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 Abstract 
 
     Recent advances in Machine Learning 
algorithms have resulted in an explosion of 
real-world applications, including self-driving 
cars, face and emotion recognition, automatic 
image captioning, real-time speech 
translation and drug discovery.  
 
     Potential applications for Machine 
Learning abound in the areas of network 
technology, and there are various problem 
areas in the cable access network which can 
benefit from Machine Learning techniques. 
This paper provides an overview of Machine 
Learning algorithms, and how they could be 
applied to the applications of interest to cable 
operators and equipment suppliers. 
 
 
 

INTRODUCTION 
 
     Recent advances in Machine Learning, and 
in particular, deep learning, have resulted in 
an explosion of real-world applications, 
including self-driving cars, face and emotion 
recognition, automatic image captioning, real-
time speech translation and drug discovery. 
Powerful new learning algorithms, harnessed 
via open-source toolkits and running on 
general-purpose GPUs (even cloud instances) 
are the key enablers for this explosion. 
 
     Machine Learning technologies can learn 
from historical data, and make predictions or 
decisions, rather than following strictly static 
program instructions. They can dynamically 
adapt to a changing situation and enhance 
their own intelligence by learning from new 
data. Statistical pattern recognition, data 
mining, clustering and deep learning have  
 

 
proven to be powerful components in the 
Machine Learning space. 
 
     Potential applications for Machine 
Learning abound in the areas of network 
technology and applications. It can be used to 
intelligently learn the various environments of 
networks and react to dynamic situations 
better than a fixed algorithm. When it 
becomes mature, it would greatly accelerate 
the development of autonomic networking. 
 
     There are various problem areas in the 
cable access network which can benefit from 
Machine Learning techniques. For example, 
the Proactive Network Maintenance data 
which represents network conditions obtained 
from CMTS and CM can be processed 
through Machine Learning algorithms to 
enable automatic recognition of issues in the 
cable plant and initiating the needed 
corrective actions. Patterns in network traffic, 
equipment failures, device reboots or link 
failures can be used to identify the root cause 
of various network problems. Video channel 
usage data could be used to optimize the 
multicast channel lineups in a network, and be 
used to predict which programs to record 
automatically in a DVR. 
 
     This paper provides an overview of 
Machine Learning algorithms with focus on 
the applications of interest to cable operators 
and equipment suppliers. The paper discusses 
several learning toolkits and computational 
platforms, and hypothesizes some of the most 
compelling near-term uses. It will explore 
how to apply learning algorithms to various 
challenges faced by operators in managing 
network devices and services. In addition, the 
paper covers best practices for achieving 
optimal results with Machine Learning. 
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OVERVIEW OF MACHINE LEARNING 

 
     This section provides a very brief 
introduction to Machine Learning. The reader 
familiar with such techniques may safely skip 
this section. Machine Learning (ML) is a field 
of study of Artificial Intelligence that 
provides computers with learning techniques 
without being explicitly programmed. 
Traditional programming requires manually 
coding an algorithm and combining it with 
input data to produce the resulting output 
data. This model is fundamentally different in 
ML: a learning algorithm (e.g., a Neural 
Network) is trained with the input data and 
the corresponding output data, which is 
known as training set, to automatically 
produce the algorithm, which will be used to 
predict future results. But how do computers 
actually learn such an algorithm? 
 
     Systems can be always described by a 
mathematical function and in many cases such 
a function is multi-dimensional (i.e., has many 
input and output variables, maybe hundreds) 
and is non-linear. If we have such a function, 
we have a complete model of the system. For 
instance, the function that describes a network 
may have the form: function (topology, load, 
configuration) = performance. That is, the 
function links the topology of the network, the 
traffic (load) and configuration (e.g., routing) 
with the resulting performance (e.g., delay). 
Analytical modeling provides tools to obtain 
such a function (e.g., Queueing theory in 
networking). However, such techniques often 
use simplifications and cannot be applied 
when the network is too complex. 
 
     Machine Learning provides a different way 
to obtain such a function. As shown in  Figure 
1 below, a learning algorithm fed with a 
representative training set will fit the function, 
even if such function has hundreds of 
variables or it is complex and non-linear. The 
algorithm produced by a Machine Learning 
approach is the function itself and can also 

produce accurate answers for input points for 
which it has not been trained explicitly, 
provided that the initial training set was 
representative enough. This is accomplished 
by interpolation, that is estimating an unseen 
prediction point between two already seen test 
points and extrapolation, estimation of the 
point beyond the observed training set. 
 

 
Figure 1. An overview of Machine learning 

 
 
     In what follows, we provide a summary of 
the two most relevant techniques in Machine 
Learning: supervised and unsupervised 
learning. 
 
SUPERVISED LEARNING 
 
     In supervised learning, there is a given data 
set and the knowledge on what the correct 
output looks like. The idea is that there is a 
relationship between the input and the output.  
 
     The input data set is called training data 
and has a known label or result, such as 
cat/not-cat (for identifying cat photos) or a 
stock price at a time (for predicting stock 
prices). Network examples could include 
classifying traffic patterns for intrusion 
detection as harmful-traffic vs. normal-traffic,  
or predicting the usage of a certain network 
link based on various parameters. A model is 
prepared through a training process where it is 
required to make predictions and is corrected 
when those predictions are wrong. The 
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training process continues until the model 
achieves a desired level of accuracy on the 
training data. 
 
     Supervised learning problems are 
categorized into "regression" and 
"classification" problems. In a regression 
problem, the goal is to predict results within a 
continuous output, essentially trying to map 
the input variables to some continuous 
function. In a classification problem, the goal 
is to predict results in a discrete output, trying 
to map the input variables into discrete output 
categories. 
 
