
Applications of Machine Learning in Cable Access Networks
 Karthik Sundaresan, Nicolas Metts, Greg White; Albert Cabellos-Aparicio
 CableLabs; UPC BarcelonaTech.

 Abstract

 Recent advances in Machine Learning
algorithms have resulted in an explosion of
real-world applications, including self-driving
cars, face and emotion recognition, automatic
image captioning, real-time speech
translation and drug discovery.

 Potential applications for Machine
Learning abound in the areas of network
technology, and there are various problem
areas in the cable access network which can
benefit from Machine Learning techniques.
This paper provides an overview of Machine
Learning algorithms, and how they could be
applied to the applications of interest to cable
operators and equipment suppliers.

INTRODUCTION

 Recent advances in Machine Learning, and
in particular, deep learning, have resulted in
an explosion of real-world applications,
including self-driving cars, face and emotion
recognition, automatic image captioning, real-
time speech translation and drug discovery.
Powerful new learning algorithms, harnessed
via open-source toolkits and running on
general-purpose GPUs (even cloud instances)
are the key enablers for this explosion.

 Machine Learning technologies can learn
from historical data, and make predictions or
decisions, rather than following strictly static
program instructions. They can dynamically
adapt to a changing situation and enhance
their own intelligence by learning from new
data. Statistical pattern recognition, data
mining, clustering and deep learning have

proven to be powerful components in the
Machine Learning space.

 Potential applications for Machine
Learning abound in the areas of network
technology and applications. It can be used to
intelligently learn the various environments of
networks and react to dynamic situations
better than a fixed algorithm. When it
becomes mature, it would greatly accelerate
the development of autonomic networking.

 There are various problem areas in the
cable access network which can benefit from
Machine Learning techniques. For example,
the Proactive Network Maintenance data
which represents network conditions obtained
from CMTS and CM can be processed
through Machine Learning algorithms to
enable automatic recognition of issues in the
cable plant and initiating the needed
corrective actions. Patterns in network traffic,
equipment failures, device reboots or link
failures can be used to identify the root cause
of various network problems. Video channel
usage data could be used to optimize the
multicast channel lineups in a network, and be
used to predict which programs to record
automatically in a DVR.

 This paper provides an overview of
Machine Learning algorithms with focus on
the applications of interest to cable operators
and equipment suppliers. The paper discusses
several learning toolkits and computational
platforms, and hypothesizes some of the most
compelling near-term uses. It will explore
how to apply learning algorithms to various
challenges faced by operators in managing
network devices and services. In addition, the
paper covers best practices for achieving
optimal results with Machine Learning.

2016 Spring Technical Forum Proceedings

OVERVIEW OF MACHINE LEARNING

 This section provides a very brief
introduction to Machine Learning. The reader
familiar with such techniques may safely skip
this section. Machine Learning (ML) is a field
of study of Artificial Intelligence that
provides computers with learning techniques
without being explicitly programmed.
Traditional programming requires manually
coding an algorithm and combining it with
input data to produce the resulting output
data. This model is fundamentally different in
ML: a learning algorithm (e.g., a Neural
Network) is trained with the input data and
the corresponding output data, which is
known as training set, to automatically
produce the algorithm, which will be used to
predict future results. But how do computers
actually learn such an algorithm?

 Systems can be always described by a
mathematical function and in many cases such
a function is multi-dimensional (i.e., has many
input and output variables, maybe hundreds)
and is non-linear. If we have such a function,
we have a complete model of the system. For
instance, the function that describes a network
may have the form: function (topology, load,
configuration) = performance. That is, the
function links the topology of the network, the
traffic (load) and configuration (e.g., routing)
with the resulting performance (e.g., delay).
Analytical modeling provides tools to obtain
such a function (e.g., Queueing theory in
networking). However, such techniques often
use simplifications and cannot be applied
when the network is too complex.

 Machine Learning provides a different way
to obtain such a function. As shown in Figure
1 below, a learning algorithm fed with a
representative training set will fit the function,
even if such function has hundreds of
variables or it is complex and non-linear. The
algorithm produced by a Machine Learning
approach is the function itself and can also

produce accurate answers for input points for
which it has not been trained explicitly,
provided that the initial training set was
representative enough. This is accomplished
by interpolation, that is estimating an unseen
prediction point between two already seen test
points and extrapolation, estimation of the
point beyond the observed training set.

Figure 1. An overview of Machine learning

 In what follows, we provide a summary of
the two most relevant techniques in Machine
Learning: supervised and unsupervised
learning.

SUPERVISED LEARNING

 In supervised learning, there is a given data
set and the knowledge on what the correct
output looks like. The idea is that there is a
relationship between the input and the output.

 The input data set is called training data
and has a known label or result, such as
cat/not-cat (for identifying cat photos) or a
stock price at a time (for predicting stock
prices). Network examples could include
classifying traffic patterns for intrusion
detection as harmful-traffic vs. normal-traffic,
or predicting the usage of a certain network
link based on various parameters. A model is
prepared through a training process where it is
required to make predictions and is corrected
when those predictions are wrong. The

2016 Spring Technical Forum Proceedings

training process continues until the model
achieves a desired level of accuracy on the
training data.

 Supervised learning problems are
categorized into "regression" and
"classification" problems. In a regression
problem, the goal is to predict results within a
continuous output, essentially trying to map
the input variables to some continuous
function. In a classification problem, the goal
is to predict results in a discrete output, trying
to map the input variables into discrete output
categories.

 Example classification algorithms include
Logistic Regression and the Back Propagation
Neural Network, SVMs, kNN, etc.

Support Vector Machine (SVM)

 SVM is type of supervised Machine
Learning algorithm. Given a set of training
examples, each marked as belonging to one of
two classes, an SVM training algorithm builds
a model that assigns new examples into one
class or the other. A hyperplane splits the
input variable space. In SVM, a hyperplane is
selected to best separate the points in the input
variable space by the class to which they
belong. The SVM learning algorithm finds the
coefficients that results in the best separation
of the classes by the hyperplane. New
examples are then mapped into that same
space and predicted to belong to a category
based on which side of the gap they fall.

