
AN ARCHITECTURAL APPROACH TOWARDS ACHIEVING BANDWIDTH 
EFFICIENT CONTENT DELIVERY 

 Dinkar Bhat, Navneeth Kannan, and Wendell Sun  
 ARRIS  
 

 Abstract 
 
      Content delivery is a complex problem 
given the variety of services to be supported.  
Bandwidth availability and efficiency at high-
end homes becomes key as high bitrate 
applications including 4K, 4K-HDR, and VR 
video become available.   Performance is 
usually estimated in terms of latency and 
different types of latency measurement 
criteria could be considered. In order to 
achieve high performance across 
applications, we consider two aspects: 
modeling of viewership and efficient adaptive 
bitrate streaming delivery over IP. We delve 
into modeling viewer behavior using machine 
learning clustering techniques that use genre 
and demographics as features. The aim is to 
create effective content tranches to which 
bandwidth can be allocated more efficiently. 
We then examine the problem of adaptive 
bitrate streaming delivery of the content to the 
classes of viewers. In particular, we look at 
advanced encoding features at the video and 
transport level that can significantly improve 
user experience, while preserving video 
quality. We present the paper from an overall 
architectural perspective with deeper focus 
into the above described technical aspects. 
 

INTRODUCTION 
 
     The number of services being deployed at 
homes continues to grow at a very rapid pace. 
With the introduction of bandwidth intensive 
applications requiring 4K, 4K-HDR, and now 
VR video, the architecture for content 
delivery has to change accordingly. Viewers 
regardless of underlying network complexity 
expect low latency, fast availability, and 
glitchless performance. 

     We take a look at two technical aspects 
that would significantly benefit content 
delivery. First, how should viewership in a 
network be modeled effectively in terms of 
their viewer profiles? We describe how they 
can be clustered based on viewing habits and 
demographic attributes. Once they are 
clustered, we argue how content sources can 
be sliced and linked to the clusters. This 
linking in turn aids in bandwidth allocation 
for a delivery mechanism like IP multicast. 
Second, what steps can be taken to deliver 
content sources (like live TV services) to 
viewers with minimal latency. We describe a 
hybrid network architecture that combines IP 
multicast with HyperText Transfer Protocol 
(HTTP)-based adaptive-bitrate (ABR) 
approach to provide low delay services to 
clients. We introduce a key component called 
the ABR-aware Packager/HTTP server that 
links the IP Multicast cloud with the ABR 
clients requesting content over HTTP. 
 

VIEWER MODELING 
     
Motivation 
 
     As the viewer population grows more 
diverse and fragmented, the type of content 
being consumed by different groups becomes 
quite varied and distinct [4]. The implication 
is that a program set, which could be a list of 
channels, can be organized into appropriate 
slices so that they can be targeted effectively. 
This would be more effective in terms of 
bandwidth allocation and developing user 
interfaces like guides [2]. Figure 1 shows an 
example of how channels of different genre 
may be classified based on viewer gender and 
age.  
 

2016 Spring Technical Forum Proceedings



 

Figure 1: Depicts a sample classification of six different channels based on gender and age 

     Targeted advertising, which has been the 
topic of significant technological research due 
to its obvious commercial importance, is 
achieved by matching viewer profiles with a 
set of ads, in order to obtain addressable sets 
of viewers. Viewer profile attributes including 
age, buying habits, and income range are 
obtained from third-party market researchers. 
In addition, some approaches combine 
demographic profiles with viewing habits to 
target ads in specific channels or shows at 
specific times. 
 

     In this paper, we look at viewership 
modeling from a different perspective, namely 
the aim is to group viewers into clusters based 
on viewing habits and demographics 
attributes, then to use the resulting clusters to 
create content slices or tranches. Once the 
tranches have been created, they can be 
allocated appropriately to bandwidth groups 
(like IP Multicast groups) for transmission 
(see Figure 2). Note that the tranches can be 
modified dynamically based on temporal 
viewing characteristics.  
 

Age (% > 30)

Age (% < 30)

 Gender (% Male) Gender (% Female)

Fitness 
Teen Max

Kids 
Channel

Sports 
Channel

Evening
News

Morning 
NewsHome 

and Life

2016 Spring Technical Forum Proceedings



 
 

Figure 2: Illustrates a content set divided into tranches and viewer clusters assigned to the tranches

Machine Learning Approaches 
 
     Machine learning techniques applied to 
Big Data now offers significant opportunities 
into examining viewing behavior, which can 
then be used to provide better user interfaces, 
efficient bandwidth management, towards 
better user experience. In this section, we look 
at approaches to clustering of viewers based 
on demographic attributes and viewing 
behavior.  
 