     Example classification algorithms include 
Logistic Regression and the Back Propagation 
Neural Network, SVMs, kNN, etc. 
 
Support Vector Machine (SVM)  
 
     SVM is type of supervised Machine 
Learning algorithm. Given a set of training 
examples, each marked as belonging to one of 
two classes, an SVM training algorithm builds 
a model that assigns new examples into one 
class or the other. A hyperplane splits the 
input variable space. In SVM, a hyperplane is 
selected to best separate the points in the input 
variable space by the class to which they 
belong. The SVM learning algorithm finds the 
coefficients that results in the best separation 
of the classes by the hyperplane. New 
examples are then mapped into that same 
space and predicted to belong to a category 
based on which side of the gap they fall. 
 
     The distance between the hyperplane and 
the closest data points is referred to as the 
margin. The best or optimal hyperplane that 
can separate the two classes is the line that has 
the largest margin. Only these points are 
relevant in defining the hyperplane and in the 
construction of the classifier. These points are 
called the support vectors as they support or 
define the hyperplane. 
 

K-Nearest Neighbors Algorithm (kNN) 
 
     kNN makes predictions for a new data 
point by assigning it the value/label of its K 
nearest neighbors. For regression this might 
be the mean output variable, in classification 
this might be the mode (or most common) 
class value. 
 
     In kNN classification, an object is 
classified by a majority vote of its neighbors, 
with the object being assigned to the class 
most common among its k nearest neighbors. 
In kNN regression, the output value is the 
average of the values of its k nearest 
neighbors. 
 
     The simplest technique is to use the 
Euclidean distance between neighbors. kNN 
performs a calculation (or learns) when a 
prediction is needed, just in time. The training 
instances can be updated or curated over time 
to keep predictions accurate. 
 
UNSUPERVISED LEARNING 
 
     Unsupervised learning attacks problems 
with little or no idea what the results should 
look like. The idea is to derive structure from 
data where there is no apriori knowledge of 
the effect of the variables. This structure is 
derived by clustering the data based on 
relationships among the variables in the data. 
With unsupervised learning there is no 
feedback based on the prediction results. The 
input data set is not labelled and does not have 
a known result. 
 
     A model is prepared by deducing 
structures present in the input data. This may 
be to extract general rules. It may be through 
a mathematical process to systematically 
reduce redundancy, or it may be to organize 
data by similarity. 
 
     Typical unsupervised algorithms are 
Clustering (K-Means, Fuzzy and Hierarchical 
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clustering, etc.), Principal Component 
Analysis and the Apriori Algorithm.  
  
Clustering Algorithms (K-means, Fuzzy and 
Hierarchical Clustering) 
 
     Give a set of data points, clustering is the 
problem of grouping the points in such a way 
that points in the same cluster are more 
similar to each other than to those in other 
clusters. Usually, the points are in a high-
dimensional space, and similarity is defined 
using a distance measure. As an example, let's 
assume that we want to understand content 
consumption among users, movies for 
instance. If we have access to a large dataset 
of movie consumption per user, K-Means will 
cluster and group users with similar movie 
preferences. With this we can analyze the 
profiles of such users and be able to predict 
which types of movies they will consume. 
 
     The K-means algorithm takes a set of 
points and attempts to identify the set of K 
clusters for which the average distance of  
each point to the centroid (mean) of its cluster 
is minimized. In an algorithm like K-means, 
data is divided into distinct clusters, where 
each data element belongs to exactly one 
cluster. In Fuzzy clustering, data elements can 
belong to more than one cluster, and each 
element belongs to each cluster to a certain 
degree (e.g., a likelihood of belonging to the 
cluster). Hierarchical clustering is a method of 
cluster analysis which seeks to build a 
hierarchy of clusters.  
 
Principal Component Analysis (PCA) 
 
     Sometimes data is collected on a large 
number of variables from a single population. 
With a large number of variables, the data will 
be too large to study and interpret properly. 
There would be too many pairwise 
correlations between the variables to consider. 
To interpret the data in a more meaningful 
form, it is necessary to reduce the number of 
variables to a few, interpretable linear 

combinations of the data. Each linear 
combination will correspond to a principal 
component. Principal components are the 
underlying structure in the data. They are the 
directions where there is the most variance, 
the directions where the data is most spread 
out. PCA is a way of identifying patterns in 
data, and expressing the data in such a way as 
to highlight their similarities and differences. 
With PCA once these patterns in the data are 
found, one can compress the data, i.e., by 
reducing the number of dimensions, without 
much loss of information. 
 
Apriori Algorithm 
 
     Mining for associations among items in a 
large database of transactions is an important 
database mining function. Apriori algorithm is 
a technique to find the sets of frequent items 
and learning the association rules between 
items in a dataset. The algorithm works by 
identifying frequent individual items in a 
dataset and extending them to larger item sets 
as long as those sets appear sufficiently often 
in the dataset. These frequent item sets can be 
used to determine association rules which 
highlight general trends in that data set.  
 
     The interested reader can find further 
information on Machine Learning in [4], [6]. 
 