 The distance between the hyperplane and
the closest data points is referred to as the
margin. The best or optimal hyperplane that
can separate the two classes is the line that has
the largest margin. Only these points are
relevant in defining the hyperplane and in the
construction of the classifier. These points are
called the support vectors as they support or
define the hyperplane.

K-Nearest Neighbors Algorithm (kNN)

 kNN makes predictions for a new data
point by assigning it the value/label of its K
nearest neighbors. For regression this might
be the mean output variable, in classification
this might be the mode (or most common)
class value.

 In kNN classification, an object is
classified by a majority vote of its neighbors,
with the object being assigned to the class
most common among its k nearest neighbors.
In kNN regression, the output value is the
average of the values of its k nearest
neighbors.

 The simplest technique is to use the
Euclidean distance between neighbors. kNN
performs a calculation (or learns) when a
prediction is needed, just in time. The training
instances can be updated or curated over time
to keep predictions accurate.

UNSUPERVISED LEARNING

 Unsupervised learning attacks problems
with little or no idea what the results should
look like. The idea is to derive structure from
data where there is no apriori knowledge of
the effect of the variables. This structure is
derived by clustering the data based on
relationships among the variables in the data.
With unsupervised learning there is no
feedback based on the prediction results. The
input data set is not labelled and does not have
a known result.

 A model is prepared by deducing
structures present in the input data. This may
be to extract general rules. It may be through
a mathematical process to systematically
reduce redundancy, or it may be to organize
data by similarity.

 Typical unsupervised algorithms are
Clustering (K-Means, Fuzzy and Hierarchical

2016 Spring Technical Forum Proceedings

clustering, etc.), Principal Component
Analysis and the Apriori Algorithm.

Clustering Algorithms (K-means, Fuzzy and
Hierarchical Clustering)

 Give a set of data points, clustering is the
problem of grouping the points in such a way
that points in the same cluster are more
similar to each other than to those in other
clusters. Usually, the points are in a high-
dimensional space, and similarity is defined
using a distance measure. As an example, let's
assume that we want to understand content
consumption among users, movies for
instance. If we have access to a large dataset
of movie consumption per user, K-Means will
cluster and group users with similar movie
preferences. With this we can analyze the
profiles of such users and be able to predict
which types of movies they will consume.

 The K-means algorithm takes a set of
points and attempts to identify the set of K
clusters for which the average distance of
each point to the centroid (mean) of its cluster
is minimized. In an algorithm like K-means,
data is divided into distinct clusters, where
each data element belongs to exactly one
cluster. In Fuzzy clustering, data elements can
belong to more than one cluster, and each
element belongs to each cluster to a certain
degree (e.g., a likelihood of belonging to the
cluster). Hierarchical clustering is a method of
cluster analysis which seeks to build a
hierarchy of clusters.

Principal Component Analysis (PCA)

 Sometimes data is collected on a large
number of variables from a single population.
With a large number of variables, the data will
be too large to study and interpret properly.
There would be too many pairwise
correlations between the variables to consider.
To interpret the data in a more meaningful
form, it is necessary to reduce the number of
variables to a few, interpretable linear

combinations of the data. Each linear
combination will correspond to a principal
component. Principal components are the
underlying structure in the data. They are the
directions where there is the most variance,
the directions where the data is most spread
out. PCA is a way of identifying patterns in
data, and expressing the data in such a way as
to highlight their similarities and differences.
With PCA once these patterns in the data are
found, one can compress the data, i.e., by
reducing the number of dimensions, without
much loss of information.

Apriori Algorithm

 Mining for associations among items in a
large database of transactions is an important
database mining function. Apriori algorithm is
a technique to find the sets of frequent items
and learning the association rules between
items in a dataset. The algorithm works by
identifying frequent individual items in a
dataset and extending them to larger item sets
as long as those sets appear sufficiently often
in the dataset. These frequent item sets can be
used to determine association rules which
highlight general trends in that data set.

 The interested reader can find further
information on Machine Learning in [4], [6].

APPLYING MACHINE LEARNING TO
NETWORKING PROBLEMS

 With the exponential growth in network
traffic (over-the-top video, social networking,
cloud services, etc.), there is just too much
data to manually learn and understand the
many patterns of traffic flow. Network
equipment is getting more complex, e.g.,
bringing up a router or a CMTS can take
thousands of lines of configuration. Along
with this comes the increasing complexity of
the network itself, e.g., various overlays,
underlays and connection of services across
disparate networks. Traffic modeling and
analysis are becoming increasingly

2016 Spring Technical Forum Proceedings

challenging. With the proliferation of
applications, it is difficult to predict and to
generalize application behavior and the
impact it has on network traffic. Simply put,
there are too many sources of information for
manual processing by humans. ML techniques
are ideal solutions for these kind of problems.

One example in the access network is how an
operator can effectively and quickly process
all the PNM data which comes up from the
access network devices. As another example,
the problem of dynamically fitting optimal
DOCSIS 3.1 OFDM Profiles to hundreds of
modems on an OFDM channel with thousands
of subcarriers with changing conditions is a
complex challenge.

Also, to understand and predict network
behavior, some problems in networks are so
complex that one cannot express them in a
simple fashion, in those cases it is easier to
represent the problem as a black box with a
set of inputs and outputs. That can now help
frame the problem as a Machine Learning
problem and start making progress towards
solving it in a timely fashion.

 Applying Machine Learning to networking
has been proposed several times in the past, a
notable example is D. Clark and the
Knowledge Plane [5]. However and for many
use-cases it is very challenging to apply
learning techniques to an inherently
distributed system. The rise of the Software-
Defined Networking (SDN) paradigm and
Network Telemetry are enabling technologies
for applying Machine Learning. This provides
all the data needed from the network elements
at a centralized server; ML algorithms can
learn from this centralized repository of data.
Also since the SDN controller can configure
and manage the network elements, it provides
an avenue for the ML algorithm to take
corrective action on the network based on the
patterns the algorithm sees.