     In general, the aim of clustering algorithms 
is to find groups within a data set, or clusters 

that are similar in some defined sense. 
Clustering algorithms fall in the domain of 
unsupervised learning techniques because the 
clusters that may be identified are not known 
a priori. There is no a priori knowledge of 
what kind of clusters are present in the data. 
Hence, a key input to any clustering algorithm 
is the number of clusters to be identified and 
often a lot of experimentation is required 
before an optimal value is used. Figure 3 
shows a schematic of how clustering works in 
general. 
 

S1

S2

S3

V1

V2

V3

V4

CONTENT VIEWERS

2016 Spring Technical Forum Proceedings



 
Figure 3: Depicts the possible output of a clustering algorithm (like k-means). The input to the 

algorithm is the set of data points, each represented by two attributes. Input also 
includes the number of clusters to be identified (k=3). 

     We briefly describe a popular clustering 
approach that could be used in our 
application, namely, the k-means algorithm. 
Formally, let the set of 𝑛 data points in our 
data set be 𝐷 = {𝒙𝟏, 𝒙𝟐,𝒙𝟑, . . ,𝒙𝒏}, where 
𝒙𝒊 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑟), 𝑖 = 1, . . , 𝑛  is a vector 
with r attributes. The k-means algorithm 
partitions the data set D into k clusters, given 
k. Each cluster has a cluster center, called a 
centroid. The algorithm works as follows: 
Randomly choose k data points as seeds to be 
the initial centroids. Repeat the following 
steps till convergence: 
  
1) Assign each data point 𝒙𝒊 to the closest 

centroid 𝒎𝒋 of cluster j, using a measure 
which is usually the Euclidean distance. 
 

2) Re-compute the centroids using the 
current cluster memberships. 
 

3) If the centroids have not changed as per 
convergence criterion, break and output 
the set of N=k clusters. 

During each iteration described above, the 
centroid 𝒎𝒋 of cluster j containing 𝐶𝑗  data 

points is computed as 𝒎𝒋 = 1
|𝐶𝑗|

 ∑ 𝒙𝒌𝒙𝒌∈𝐶𝑗 .     

Selection of the convergence criterion is very 
important to generate the right set of clusters. 
The k-means algorithm was developed 
assuming data sets were small, but with large 
amounts of data its complexity increases 
prohibitively. Thus, it has seen many novel 
changes to adapt it to larger data sets (for 
example [3]).  
 
     In our application, each 
𝒙𝒊 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑟) denotes an instance of 
viewing. The components of the viewing 
vector could constitute both demographic 
variables like age, gender, income, and 
viewing variables like content genre 
components and time of day [2]. To prevent 
too much noise in the data, only instances of 
viewing where duration was greater than a 
threshold could be included.  k would denote 
the number of viewer clusters to be output by 
the algorithm. 
 
     To create the content tranches and then 
match them with the viewer clusters, a simple 

1

2

Cluster 1

Cluster 2

Cluster 3

2016 Spring Technical Forum Proceedings



approach could be adopted as follows. Let’s 
say the content set of s units is represented by 
 
𝐸 = {𝒑𝟏,𝒑𝟐, …𝒑𝒔} where 𝒑𝒋 =
�𝑝𝑗1,𝑝𝑗2 … ,𝑝𝑗𝑙�, 𝑙 ≤ 𝑟, 𝑗 = 1, . . , 𝑠  is a vector 
of size l that contains the same genre 
components used in viewer clustering.  
Cluster the content units using the k-means 
algorithm into a set of tranches of size M. 
Now link each viewer cluster (N) to one or 
more tranches (M) by comparing centroids 
using the Euclidean measure. 
 
Bandwidth Allocation 
 
     Our approach of dividing content into 
tranches and linking them to viewer clusters 
fits well into an IP multicast delivery model 
[3]. IP multicast reduces traffic in a delivery 
network by simultaneously delivering a 
content stream to many recipients. Multicast 
routing establishes a tree that is rooted at the 
source with the receivers as the leaves. As 
opposed to unicast delivery, data in multicast 
is not copied at the source, but is copied 
inside the network at branch points of the 
multicast distribution tree. Thus, only a single 
copy of data is sent over links that lead to 
multiple receivers resulting in bandwidth 
gains. Given that several viewers in a cluster 
are likely to request content on the tranche 
they are linked to, the bandwidth savings can 
be quite significant. 
 