APPLYING MACHINE LEARNING TO 
NETWORKING PROBLEMS 

 
     With the exponential growth in network 
traffic (over-the-top video, social networking, 
cloud services, etc.), there is just too much 
data to manually learn and understand the 
many patterns of traffic flow. Network 
equipment is getting more complex, e.g., 
bringing up a router or a CMTS can take 
thousands of lines of configuration. Along 
with this comes the increasing complexity of 
the network itself, e.g., various overlays, 
underlays and connection of services across 
disparate networks. Traffic modeling and 
analysis are becoming increasingly 
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challenging. With the proliferation of 
applications, it is difficult to predict and to 
generalize application behavior and the 
impact it has on network traffic. Simply put, 
there are too many sources of information for 
manual processing by humans. ML techniques 
are ideal solutions for these kind of problems.  
 
One example in the access network is how an 
operator can effectively and quickly process 
all the PNM data which comes up from the 
access network devices. As another example, 
the problem of dynamically fitting optimal 
DOCSIS 3.1 OFDM Profiles to hundreds of 
modems on an OFDM channel with thousands 
of subcarriers with changing conditions is a 
complex challenge.  
 
Also, to understand and predict network 
behavior, some problems in networks are so 
complex that one cannot express them in a 
simple fashion, in those cases it is easier to 
represent the problem as a black box with a 
set of inputs and outputs. That can now help 
frame the problem as a Machine Learning 
problem and start making progress towards 
solving it in a timely fashion. 
 
     Applying Machine Learning to networking 
has been proposed several times in the past, a 
notable example is D. Clark and the 
Knowledge Plane [5]. However and for many 
use-cases it is very challenging to apply 
learning techniques to an inherently 
distributed system. The rise of the Software-
Defined Networking (SDN) paradigm and 
Network Telemetry are enabling technologies 
for applying Machine Learning. This provides 
all the data needed from the network elements 
at a centralized server; ML algorithms can 
learn from this centralized repository of data. 
Also since the SDN controller can configure 
and manage the network elements, it provides 
an avenue for the ML algorithm to take 
corrective action on the network based on the 
patterns the algorithm sees. 
 

     Many of these network problems naturally 
lend itself to be solved by Machine Learning 
algorithms, which can obtain the best possible 
knowledge from the large sets of data 
available on hand. 
 

LEARNING TOOLKITS AND 
COMPUTATIONAL PLATFORMS 

 
     This section gives a brief overview of the 
tools and software platforms available which 
a practitioner of Machine Learning can use to 
solve various problems. 
 
     Scikit-learn [21] is a Python library for 
Machine Learning. It is an open-source 
product (BSD License) and is based on 
NumPy and SciPy, two mathematical and data 
analysis libraries known for their speed and 
efficiency. The scikit-learn library is 
somewhat of a Swiss Army Knife amongst 
Machine Learning packages. The 
functionality implemented in scikit-learn 
includes classification, regression, clustering, 
dimensionality reduction, model selection, 
preprocessing, and many other features such 
as performance metrics.  
 
     The scikit-learn library includes almost 
every well-known classification and 
regression technique (Naive Bayes, logistic 
regression, Support Vector Machines (SVMs), 
lasso regression, etc.), along with some more 
cutting edge techniques such as neural 
networks. Users considering scikit-learn 
should be familiar with the Python 
programming language and would benefit 
from some Machine Learning background as 
well as familiarity with NumPy and SciPy.  
 
Since scikit-learn has been around for nearly a 
decade, there is a mature user community 
along with excellent API documentation and 
many helpful tutorials. If you have an issue 
with scikit-learn, you can likely find an 
answer on StackOverflow. 
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     Matlab incorporates a Neural Network 
Toolbox and a Machine Learning Toolbox[7] 
that provides the most common features for 
automatic learning: classification, regression, 
clustering, etc. The tool is capable of 
programming neural networks and large 
networks with deep learning autoencoders. 
The tool can be accelerated using GPUs and 
parallel environments and, more importantly, 
provides out-of-the-box neural networks that 
are auto-configured by the toolbox. This 
represents an important advantage for people 
that are starting to with Machine Learning.  
Matlab also provides implementations of 
various ML algorithms, so it is a great starting 
point to apply many different techniques to a 
give data set, to quickly analyze the feasibility 
of various algorithms. 
 
     Theano [8] is an open-source deep learning 
framework in the form of a Python library that 
lets you define, optimize and evaluate 
mathematical expressions. Theano has its 
roots at the MILA lab at University of 
Montreal and allows you to define 
mathematical expressions (typically multi-
dimensional matrix calculations) that are then 
compiled to run efficiently on either CPU or 
GPU architectures [15],[17]. Theano is deeply 
optimized and has many applications in 
Machine Learning; however, as opposed to 
Matlab, it does not provide any sort of auto-
configuration. 
 
     Pylearn2 [9] is an open-source Machine 
Learning library toolbox for easy scientific 
experimentation. Pylearn2 is built on top of 
Theano. With Pylearn2, one can easily define 
learning algorithms (e.g., neural networks) 
that will be then computed and optimized by 
Theano. As such, Pylearn2 may be seen as a 
Machine Learning front-end for Theano that 
eases experimentation. 
 
     TensorFlow is a data flow based 
programming model/interface for expressing 
and implementing Machine Learning 
algorithms, recently open sourced by Google. 