 Many of these network problems naturally
lend itself to be solved by Machine Learning
algorithms, which can obtain the best possible
knowledge from the large sets of data
available on hand.

LEARNING TOOLKITS AND
COMPUTATIONAL PLATFORMS

 This section gives a brief overview of the
tools and software platforms available which
a practitioner of Machine Learning can use to
solve various problems.

 Scikit-learn [21] is a Python library for
Machine Learning. It is an open-source
product (BSD License) and is based on
NumPy and SciPy, two mathematical and data
analysis libraries known for their speed and
efficiency. The scikit-learn library is
somewhat of a Swiss Army Knife amongst
Machine Learning packages. The
functionality implemented in scikit-learn
includes classification, regression, clustering,
dimensionality reduction, model selection,
preprocessing, and many other features such
as performance metrics.

 The scikit-learn library includes almost
every well-known classification and
regression technique (Naive Bayes, logistic
regression, Support Vector Machines (SVMs),
lasso regression, etc.), along with some more
cutting edge techniques such as neural
networks. Users considering scikit-learn
should be familiar with the Python
programming language and would benefit
from some Machine Learning background as
well as familiarity with NumPy and SciPy.

Since scikit-learn has been around for nearly a
decade, there is a mature user community
along with excellent API documentation and
many helpful tutorials. If you have an issue
with scikit-learn, you can likely find an
answer on StackOverflow.

2016 Spring Technical Forum Proceedings

 Matlab incorporates a Neural Network
Toolbox and a Machine Learning Toolbox[7]
that provides the most common features for
automatic learning: classification, regression,
clustering, etc. The tool is capable of
programming neural networks and large
networks with deep learning autoencoders.
The tool can be accelerated using GPUs and
parallel environments and, more importantly,
provides out-of-the-box neural networks that
are auto-configured by the toolbox. This
represents an important advantage for people
that are starting to with Machine Learning.
Matlab also provides implementations of
various ML algorithms, so it is a great starting
point to apply many different techniques to a
give data set, to quickly analyze the feasibility
of various algorithms.

 Theano [8] is an open-source deep learning
framework in the form of a Python library that
lets you define, optimize and evaluate
mathematical expressions. Theano has its
roots at the MILA lab at University of
Montreal and allows you to define
mathematical expressions (typically multi-
dimensional matrix calculations) that are then
compiled to run efficiently on either CPU or
GPU architectures [15],[17]. Theano is deeply
optimized and has many applications in
Machine Learning; however, as opposed to
Matlab, it does not provide any sort of auto-
configuration.

 Pylearn2 [9] is an open-source Machine
Learning library toolbox for easy scientific
experimentation. Pylearn2 is built on top of
Theano. With Pylearn2, one can easily define
learning algorithms (e.g., neural networks)
that will be then computed and optimized by
Theano. As such, Pylearn2 may be seen as a
Machine Learning front-end for Theano that
eases experimentation.

 TensorFlow is a data flow based
programming model/interface for expressing
and implementing Machine Learning
algorithms, recently open sourced by Google.

A computation expressed in TensorFlow can
be executed on a wide variety of platforms
ranging from handheld devices to GPU cards
to large distributed systems. The flexible
system can be used to express a wide variety
of algorithms, including training and
inference algorithms for deep neural network
models. TensorFlow provides a Python API.
It has been used for conducting research and
for deploying Machine Learning systems into
production, mainly Google’s products. [18]

 Torch is an open source scientific
computing framework that supports a wide
variety of Machine Learning algorithms, with
a focus on optimizing for GPU. Torch uses
the Lua programming language in a scriptable
form (by way of LuaJIT) and an underlying
C/CUDA implementation. Torch is used by
Google DeepMind and Facebook (FAIR)
among others, and is supported on Linux,
MacOS, Android and iOS. A large number of
extensions, referred to as packages, have been
developed and contributed to the community,
providing support for solving a wide variety
of Machine Learning problems. [16], [29]

 Microsoft has created a toolkit to enable
development of Machine Learning algorithms
for big data, tasks that are too large for a
single machine, and require coordinated
processing across a cluster of machines.
Their Distributed Machine Learning Toolkit is
open source, and precompiled binaries are
available for Windows and Linux. The goal of
DMTK is to handle the complexities of
interprocess communication, distributed
storage, thread management, etc. so that the
researcher can focus on building their model.
[30]

 The interested reader can find a
performance comparison among several tools
in [16], [17], [18].

2016 Spring Technical Forum Proceedings

APPLICATIONS OF INTEREST TO
CABLE

 This section describes various problems in
the cable network space, each with large sets
of data, to which various Machine Learning
techniques can be used to solve various
problems.

Proactive Network Maintenance

 Proactive Network Maintenance (PNM)
involves processing vast amounts of fine-
grained information about the state of the
network to look for patterns that indicate
impending problems. Current PNM solutions
have focused on leveraging the physical-layer
channel measurements performed by DOCSIS
cable modems and CMTSs, along with
knowledge of the HFC plant topology and
well-known digital signal processing
algorithms in order to locate physical
degradations of the plant. ML algorithms
could open up this space to identify a much
wider variety of network impairments,
particularly when those impairments aren’t
predictable using a priori knowledge.

 CMTS and cable modem features and
capabilities can be leveraged to enable
measurement and reporting of network
conditions so that undesired impacts like plant
equipment and cable faults, interference from
other systems, and ingress can be detected and
measured. With this information, cable
network operations personnel can make
modifications necessary to improve
conditions and monitor network trends to
detect when network improvements are
needed [3]. DOCSIS Downstream PNM
Measurements and Data include: Symbol
Capture, Wideband Spectrum Analysis, Noise
Power Ratio (NPR) Measurement, Channel
Estimate Coefficients, Constellation Display,
Receive Modulation Error Ratio (RxMER)
Per Subcarrier, FEC Statistics, Histogram, and
Received Power. DOCSIS Upstream PNM
Measurements and Data include: Capture for

Active and Quiet Probe, Triggered Spectrum
Analysis, Impulse Noise Statistics, Equalizer
Coefficients, FEC Statistics, Histogram,
Channel Power, and Receive Modulation
Error Ratio (RxMER) Per Subcarrier.

