goodin, “It wasn’t easy, but
Netflix will soon use HTTPS to secure
video streams”, April 2016,
http://arstechnica.com/security/2015/0
4/it-wasnt-easy-but-netflix-will-soon-
use-https-to-secure-video-streams/

[7] https://github.com/concurrentlabs/lagu
na

[8] [RFC6762] Cheshire, S. and M.
Krochmal, "Multicast DNS", RFC
6762, DOI 10.17487/RFC6762,
February 2013, http://www.rfc-
editor.org/info/rfc6762

[9] [RFC6763] Cheshire, S. and M.
Krochmal, "DNS-Based Service
Discovery", RFC 6763, DOI
10.17487/RFC6763, February 2013,
http://www.rfc-editor.org/info/rfc6763

[10] https://golang.org/

2016 Spring Technical Forum Proceedings

http://www.rfc-editor.org/info/rfc2616
https://developers.google.com/speed/public-dns/
https://developers.google.com/speed/public-dns/
https://www.w3.org/TR/encrypted-media/
https://www.w3.org/TR/encrypted-media/
http://www.rfc-editor.org/info/rfc7540
http://www.rfc-editor.org/info/rfc7540
http://arstechnica.com/security/2015/04/it-wasnt-easy-but-netflix-will-soon-use-https-to-secure-video-streams/
http://arstechnica.com/security/2015/04/it-wasnt-easy-but-netflix-will-soon-use-https-to-secure-video-streams/
http://arstechnica.com/security/2015/04/it-wasnt-easy-but-netflix-will-soon-use-https-to-secure-video-streams/
https://github.com/concurrentlabs/laguna
https://github.com/concurrentlabs/laguna
http://www.rfc-editor.org/info/rfc6763
https://golang.org/

	IMPROVING CUSTOMER EXPERIENCE THROUGH
	John Jason Brzozowski
	Jan van Doorn
	Comcast Cable
	INTRODUCTION
	Figure 1: Typical traffic pattern
	Reverse Proxy
	Forward Proxy
	Transparent Proxy
	CDN INTEGRATION
	1) Domain Name System
	2) HTTP 302 Redirect
	3) Transparent Proxy
	4) DNS Intercept
	5) HTTP Intercept / 302
	6) None – Client configuration and forward proxy
	7) None - Proxy Auto Configuration (PAC)
	Notes about mDNS
	Figure 3: option 2 and 5 combined
	Open
	Non-intrusive
	Scalable
	Predicting what to pre-cache
	CONCLUSION
	REFERENCES