A computation expressed in TensorFlow can 
be executed on a wide variety of platforms 
ranging from handheld devices to GPU cards 
to large distributed systems. The flexible 
system can be used to express a wide variety 
of algorithms, including training and 
inference algorithms for deep neural network 
models. TensorFlow provides a Python API. 
It has been used for conducting research and 
for deploying Machine Learning systems into 
production, mainly Google’s products. [18] 
 
     Torch is an open source scientific 
computing framework that supports a wide 
variety of Machine Learning algorithms, with 
a focus on optimizing for GPU. Torch uses 
the Lua programming language in a scriptable 
form (by way of LuaJIT) and an underlying 
C/CUDA implementation. Torch is used by 
Google DeepMind and Facebook (FAIR) 
among others, and is supported on Linux, 
MacOS, Android and iOS. A large number of 
extensions, referred to as packages, have been 
developed and contributed to the community, 
providing support for solving a wide variety 
of Machine Learning problems. [16], [29]  
 
     Microsoft has created a toolkit to enable 
development of Machine Learning algorithms 
for big data, tasks that are too large for a 
single machine, and require coordinated 
processing across a cluster of machines.  
Their Distributed Machine Learning Toolkit is 
open source, and precompiled binaries are 
available for Windows and Linux. The goal of 
DMTK is to handle the complexities of 
interprocess communication, distributed 
storage, thread management, etc. so that the 
researcher can focus on building their model. 
[30]   
 
     The interested reader can find a 
performance comparison among several tools 
in [16], [17], [18]. 
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APPLICATIONS OF INTEREST TO 
CABLE 

 
     This section describes various problems in 
the cable network space, each with large sets 
of data, to which various Machine Learning 
techniques can be used to solve various 
problems. 
 
Proactive Network Maintenance 
 
     Proactive Network Maintenance (PNM) 
involves processing vast amounts of fine-
grained information about the state of the 
network to look for patterns that indicate 
impending problems. Current PNM solutions 
have focused on leveraging the physical-layer 
channel measurements performed by DOCSIS 
cable modems and CMTSs, along with 
knowledge of the HFC plant topology and 
well-known digital signal processing 
algorithms in order to locate physical 
degradations of the plant. ML algorithms 
could open up this space to identify a much 
wider variety of network impairments, 
particularly when those impairments aren’t 
predictable using a priori knowledge.  
 
     CMTS and cable modem features and 
capabilities can be leveraged to enable 
measurement and reporting of network 
conditions so that undesired impacts like plant 
equipment and cable faults, interference from 
other systems, and ingress can be detected and 
measured. With this information, cable 
network operations personnel can make 
modifications necessary to improve 
conditions and monitor network trends to 
detect when network improvements are 
needed [3]. DOCSIS Downstream PNM 
Measurements and Data include: Symbol 
Capture, Wideband Spectrum Analysis, Noise 
Power Ratio (NPR) Measurement, Channel 
Estimate Coefficients, Constellation Display, 
Receive Modulation Error Ratio (RxMER) 
Per Subcarrier, FEC Statistics, Histogram, and 
Received Power. DOCSIS Upstream PNM 
Measurements and Data include:  Capture for 

Active and Quiet Probe, Triggered Spectrum 
Analysis, Impulse Noise Statistics, Equalizer 
Coefficients, FEC Statistics, Histogram, 
Channel Power, and Receive Modulation 
Error Ratio (RxMER) Per Subcarrier. 
 
     Some of the above measurements are very 
valuable in that they can reveal problems in 
the network. We illustrate a couple of 
examples below to which we can effectively 
apply Machine Learning techniques. This will 
help in quickly and automatically identifying 
problems, instead of a human operator 
looking through the data and flagging issues 
manually. 
 
PNM : Upstream equalization 
 
     The upstream pre-equalization mechanism 
relies on the interactions of the DOCSIS 
ranging process in order to determine and 
adjust the CM pre-equalization coefficients. 
These coefficients can be read to reveal 
problems, such as echo tunnels and excessive 
group delay. Echo tunnels make reflections 
that create ripples in the frequency domain. 
Group delay is typically caused by filters. 
 
     The set of coefficients on each modem in 
the plant can be monitored over time, and a 
Machine Learning algorithms can spot 
patterns in the changes, for a modem or a 
group of modems. Support Vector Machine or 
other classification algorithms such as K-
nearest neighbors can help classify in trouble 
CMs immediately and help flag the operator 
long before a customer actually sees and 
reports an issue. 
 
PNM : Downstream spectral analysis 
 
     A CM with full-band tuner capability acts 
like a spectrum analyzer. The spectrum 
analysis reveals suck-outs, excessive tilt, 
frequency peaking, unwanted filters, FM (or 
other) radio ingress, early roll-off, etc. 
 

2016 Spring Technical Forum Proceedings



      Each of these issues (signal patterns) can 
be learnt by a Machine Learning application 
which can then monitor live signals to flag 
problems in the network. 
 
     Machine Learning algorithms can look for 
abnormalities from the data obtained from 
each CM and across all CMs in the network. 
Grouping of CMs with common problems can 
be used to identify problems affecting 
multiple subscribers and isolate the cause of 
an issue in the cable plant. 
 
Predictive Video Channel Lineups/ DVR 
Recording 
 
     Applications around the video delivery 
product could enable more efficient network 
utilization as well as better engagement from 
customers. Using Machine Learning in order 
to understand user habits, and to provide 
recommendations, is almost a cliché in the 
ML world. Any industry that has both a large 
catalog of assets and a large user base is in 
possession of a huge resource that can be 
automatically mined by a ML algorithm in 
order to provide recommendations.   
 
     In the case of video distribution, the ability 
to accurately identify video assets that might 
appeal to a viewer or set of viewers could 
have multiple applications. Some of the more 
obvious applications are VOD suggestions to 
customers. This is similar to the Netflix 
recommendation engine, see the Netflix Prize 
[28]. This is essentially a clustering and 
classification Machine Learning problem. 
 