 Some of the above measurements are very
valuable in that they can reveal problems in
the network. We illustrate a couple of
examples below to which we can effectively
apply Machine Learning techniques. This will
help in quickly and automatically identifying
problems, instead of a human operator
looking through the data and flagging issues
manually.

PNM : Upstream equalization

 The upstream pre-equalization mechanism
relies on the interactions of the DOCSIS
ranging process in order to determine and
adjust the CM pre-equalization coefficients.
These coefficients can be read to reveal
problems, such as echo tunnels and excessive
group delay. Echo tunnels make reflections
that create ripples in the frequency domain.
Group delay is typically caused by filters.

 The set of coefficients on each modem in
the plant can be monitored over time, and a
Machine Learning algorithms can spot
patterns in the changes, for a modem or a
group of modems. Support Vector Machine or
other classification algorithms such as K-
nearest neighbors can help classify in trouble
CMs immediately and help flag the operator
long before a customer actually sees and
reports an issue.

PNM : Downstream spectral analysis

 A CM with full-band tuner capability acts
like a spectrum analyzer. The spectrum
analysis reveals suck-outs, excessive tilt,
frequency peaking, unwanted filters, FM (or
other) radio ingress, early roll-off, etc.

2016 Spring Technical Forum Proceedings

 Each of these issues (signal patterns) can
be learnt by a Machine Learning application
which can then monitor live signals to flag
problems in the network.

 Machine Learning algorithms can look for
abnormalities from the data obtained from
each CM and across all CMs in the network.
Grouping of CMs with common problems can
be used to identify problems affecting
multiple subscribers and isolate the cause of
an issue in the cable plant.

Predictive Video Channel Lineups/ DVR
Recording

 Applications around the video delivery
product could enable more efficient network
utilization as well as better engagement from
customers. Using Machine Learning in order
to understand user habits, and to provide
recommendations, is almost a cliché in the
ML world. Any industry that has both a large
catalog of assets and a large user base is in
possession of a huge resource that can be
automatically mined by a ML algorithm in
order to provide recommendations.

 In the case of video distribution, the ability
to accurately identify video assets that might
appeal to a viewer or set of viewers could
have multiple applications. Some of the more
obvious applications are VOD suggestions to
customers. This is similar to the Netflix
recommendation engine, see the Netflix Prize
[28]. This is essentially a clustering and
classification Machine Learning problem.

 One could take this a step further with
predictive DVR recordings for a customer
based on content which is trending across the
user base and intersecting that with the
individual custromers preferences. Another
idea is to pre-position the most popular
content in CDN caches or in the local DVR
storage. The operator could push trending
content ahead of time, during off peak hours
to reduce congestion during peak times.

 One could also use such a recommendation
system to improve the network traffic load
and utilization. This problem can be described
as the selection of video programs/channels
for IP multicasting for a linear TV lineup. In
different service groups on a cable plant, the
viewership of the most popular channels will
differ based on the demographics. So instead
of making canned decisions on the channel
lineup, and statically deciding which
programs/channels make the cut for IP
multicasting, an operator could use Machine
Learning algorithms to understand the usage
patterns over time and make
recommendations to the operators on which
channels to add to the multicast lineup
dynamically.

 ML algorithms which learn from video
viewer data can do a much better job at
analyzing which are the top programs in an
automatic and real-time fashion. This learning
could also apply in a weekly/daily timeframe
or even in real-time, where say certain
programs or channels are popular at certain
days or times and the ML engine could
automatically push those programs to be part
of the multicast lineup at the appropriate times
(e.g., ‘Saturday Night Live’ on Saturday
nights). The benefit of this is the conservation
of access network bandwidth in a IPTV
deployment by intelligently planning the
content on the network.

Profile Management

 DOCSIS 3.1 introduces the concept of
modulation profiles for OFDM channels. A
modulation profile defines the modulation
order to be used for each subcarrier within a
channel. The CMTS can define multiple
modulation profiles for use on a channel,
where the profiles differ in the modulation
orders assigned to each subcarrier. The CMTS
can then assign each CM to the modulation
profile that best suits it, taking into account
the characteristics of the channel between the
CMTS and that CM. Determining the best set

2016 Spring Technical Forum Proceedings

of modulation profiles to use on a channel is
complex, given the number of CMs (and
subcarriers) and the differences in signal
quality that they experience on the plant. A
Profile Management Application can help
operators determine what the best modulation
profiles are for each channel, given the
channel characteristics seen by each CM on
the network. The goal of optimizing profiles
is to increase throughput per CM, maximize
network capacity, and minimize errors.

 Given a set of CMs using a DOCSIS 3.1
OFDM channel, the problem is to find a
specific set of profiles which maximize the
network capacity by assigning each CM to the
best profile it can handle with a limitation on
the number of profiles to what a system can
support.

 The input data set is the MER data per
subcarrier for all the CMs. This can be
directly translated into a bit-loading number
for each subcarrier. So for example, an
OFDM downstream channel with a 4K FFT
has 3800 active subcarriers, and 200 CMs are
using that channel. That means the input data
set is a 200x3800 matrix of bit loading
capabilities. Machine Learning clustering
algorithms (like K-means) could help identify
clusters of CMs which have similar bit
loading capabilities across the whole channel.
For each of these clusters a profile definition
can be easily built by using the minimum bit
loading in all the subcarrier dimensions, for
that cluster of CMs. The set of profiles thus
produced can be optimized further, balancing
the number of profiles with the cost of having
too many profiles.

Network Health Patterns

 The access networks deployed by cable
operators often experience abnormal behavior.
Machine Learning techniques help create
anomaly detection algorithms that are
adaptive to changes in the characteristics of
normal behavior in the network. Patterns in

network traffic, equipment failures, device
reboots or link failures can be used to identify
the root cause of various network problems.
Some examples are:

- CM/STB reboots after certain uptime.
- CM performance degradation com-

pared to neighbors.
- IPv6 session failures on a certain SW

version of the CM.
- CM performance as it relates to the

time of day.
- Denial-of-service attacks on the plant.
- Correlation of customer WiFi issues to

channel settings, etc.

 For the example of a cable modem or a TV
Set-top box rebooting in the network, the
input learning parameters/features could be
device uptime, software/hardware version,
number of packets processed through the
device, or the type of services running on a
device. Some useful indicators available in the
network are CM status, Upstream Transmit
Level, Upstream Receive Level, Upstream
SNR (MER), Upstream Codeword Error Rate,
Downstream Receive Level, Downstream
SNR (MER), DS Codeword Error Rate, etc.
Each of these data points for a CM could
reveal health issues at a given time. Over time
an application could gather all the relevant
data and supply it to an ML algorithm to
figure out any patterns. This would be an
unsupervised learning problem, where the
idea would be to identify which of the
features contribute towards a catastrophic
reboot of a device. Principal component
analysis could help in identifying the factors
which contribute most towards a failure.

 A similar approach would work for another
class of problems debugging connectivity
issues, this example is around IPv6
connectivity in an operator’s network. A large
population of devices in the network were
experiencing IPv6 connectivity issues, which
the operator was not aware of and only came
to realize based on some IPv6 testing by a

2016 Spring Technical Forum Proceedings

third party. After manually tracing the broken
IPv6 prefixes to a set of CMs, they realized
that most of the failing modems were from
one manufacturer and a specific software
version. This type of debugging would be an
ideal unsupervised learning problem, where a
Machine Learning application could be
running various network health tests and
tracking issues or problems over time to
identify problems and bubble them up the
operator, before they become a major issue
with the consumers or with the press.

Internet Traffic Classification

 Traffic classification is the ability to
understand the types of traffic flows which
pass through the network and being able to
identify the normal and abnormal patterns in
those flows. It enables network operators to
better manage their network resources, e.g.,
apply QoS or route traffic appropriately. It
also helps with network security for an
IPS/IDS (intrusion prevention/detection
system) by finding abnormal patterns of
traffic, and flagging a denial of service (DoS)
or other attacks.

 For every set of flows in the network, an
operator wants to understand the patterns
represented, as it will help make informed
decisions or answer a particular question. For
example, observing and learning from 5-tuple
IPs flow (IP source/destination, Port Source
Destination, Protocol) will help answer the
question of which applications are generating
a specific flow: Skype vs YouTube vs
bitTorrent? For security applications, another
pattern to learn from could be the aggregated
traffic directed to the same IP destination in a
certain timeframe. Given some well-defined
notion of normal patterns of traffic, the goal
would be to predict if the patterns from a new
flow are markedly different.

 Various supervised and unsupervised
Machine Learning techniques can be applied
to classify internet traffic. Traditionally port-

based techniques are used to classify traffic,
this is based on knowing the port numbers for
the applications, but many new applications
use random port numbers which makes this
method of classification hard. Payload-based
techniques are used by Deep Packet
inspection engines which match the payload
of the traffic based on well-known signatures.
This method becomes hard with encrypted
traffic. Machine Learning techniques such as
classification and clustering can help solve
this in an elegant fashion.

 See [25], [26], [27] for examples of how to
use ML techniques to the classification
problem.

Network Traffic Engineering

 Reacting to changes in network load is an
important task for a network operator, since it
is not cost-effective to deploy network
equipment in excess of demand, while on the
other hand, it is unacceptable from a user-
experience perspective to run networks well
into saturation. Properly done, tracking and
responding to network utilization both for
long-term capacity planning and for short-
term traffic engineering purposes can result in
well-functioning networks that operate cost
efficiently.

 ML techniques can bring some new tools
to bear on this problem, with the result being
quicker reaction to sudden changes in traffic
flows, and the possibility – longer term – of
these reactions being put into place
automatically to ensure that networking
resources are put to their best use.

 A ML application could track utilization of
various links, the byte counts of data
traversing an interface, dropped packets at an
interface etc., to get an understanding of the
normal operation of the network elements.
This by itself can reveal patterns in network
utilization within a day-to-day time frame and
also expose patterns for the longer term. Any

2016 Spring Technical Forum Proceedings

deviations from the norm can be
automatically flagged for the operator. In the
case where the application is tied into a SDN
controller or orchestrator which can effect
changes in the network, the application could
actually create new paths or bring up new
virtual routers etc., to handle the abnormal
situation, for example, a temporary overload
in data traffic.

Customer Churn Prediction

 Given that acquiring new customers is
generally three times the cost of keeping
existing customers, an analysis of churners
and an ability to identify potential churners
can be very valuable. The task of churn
prediction can be thought of as either a
classification problem (classify a customer as
a churner or non-churner) or a regression
problem (calculate the likelihood that a
customer will churn). Usually churn
prediction is a classification task, and in
particular, a binary classification task (i.e.,
customers are predicted to either churn or not
churn in the next billing cycle). Multi-class
classification is another possible approach. In
this setting, customers could, for example, be
predicted as belonging to either a low-risk,
medium-risk, or high-risk class.

 In the context of cable, a cable operator
might want to identify cord shavers:
subscribers with both broadband and video
subscriptions who drop their video for over-
the-top services such as Netflix, Hulu Plus,
Amazon Instant Video, etc. For such a task,
data would be required from several different
sources. Linear viewing data would be useful
as this would identify how much video a
customer watches, what channels they
generally watch, and what times they tend to
watch. These features might be predictive of a
cord shaver, as a customer that has a high-
degree of interest in live sports may be less
likely to drop his or her video service. Deep
packet inspection (DPI) could also yield some
useful features such as the percentage of

bandwidth that streaming services like Netflix
consume. Customer billing data would also
be useful. For example, a customer who had
subscribed to a promotional package for video
and broadband might be more likely to drop
video service once the promotional period
ends. Combining the linear video, DPI, and
customer billing record features would likely
provide the most value. Some classification
techniques that have proven successful in
churn prediction include ensemble methods,
SVMs, logistic regression, and random forests
[19], [22]. There are also some indications
that deep learning can yield some promising
results in churn prediction [24].