     One could take this a step further with 
predictive DVR recordings for a customer 
based on content which is trending across the 
user base and intersecting that with the 
individual custromers preferences. Another 
idea is to pre-position the most popular 
content in CDN caches or in the local DVR 
storage. The operator could push trending 
content ahead of time, during off peak hours 
to reduce congestion during peak times.  

     One could also use such a recommendation 
system to improve the network traffic load 
and utilization. This problem can be described 
as the selection of video programs/channels 
for IP multicasting for a linear TV lineup. In 
different service groups on a cable plant, the 
viewership of the most popular channels will 
differ based on the demographics. So instead 
of making canned decisions on the channel 
lineup, and statically deciding which 
programs/channels make the cut for IP 
multicasting, an operator could use Machine 
Learning algorithms to understand the usage 
patterns over time and make 
recommendations to the operators on which 
channels to add to the multicast lineup 
dynamically.  
 
     ML algorithms which learn from video 
viewer data can do a much better job at 
analyzing which are the top programs in an 
automatic and real-time fashion. This learning 
could also apply in a weekly/daily timeframe 
or even in real-time, where say certain 
programs or channels are popular at certain 
days or times and the ML engine could 
automatically push those programs to be part 
of the multicast lineup at the appropriate times 
(e.g., ‘Saturday Night Live’ on Saturday 
nights). The benefit of this is the conservation 
of access network bandwidth in a IPTV 
deployment by intelligently planning the 
content on the network. 
 
Profile Management 
 
     DOCSIS 3.1 introduces the concept of 
modulation profiles for OFDM channels. A 
modulation profile defines the modulation 
order to be used for each subcarrier within a 
channel. The CMTS can define multiple 
modulation profiles for use on a channel, 
where the profiles differ in the modulation 
orders assigned to each subcarrier. The CMTS 
can then assign each CM to the modulation 
profile that best suits it, taking into account 
the characteristics of the channel between the 
CMTS and that CM. Determining the best set 
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of modulation profiles to use on a channel is 
complex, given the number of CMs (and 
subcarriers) and the differences in signal 
quality that they experience on the plant. A 
Profile Management Application can help 
operators determine what the best modulation 
profiles are for each channel, given the 
channel characteristics seen by each CM on 
the network. The goal of optimizing profiles 
is to increase throughput per CM, maximize 
network capacity, and minimize errors. 
 
     Given a set of CMs using a DOCSIS 3.1 
OFDM channel, the problem is to find a 
specific set of profiles which maximize the 
network capacity by assigning each CM to the 
best profile it can handle with a limitation on 
the number of profiles to what a system can 
support. 
 
     The input data set is the MER data per 
subcarrier for all the CMs. This can be 
directly translated into a bit-loading number 
for each subcarrier. So for example, an 
OFDM downstream channel with a 4K FFT 
has 3800 active subcarriers, and 200 CMs are 
using that channel. That means the input data 
set is a 200x3800 matrix of bit loading 
capabilities. Machine Learning clustering 
algorithms (like K-means) could help identify 
clusters of CMs which have similar bit 
loading capabilities across the whole channel. 
For each of these clusters a profile definition 
can be easily built by using the minimum bit 
loading in all the subcarrier dimensions, for 
that cluster of CMs. The set of profiles thus 
produced can be optimized further, balancing 
the number of profiles with the cost of having 
too many profiles. 
 
Network Health Patterns 
 
     The access networks deployed by cable 
operators often experience abnormal behavior. 
Machine Learning techniques help create 
anomaly detection algorithms that are 
adaptive to changes in the characteristics of 
normal behavior in the network. Patterns in 

network traffic, equipment failures, device 
reboots or link failures can be used to identify 
the root cause of various network problems.  
Some examples are: 
 

- CM/STB reboots after certain uptime. 
- CM performance degradation com-

pared to neighbors. 
- IPv6 session failures on a certain SW 

version of the CM. 
- CM performance as it relates to the 

time of day. 
- Denial-of-service attacks on the plant. 
- Correlation of customer WiFi issues to 

channel settings, etc. 
 
     For the example of a cable modem or a TV 
Set-top box rebooting in the network, the 
input learning parameters/features could be 
device uptime, software/hardware version, 
number of packets processed through the 
device, or the type of services running on a 
device. Some useful indicators available in the 
network are CM status, Upstream Transmit 
Level, Upstream Receive Level, Upstream 
SNR (MER), Upstream Codeword Error Rate, 
Downstream Receive Level, Downstream 
SNR (MER), DS Codeword Error Rate, etc.  
Each of these data points for a CM could 
reveal health issues at a given time. Over time 
an application could gather all the relevant 
data and supply it to an ML algorithm to 
figure out any patterns. This would be an 
unsupervised learning problem, where the 
idea would be to identify which of the 
features contribute towards a catastrophic 
reboot of a device. Principal component 
analysis could help in identifying the factors 
which contribute most towards a failure.  
 
     A similar approach would work for another 
class of problems debugging connectivity 
issues, this example is around IPv6 
connectivity in an operator’s network. A large 
population of devices in the network were 
experiencing IPv6 connectivity issues, which 
the operator was not aware of and only came 
to realize based on some IPv6 testing by a 
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third party. After manually tracing the broken 
IPv6 prefixes to a set of CMs, they realized 
that most of the failing modems were from 
one manufacturer and a specific software 
version. This type of debugging would be an 
ideal unsupervised learning problem, where a 
Machine Learning application could be 
running various network health tests and 
tracking issues or problems over time to 
identify problems and bubble them up the 
operator, before they become a major issue 
with the consumers or with the press. 
 