 One challenge with churn prediction is that
churners tend to make up a small percentage
of customers in any given billing period. For
example, suppose that for a certain month, 2%
of customers drop their video service. A
classifier trained on this data would see 98%
of the examples as non-churners. Some
classifiers, such as Naive Bayes, use the class
prior probability in predictions that are made.
This would bias the classifier toward the
majority class. Some techniques for
addressing such class imbalances include
undersampling the majority class (using fewer
examples), oversampling the minority class
(possibly by creating synthetic examples), and
weighting the minority class as more
important in the classifier being used [20],
[22].

SDN Routing

 Optimal or quasi-optimal routing has been
a well-known challenge in computer
networks. In routing, typically the objectives
are to configure the routing policies in such a
way that fulfill the requirements of the flows
or that maximize the minimum link
utilization. This area has been strongly limited
by the fact that networks are inherently
distributed systems where each node has a
partial view and control over the network. In
addition, the traditional destination-based

2016 Spring Technical Forum Proceedings

routing limits routing granularity and hence,
the performance of the solution itself.

 With the rise of the Software-Defined
Networking (SDN) paradigm, routing
becomes a centralized problem where the
logically centralized controller receives all the
information from routers and switches,
computes an optimal solution and provisions
the network equipment with the appropriate
routing policies. In addition SDN also
provides flow-based routing granularity with
technologies such as OpenFlow [10] or LISP
[11]. A notable example of this is B4,
Google’s SDN network [12].

 In order to compute such algorithm, the
SDN controller requires a model of the
network, such model can be either an
analytical or a computational model. In both
cases the model may be hard to obtain or
incorporate inaccuracies that usually arise
when modeling real systems. In this context
Machine Learning techniques can represent a
solution for such inaccuracies.

 Indeed, Machine Learning (ML)
algorithms using a supervised approach can

be trained with the monitoring data from the
network. Specifically, the ML algorithm (see
Figure 2 below) can be trained with the
routing configuration, the load of the network
(e.g., traffic matrix) and the resulting
performance (e.g., delay or link utilization).
With this, the ML algorithm is learning the
function that relates routing, load with the
resulting performance: function(routing
configuration, load) = performance. Please
note that this function is a model of the
network and, if the dataset is large enough, an
accurate one that can take into account not
just common network behavior such as
queuing but also complex ones such as the
delay introduced by hardware, etc.

 This model can be then explored online by
the SDN controller using a traditional
optimization algorithm to compute the
optimal solution. For instance, the SDN
controller may search which is the optimal
routing configuration for a particular objective
(e.g., delay) taking into account that the
network is loaded with a particular set of
traffic.

Figure 2. A Machine Learning-enabled SDN routing algorithm

2016 Spring Technical Forum Proceedings

NFV/SFC: Allocating VNFs to Appropriate
VMs

 Network Function Virtualization (NFV)
[13] is a networking paradigm where network
functions (e.g., firewalls, load-balancers, etc.)
no longer require specific hardware
appliances and instead are implemented in
the form of Virtual Network Functions
(VNFs) that run on top of general purpose
hardware. Service function chaining (SFC)
defines and instantiates an ordered list of
instances of such functions, and the steering
of traffic flows through those functions.

 The resource management in NFV/SFC
scenarios is a complex problem since VNF
placement may have an important impact on
the overall system performance. The problem
of optimal Virtual Machine (VM) placement
has been widely studied for Data Centers
(DC) scenarios (see [14] and the references
therein). However, in DC scenarios the
network topology is mostly static, while in
NFV scenarios the placement of a VNF
modifies the performance of the virtualized
network. This increases the complexity of the
optimal placement of VNFs in NFV
deployments.

 In the VNF placement problem all the
information is available, e.g., virtual network
topology, CPU/memory usage, energy
consumption, VNF implementation, traffic
characteristics, current configuration, etc.
However, in this case the challenge is not the
lack of information but rather its complexity.
The behavior of VNFs depends on many
different factors and thus it is challenging
developing accurate models.

 In this context, some challenges that NFV
resource allocation presents can be addressed
by Machine Learning algorithms. Indeed, the
SDN controller can characterize, via ML
techniques, the behavior of a VNF as a
function of the analytics data collected, such
as the traffic processed by the VNF or the

configuration pushed by the controller. With
this model, the resource requirements of a
VNF can be modeled by machine learning
without having to modify the network. This
is helpful to optimize the placement of this
VNF, and therefore, to optimize the
performance of the overall network.

 In this case the scenario works as follows:
the SDN controller receives a query by the
user/owner to run a particular VNF, which is
a black box from the SDN controller point of
view. The controller, (e.g., via OpenStack)
launches the new VNF and starts monitoring
it, specifically it monitors the traffic being
consumed by the VNF (e.g., by means of
traffic features such as number of flows,
distribution of the inter-arrival time, etc.) and
a performance parameter such as delay or
CPU consumption. With this dataset, the
SDN controller trains a ML algorithm with
the objective of learning the function(traffic
features)=performance. Once the VNF has
been characterized, the model can be used by
optimization algorithms to optimally place
the VNF and/or to provide delay guarantees
of the virtual network.

BEST PRACTICES, GUIDELINES,
CHALLENGES

 This section documents some of the points
to be aware of when framing and solving a
problem using Machine Learning techniques.
For a more detailed review please see
references: [1], [2]

Clear Problem Definition

 Before starting to solve a problem using
any Machine Learning techniques, it is
important to define the aim of the Machine
Learning. Is the problem one of data
distribution, identifying patterns, or making
decisions? Is it a regression problem or a
classification probem? What are the
assumptions and boundaries? How would the

2016 Spring Technical Forum Proceedings

problem be solved manually? These
questions help define a problem accurately.

Objective functions

 Another important decision is to define
how to evaluate the results of the Machine
Learning algorithms. What is the metric or
objective function which needs to be
maximized or minimized. This will help
compare learning algorithms and determine
how much better it does as compared to
simple or random predictions.

Proper Features:

 Lots of thought needs to be given to the
decision of how to represent the data
available. There may be a set of original
features which are relevant and other
artificial features can be developed as well.
Data and feature definition is an essential part
of system design.

Suitable Methods and Algorithms

 The main guideline to remember is to try
out different ML techniques and algorithms.
There are many effective methods and
algorithms and no algorithms which work
perfectly for certain applications/use cases.
As the training set increases, it reduces the
effect of algorithm selection.

Adequate Representative Data

 The learning data needs to represent
realistically the space; this is important to
make sure the ML algorithm understands the
whole range of inputs and outputs. If not, the
predictions will be skewed. Random re-
sampling of the data is preferred, and data
cleaning will be necessary in many cases.
Another guideline is that the training samples
are expected to be much more in number than
the testing samples and samples to be
predicted.

Training data Testing and Cross Validation

 With any given dataset of training
examples, if you use the entire data set to
train your model, the final model will
normally overfit the training data and the
error rate estimate will be overly optimistic.
A better approach is to split the training data
into disjoint subsets: a training set (e.g., 80%)
and a test set (e.g., 20 %). The procedure is to
run the algorithm on the training set,
minimizing the error of the learning function.
Then the idea is to compute the error on the
test set to figure out how good the model is.
This training vs test split has issues: if the
training data is a sparse dataset, one may not
afford setting aside a portion of the dataset
for testing, and also if the split happens to be
not representative of the data set, the model
learnt will be off. These limitations can be
overcome with resampling methods like cross
validation.

Metrics / Evaluation Criteria

 When evaluating a classification or
regression task, it’s important to choose the
right metric for the task. Classification is
commonly measured by accuracy. Accuracy
is defined as the percentage of predicted
labels that were correct. However, this metric
is not always the best measure of success. For
example, in a task with an imbalanced class
distribution (such as churn prediction), a very
bad classifier can obtain a high accuracy
score. Suppose that 98% of the examples in
our test set are of one class, Class A. A
classifier can simply predict Class A for
every example and obtain an accuracy of
98%. However, in tasks such as churn
prediction or fraud detection, identifying the
minority class is very important. For this
reason, accuracy is not generally a good
metric for evaluating the performance of a
classifier when dealing with an imbalanced
dataset. A better way to view the
performance of binary classification would
be to examine the number of true positives

2016 Spring Technical Forum Proceedings

(tp), false positives (fp), true negatives (tn),
and false negatives (fn). For churn prediction,
the class of “churner” would be considered
the positive class. So churn prediction
success might be measured by Precision,

defined as
௧௧ ା ,or Recall, defined as ௧௧ ା [23]. In general, it’s always useful to

keep the high-level objective of the task in
mind. In tasks such as fraud detection or
disease identification, a false negative will
likely be considered more costly than a false
positive. So in these cases, the classifier
would be optimized to minimize false
positives.

Evaluating a Hypothesis

 A hypothesis may have low error for the
training examples but still be inaccurate
(because of overfitting). The idea is to
troubleshoot errors in predictions by some of
the following techniques: increasing the
number of training examples, trying a smaller
or larger set of features, changing the
parameter settings in an algorithm, etc.

 Above all are statistically significant
results from a given ML technique: It goes
without saying that the predictive results of a
ML algorithm should be of a much higher
possibility than random choices at a very
minimum.

CONCLUSIONS

 There are very many good use cases
within the cable access network for the
application of Machine Learning Algorithms.
The ultimate goal of applying Machine
Learning to networks is to provide
automation and remove many of the manual
tasks associated to network control and
operation. Problems which have large sets of
data are tough to solve manually and ML

algorithms provide an intelligent way to get
knowledge from the data.

 This paper describes nine differnet and
relevant use cases to which machine learning
can be applied today. The application of
these will give the operators knowledge
about their networks and how to most
effectively run the network. ML algorithms
will be assimilated into systems which can
configure networks, identify issues and take
the appropriate corrective action.

 There are important open research
challenges that need to be addressed before
this vision is fully implemented. First,
typically ML is applied to scenarios that are
resilient to errors, such as image recognition.
However, computer networks do not handle
errors well. In this context there is a need to
understand how such probabilistic Machine
Learning techniques can be effectively
incorporated to networks. And second,
learning requires a representative dataset. But
what does representative mean in the context
of computer networks? Are observable
network loads and configurations (i.e., those
that do not break the system) representative
enough to provide accurate estimations?
Generating a training set that allows the
algorithm to learn the boundary between
functioning and failing networks can be
challenging. At the time of this writing, there
is no clear answer to this question and will
require further research efforts.

 In addition there are also non-technical
issues that need to be addressed. Machine
Learning builds on top of huge datasets that,
in some cases, will contain user information.
As a consequence there are privacy issues
since there is a potential of leakage of
personal information. This will require that
the appropriate safety mechanisms are put in
place and, if possible, to always learn based
on aggregated-information.

2016 Spring Technical Forum Proceedings

 As a result, the use-cases that do not
directly operate over the network but that
rather provide recommendations to the
network owner/administrator will be
commercialized first. Such systems are safe
since they involve human intervention and
validation, and will help operators get used to
this new technology and better understand its
potential.