Internet Traffic Classification 
 
     Traffic classification is the ability to 
understand the types of traffic flows which 
pass through the network and being able to 
identify the normal and abnormal patterns in 
those flows. It enables network operators to 
better manage their network resources, e.g., 
apply QoS or route traffic appropriately. It 
also helps with network security for an 
IPS/IDS (intrusion prevention/detection 
system) by finding abnormal patterns of 
traffic, and flagging a denial of service (DoS) 
or other attacks. 
 
     For every set of flows in the network, an 
operator wants to understand the patterns 
represented, as it will help make informed 
decisions or answer a particular question. For 
example, observing and learning from 5-tuple 
IPs flow (IP source/destination, Port Source 
Destination, Protocol) will help answer the 
question of which applications are generating 
a specific flow: Skype vs YouTube vs 
bitTorrent? For security applications, another 
pattern to learn from could be the aggregated 
traffic directed to the same IP destination in a 
certain timeframe. Given some well-defined 
notion of normal patterns of traffic, the goal 
would be to predict if the patterns from a new 
flow are markedly different. 
 
     Various supervised and unsupervised 
Machine Learning techniques can be applied 
to classify internet traffic. Traditionally port-

based techniques are used to classify traffic, 
this is based on knowing the port numbers for 
the applications, but many new applications 
use random port numbers which makes this 
method of classification hard. Payload-based 
techniques are used by Deep Packet 
inspection engines which match the payload 
of the traffic based on well-known signatures. 
This method becomes hard with encrypted 
traffic. Machine Learning techniques such as 
classification and clustering can help solve 
this in an elegant fashion.   
 
     See [25], [26], [27] for examples of how to 
use ML techniques to the classification 
problem. 
 
Network Traffic Engineering  
 
     Reacting to changes in network load is an 
important task for a network operator, since it 
is not cost-effective to deploy network 
equipment in excess of demand, while on the 
other hand, it is unacceptable from a user-
experience perspective to run networks well 
into saturation. Properly done, tracking and 
responding to network utilization both for 
long-term capacity planning and for short-
term traffic engineering purposes can result in 
well-functioning networks that operate cost 
efficiently.  
 
     ML techniques can bring some new tools 
to bear on this problem, with the result being 
quicker reaction to sudden changes in traffic 
flows, and the possibility – longer term – of 
these reactions being put into place 
automatically to ensure that networking 
resources are put to their best use.   
 
     A ML application could track utilization of 
various links, the byte counts of data 
traversing an interface, dropped packets at an 
interface etc., to get an understanding of the 
normal operation of the network elements. 
This by itself can reveal patterns in network 
utilization within a day-to-day time frame and 
also expose patterns for the longer term. Any 
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deviations from the norm can be 
automatically flagged for the operator. In the 
case where the application is tied into a SDN 
controller or orchestrator which can effect 
changes in the network, the application could 
actually create new paths or bring up new 
virtual routers etc., to handle the abnormal 
situation, for example, a temporary overload 
in data traffic.  
 
Customer Churn Prediction  
 
     Given that acquiring new customers is 
generally three times the cost of keeping 
existing customers, an analysis of churners 
and an ability to identify potential churners 
can be very valuable. The task of churn 
prediction can be thought of as either a 
classification problem (classify a customer as 
a churner or non-churner) or a regression 
problem (calculate the likelihood that a 
customer will churn). Usually churn 
prediction is a classification task, and in 
particular, a binary classification task (i.e., 
customers are predicted to either churn or not 
churn in the next billing cycle). Multi-class 
classification is another possible approach. In 
this setting, customers could, for example, be 
predicted as belonging to either a low-risk, 
medium-risk, or high-risk class. 
 
     In the context of cable, a cable operator 
might want to identify cord shavers: 
subscribers with both broadband and video 
subscriptions who drop their video for over-
the-top services such as Netflix, Hulu Plus, 
Amazon Instant Video, etc. For such a task, 
data would be required from several different 
sources. Linear viewing data would be useful 
as this would identify how much video a 
customer watches, what channels they 
generally watch, and what times they tend to 
watch. These features might be predictive of a 
cord shaver, as a customer that has a high-
degree of interest in live sports may be less 
likely to drop his or her video service. Deep 
packet inspection (DPI) could also yield some 
useful features such as the percentage of 

bandwidth that streaming services like Netflix 
consume. Customer billing data would also  
be useful. For example, a customer who had 
subscribed to a promotional package for video 
and broadband might be more likely to drop 
video service once the promotional period 
ends. Combining the linear video, DPI, and 
customer billing record features would likely 
provide the most value. Some classification 
techniques that have proven successful in 
churn prediction include ensemble methods, 
SVMs, logistic regression, and random forests 
[19], [22]. There are also some indications 
that deep learning can yield some promising 
results in churn prediction [24]. 
 
     One challenge with churn prediction is that 
churners tend to make up a small percentage 
of customers in any given billing period. For 
example, suppose that for a certain month, 2% 
of customers drop their video service. A 
classifier trained on this data would see 98% 
of the examples as non-churners. Some 
classifiers, such as Naive Bayes, use the class 
prior probability in predictions that are made. 
This would bias the classifier toward the 
majority class. Some techniques for 
addressing such class imbalances include 
undersampling the majority class (using fewer 
examples), oversampling the minority class 
(possibly by creating synthetic examples), and 
weighting the minority class as more 
important in the classifier being used [20], 
[22].  
 
SDN Routing 
 
     Optimal or quasi-optimal routing has been 
a well-known challenge in computer 
networks. In routing, typically the objectives 
are to configure the routing policies in such a 
way that fulfill the requirements of the flows 
or that maximize the minimum link 
utilization. This area has been strongly limited 
by the fact that networks are inherently 
distributed systems where each node has a 
partial view and control over the network. In 
addition, the traditional destination-based 
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routing limits routing granularity and hence, 
the performance of the solution itself. 
 