REFERENCES

[1] Ji Shufan, Case Study: Autonomic
Network Configuration Using Machine
Learning, https://www.ietf.org/proceedings/
94/slides/slides-94-nmlrg-2.pdf

[2] Pedro Domingos, A few useful things to
know about Machine Learning, Communi-
cations of the ACM, Vol. 55 No. 10, 2012.
http://homes.cs.washington.edu/~pedrod/
papers/cacm12.pdf

[3] (DOCSIS PHYv3.1), DOCSIS 3.1,
Physical Layer Specification, CM-SP-
PHYv3.1-I08-151210, Cable Television
Laboratories, Inc. http://www.cablelabs.com/
wp-content/uploads/specdocs/CM-SP-
PHYv3.1-I08-151210.pdf

[4] Stanford Professor Dr. Andrew Ng,
Machine Learning Course on Coursera
https://www.coursera.org/learn/machine-
learning

[5] Clark, David D., et al. "A knowledge
plane for the internet." Proceedings of the
2003 conference on Applications, technol-
ogies, architectures, and protocols for
computer communications. ACM, 2003.
http://groups.csail.mit.edu/ana/Publications/
PubPDFs/A%20knowlege%20plane%20for%
20the%20internet.pdf

[6] Michalski, Ryszard S., Jaime G.
Carbonell, and Tom M. Mitchell, eds.
Machine learning: An artificial intelligence

approach. Springer Science & Business
Media, 2013.

[7] Matlab’s Neural Network Toolbox and
Machine Learning toolbox :
http://www.mathworks.com/products/neural-
network/index.html,
http://www.mathworks.com/products/statistic
s/index.html

[8] Theano:,
http://deeplearning.net/software/theano/#

[9] Pylearn2,
http://deeplearning.net/software/pylearn2/

[10] McKeown, Nick, et al. "OpenFlow:
enabling innovation in campus networks."
ACM SIGCOMM Computer Communication
Review 38.2 (2008): 69-74.

[11] Farinacci, Dino, Darrel Lewis, David
Meyer, and Vince Fuller. "The locator/ID
separation protocol (LISP)." (2013). (RFC
6830)

[12] Jain, S., Kumar, A., Mandal, S., Ong, J.,
Poutievski, L., Singh, A., ... & Zolla, J.
(2013, August). B4: Experience with a
globally-deployed software defined WAN. In
ACM SIGCOMM Computer Communication
Re-view (Vol. 43, No. 4, pp. 3-14). ACM.
Chicago

[13] Matias, J., Garay, J., Toledo, N., Unzilla,
J., & Jacob, E. (2015). Toward an SDN-
enabled NFV architecture. Communications
Magazine, IEEE, 53(4), 187-193.

[14] Berral, J. L., Goiri, Í., Nou, R., Julià, F.,
Guitart, J., Gavaldà, R., & Torres, J. (2010,
April). Towards energy-aware scheduling in
data centers using machine learning. In
Proceedings of the 1st International
Conference on energy-Efficient Computing
and Networking (pp. 215-224). ACM.

2016 Spring Technical Forum Proceedings

[15] Bergstra, James, et al. "Theano: a CPU
and GPU math expression compiler."
Proceedings of the Python for scientific
computing conference (SciPy). Vol. 4. 2010.

[16] Collobert, Ronan, Koray Kavukcuoglu,
and Clément Farabet. "Torch7: A matlab-like
environment for machine learning."
BigLearn, NIPS Workshop. No. EPFL-
CONF-192376. 2011.

[17] Bastien, Frédéric, et al. "Theano: new
features and speed improvements." arXiv
preprint arXiv:1211.5590 (2012).

[18] TensorFlow: Large-Scale Machine
Learning on Heterogeneous Distributed
Systems, http://download.tensorflow.org/
paper/whitepaper2015.pdf

[19] "Handling class imbalance in customer
churn prediction", J. Burez and D. Van den
Poel, Expert Systems with Applications
Volume 36, (pp. 4626-4636), (2009)

[20] "SMOTE: Synthetic Minority Over-
sampling Technique", Nitesh V. Chawla,
Kevin W. Bowyer, Lawrence O. Hall, W.
Philip Kegelmeyer, Journal of Artificial
Intelligence Research Volume 16, (pp. 321-
357) 2002

[21] scikit-learn- http://scikit-learn.org/stable/

[22] “Telco Churn Prediction with Big Data”,
Yiqing Huang, Fangzhou Zhu, Mingxuan
Yuan, Ke Deng, Yanhua Li, Bing Ni,
Wenyuan Dai, Qiang Yang, Jia Zeng,
SIGMOD '15 Proceedings of the 2015 ACM
SIGMOD International Conference on
Management of Data, (pp. 607-618), 2015

[23] Precision and recall definition:
https://en.wikipedia.org/wiki/Precision_and_r
ecall

[24] "A New Neural Network Based
Customer Profiling Methodology for Churn
Prediction", Ashutosh Tiwari, John Hadden,
and Chris Turner, "Computational Science
and Its Applications -- ICCSA 2010:
International Conference, Fukuoka, Japan,
March 23-26, 2010, Proceedings, Part IV",
(pp. 358-369) (2010) Springer Berlin
Heidelberg

[25] A Machine Learning Approach for
Efficient Traffic Classification Wei Li and
Andrew W. Moore, http://www.cl.cam.ac.uk/
~awm22/publications/li2007machine.pdf

[26] An SVM-based machine learning
method for accurate internet traffic
classification, Ruixi Yuan & Zhu Li &
Xiaohong Guan & Li Xu,
https://pdfs.semanticscholar.org/556a/20
9838cf5c742d2f9a75a3436a0de6611526.pdf

[27] Realtime Traffic Classification Based on
Semi-supervised Learning, Chengjie GU1,
Shunyi ZHANG, Xudong CHEN, Anyuan
DU, http://www.jofcis.com/publishedpapers/
2011_7_7_2347_2355.pdf

[28] The BellKor Solution to the Netflix
Grand Prize, http://www.netflixprize.com/
assets/GrandPrize2009_BPC_BellKor.pdf

[29] Torch | Scientific computing for LuaJIT,
http://torch.ch/

[30] Distributed Machine Learning Toolkit,
http://www.dmtk.io/

2016 Spring Technical Forum Proceedings