     With the rise of the Software-Defined 
Networking (SDN) paradigm, routing 
becomes a centralized problem where the 
logically centralized controller receives all the 
information from routers and switches, 
computes an optimal solution and provisions 
the network equipment with the appropriate 
routing policies. In addition SDN also 
provides flow-based routing granularity with 
technologies such as OpenFlow [10] or LISP 
[11]. A notable example of this is B4, 
Google’s SDN network [12]. 
 
     In order to compute such algorithm, the 
SDN controller requires a model of the 
network, such model can be either an 
analytical or a computational model. In both 
cases the model may be hard to obtain or 
incorporate inaccuracies that usually arise 
when modeling real systems. In this context 
Machine Learning techniques can represent a 
solution for such inaccuracies. 
 
     Indeed, Machine Learning (ML) 
algorithms using a supervised approach can 

be trained with the monitoring data from the 
network. Specifically, the ML algorithm (see 
Figure 2 below) can be trained with the 
routing configuration, the load of the network 
(e.g., traffic matrix) and the resulting 
performance (e.g., delay or link utilization). 
With this, the ML algorithm is learning the 
function that relates routing, load with the 
resulting performance: function(routing 
configuration, load) = performance. Please 
note that this function is a model of the 
network and, if the dataset is large enough, an 
accurate one that can take into account not 
just common network behavior such as 
queuing but also complex ones such as the 
delay introduced by hardware, etc. 
 
     This model can be then explored online by 
the SDN controller using a traditional 
optimization algorithm to compute the 
optimal solution. For instance, the SDN 
controller may search which is the optimal 
routing configuration for a particular objective 
(e.g., delay) taking into account that the 
network is loaded with a particular set of 
traffic. 

 

Figure 2. A Machine Learning-enabled SDN routing algorithm
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NFV/SFC: Allocating VNFs to Appropriate 
VMs 
 
     Network Function Virtualization (NFV) 
[13] is a networking paradigm where network 
functions (e.g., firewalls, load-balancers, etc.) 
no longer require specific hardware 
appliances and instead are implemented in 
the form of Virtual Network Functions 
(VNFs) that run on top of general purpose 
hardware. Service function chaining (SFC) 
defines and instantiates an ordered list of 
instances of such functions, and the steering 
of traffic flows through those functions. 
 
     The resource management in NFV/SFC 
scenarios is a complex problem since VNF 
placement may have an important impact on 
the overall system performance. The problem 
of optimal Virtual Machine (VM) placement 
has been widely studied for Data Centers 
(DC) scenarios (see [14] and the references 
therein). However, in DC scenarios the 
network topology is mostly static, while in 
NFV scenarios the placement of a VNF 
modifies the performance of the virtualized 
network. This increases the complexity of the 
optimal placement of VNFs in NFV 
deployments. 
 
     In the VNF placement problem all the 
information is available, e.g., virtual network 
topology, CPU/memory usage, energy 
consumption, VNF implementation, traffic 
characteristics, current configuration, etc. 
However, in this case the challenge is not the 
lack of information but rather its complexity. 
The behavior of VNFs depends on many 
different factors and thus it is challenging 
developing accurate models. 
 
      In this context, some challenges that NFV 
resource allocation presents can be addressed 
by Machine Learning algorithms. Indeed, the 
SDN controller can characterize, via ML 
techniques, the behavior of a VNF as a 
function of the analytics data collected, such 
as the traffic processed by the VNF or the 

configuration pushed by the controller. With 
this model, the resource requirements of a 
VNF can be modeled by machine learning 
without having to modify the network. This 
is helpful to optimize the placement of this 
VNF, and therefore, to optimize the 
performance of the overall network. 
 
     In this case the scenario works as follows: 
the SDN controller receives a query by the 
user/owner to run a particular VNF, which is 
a black box from the SDN controller point of 
view. The controller, (e.g., via OpenStack) 
launches the new VNF and starts monitoring 
it, specifically it monitors the traffic being 
consumed by the VNF (e.g., by means of 
traffic features such as number of flows, 
distribution of the inter-arrival time, etc.) and 
a performance parameter such as delay or 
CPU consumption. With this dataset, the 
SDN controller trains a ML algorithm with 
the objective of learning the function(traffic 
features)=performance. Once the VNF has 
been characterized, the model can be used by 
optimization algorithms to optimally place 
the VNF and/or to provide delay guarantees 
of the virtual network. 
 

BEST PRACTICES, GUIDELINES,  
CHALLENGES 

 
     This section documents some of the points 
to be aware of when framing and solving a 
problem using Machine Learning techniques. 
For a more detailed review please see 
references: [1], [2] 
 
Clear Problem Definition 
 
     Before starting to solve a problem using 
any Machine Learning techniques, it is 
important to define the aim of the Machine 
Learning. Is the problem one of data 
distribution, identifying patterns, or making 
decisions? Is it a regression problem or a 
classification probem? What are the 
assumptions and boundaries? How would the 
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problem be solved manually?  These 
questions help define a problem accurately. 
 
Objective functions  
 
     Another important decision is to define 
how to evaluate the results of the Machine 
Learning algorithms. What is the metric or 
objective function which needs to be 
maximized or minimized. This will help 
compare learning algorithms and determine 
how much better it does as compared to 
simple or random predictions. 
 
Proper Features:  
 
     Lots of thought needs to be given to the 
decision of how to represent the data 
available. There may be a set of original 
features which are relevant and other 
artificial features can be developed as well. 
Data and feature definition is an essential part 
of system design. 
 
Suitable Methods and Algorithms 
 
     The main guideline to remember is to try 
out different ML techniques and algorithms. 
There are many effective methods and 
algorithms and no algorithms which work 
perfectly for certain applications/use cases. 
As the training set increases, it reduces the 
effect of algorithm selection. 
 
Adequate Representative Data  
 
     The learning data needs to represent 
realistically the space; this is important to 
make sure the ML algorithm understands the 
whole range of inputs and outputs. If not, the 
predictions will be skewed. Random re-
sampling of the data  is preferred, and data 
cleaning will be necessary in many cases. 
Another guideline is that the training samples 
are expected to be much more in number than 
the testing samples and samples to be 
predicted. 
 

Training data Testing and Cross Validation  
 
     With any given dataset of training 
examples, if you use the entire data set to 
train your model, the final model will 
normally overfit the training data and the 
error rate estimate will be overly optimistic. 
A better approach is to split the training data 
into disjoint subsets: a training set (e.g., 80%) 
and a test set (e.g., 20 %). The procedure is to 
run the algorithm on the training set, 
minimizing the error of the learning function. 
Then the idea is to compute the error on the 
test set to figure out how good the model is. 
This training vs test split has issues: if the 
training data is a sparse dataset, one may not 
afford setting aside a portion of the dataset 
for testing, and also if the split happens to be 
not representative of the data set, the model 
learnt will be off. These limitations can be 
overcome with resampling methods like cross 
validation. 
 
Metrics / Evaluation Criteria 
 
     When evaluating a classification or 
regression task, it’s important to choose the 
right metric for the task. Classification is 
commonly measured by accuracy. Accuracy 
is defined as the percentage of predicted 
labels that were correct. However, this metric 
is not always the best measure of success. For 
example, in a task with an imbalanced class 
distribution (such as churn prediction), a very 
bad classifier can obtain a high accuracy 
score. Suppose that 98% of the examples in 
our test set are of one class, Class A. A 
classifier can simply predict Class A for 
every example and obtain an accuracy of 
98%. However, in tasks such as churn 
prediction or fraud detection, identifying the 
minority class is very important. For this 
reason, accuracy is not generally a good 
metric for evaluating the performance of a 
classifier when dealing with an imbalanced 
dataset. A better way to view the 
performance of binary classification would 
be to examine the number of true positives 
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(tp), false positives (fp), true negatives (tn), 
and false negatives (fn). For churn prediction, 
the class of “churner” would be considered 
the positive class. So churn prediction 
success might be measured by Precision, 

defined as 
௧௧ ା ,or Recall, defined as ௧௧ ା  [23]. In general, it’s always useful to 

keep the high-level objective of the task in 
mind. In tasks such as fraud detection or 
disease identification, a false negative will 
likely be considered more costly than a false 
positive. So in these cases, the classifier 
would be optimized to minimize false 
positives.  
 
Evaluating a Hypothesis 
 
     A hypothesis may have low error for the 
training examples but still be inaccurate 
(because of overfitting). The idea is to 
troubleshoot errors in predictions by some of 
the following techniques: increasing the 
number of training examples, trying a smaller 
or larger set of features, changing the 
parameter settings in an algorithm, etc. 
 
     Above all are statistically significant 
results from a given ML technique: It goes 
without saying that the predictive results of a 
ML algorithm should be of a much higher 
possibility than random choices at a very 
minimum. 
 
 

CONCLUSIONS 
 
     There are very many good use cases 
within the cable access network for the 
application of Machine Learning Algorithms. 
The ultimate goal of applying Machine 
Learning to networks is to provide 
automation and remove many of the manual 
tasks associated to network control and 
operation. Problems which have large sets of 
data are tough to solve manually and ML 

algorithms provide an intelligent way to get 
knowledge from the data.  
 
     This paper describes nine differnet and 
relevant use cases to which machine learning 
can be applied today. The application of 
these will give the operators knowledge 
about their networks and how to most 
effectively run the network. ML algorithms 
will be assimilated into systems which can 
configure networks, identify issues and take 
the appropriate corrective action. 
 
     There are important open research 
challenges that need to be addressed before 
this vision is fully implemented. First, 
typically ML is applied to scenarios that are 
resilient to errors, such as image recognition. 
However, computer networks do not handle 
errors well. In this context there is a need to 
understand how such probabilistic Machine 
Learning techniques can be effectively 
incorporated to networks. And second, 
learning requires a representative dataset. But 
what does representative mean in the context 
of computer networks? Are observable 
network loads and configurations (i.e., those 
that do not break the system) representative 
enough to provide accurate estimations? 
Generating a training set that allows the 
algorithm to learn the boundary between 
functioning and failing networks can be 
challenging. At the time of this writing, there 
is no clear answer to this question and will 
require further research efforts.  
 
     In addition there are also non-technical 
issues that need to be addressed. Machine 
Learning builds on top of huge datasets that, 
in some cases, will contain user information. 
As a consequence there are privacy issues 
since there is a potential of leakage of 
personal information. This will require that 
the appropriate safety mechanisms are put in 
place and, if possible, to always learn based 
on aggregated-information. 
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     As a result, the use-cases that do not 
directly operate over the network but that 
rather provide recommendations to the 
network owner/administrator will be 
commercialized first. Such systems are safe 
since they involve human intervention and 
validation, and will help operators get used to 
this new technology and better understand its 
potential.  
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