     The content tranches are assigned unique 
multicast addresses. Each receiver in a viewer 
cluster listens on multicast addresses assigned 
to the content tranches it has been linked to. 
Our model, in which several sources transmit 
on an IP multicast address, is more optimal 
for an IGMP v3 enabled network where 
source specific multicast (SSM) is available. 
In an SSM-enhanced network receivers can 
signal their intention to join a specific source 
within a multicast group, unlike a traditional 
network (i.e. before IGMP v3) where 
receivers will get traffic from all sources 

sending on a multicast address.  Thus, in an 
older multicast network there could be 
unwanted network traffic and it is then up to 
the receivers to filter data.  
 
     Note that although we have assigned 
viewer clusters to content tranches, nothing 
prevents receivers from requesting content 
from other content tranches they are not 
linked to. This can be done through unicast. 
We expect that by modeling using content 
tranches and clusters, such unicast delivery 
will be more limited. However, the content 
guides on receivers would list all available 
content in an intuitive fashion [2] and it would 
be transparent to the viewer as to how it is 
delivered. In the next section, we describe a 
hybrid network architecture combining IP 
multicast with HTTP-based adaptive bitrate 
streaming. 
 

ADAPTIVE BITRATE DELIVERY 
 
Common Practice and Problems with Live TV 
Service 
 
     Internet-based video streaming has a long 
history. For example, IPTV services have 
been offered by telco operators to compete 
with cable operators for more than a decade. 
IPTV services provide subscribers with 
similar TV viewing experience, such as fast 
channel change time and low end to end 
transport latency, as traditional broadcast or 
linear pay-TV service offers. It uses IP 
multicast as primary protocol, which provides 
true data streaming, minimizes delivery 
latency, and supports content sharing among 
multiple clients.  
 
     However, IPTV services require 
guaranteed bitrate match bandwidth for 
smooth service delivering. As a result, an 
IPTV service is only provided in a managed 
IP network. Over-the-Top (OTT) services are 
relatively new to TV service. OTT uses 
HyperText Transfer Protocol (HTTP) protocol 
with introduction of multiple bitrate video 

2016 Spring Technical Forum Proceedings



source, adaptive bit selection and seamless 
bitrate switching, which provide transport 
resiliency to network bandwidth changes, plus 
the usage of popularly deployed HTTP 
protocol. Consequently, OTT services are 
attractive and may replace IPTV as the 
primary video service in Internet-based video 
service delivery. However, the HTTP-based 
transport has major shortcomings, especially 
for live or linear video delivery. 
 
     The HTTP protocol is designed for 
transaction based file transfer. It may be 
perfect for a Video-on-Demand (VOD) type 
of video service, especially with progressive 
file download, where a user can watch the 
downloaded video even before the file 
download is complete. However, it is not 
quite suitable for live streaming. The current 
HTTP Adaptive Bitrate (ABR) streaming uses 
small segments to compromise HTTP file 
transfer request. Normally there is a manifest 
file that describes availability and URL of 
media segments. Media transport and 
playback process is initiated by HTTP ABR 
client via sending a HTTP request to get the 
manifest file, then the client selects a media 
segment in an adequate bitrate and starts 
download it. The client continues the media 
segment request one after another either in the 
same bitrate or in a different bitrate based on 
network bandwidth condition. Each media 
segment delivery is a HTTP transaction.  
 
     In the case of a live TV service, the 
manifest file will have to be updated to catch 
up with newly available segments while the 
media source moves forward in timeline. The 
client also needs to get the updated manifest 
file to view and select newly available media 
segments. When an HTTP ABR client asks 
for media segment, the HTTP server does not 
respond until the media segment is available. 
From a media transport perspective, the delay 
of live media transport is at least the length of 
segment besides other delays caused by media 

processing, such as encoding. The bigger the 
segment, the longer the delay latency is.  
 
     Taking a normal HTTP Live Streaming 
segment, for example, usually its length is 10 
seconds, then the media transport end to end 
delay is about 15-20 seconds or more. If this 
forces us to create smaller media segment 
such as 1 or 2 seconds, to reduce the delay, it 
causes two other issues. For the reason of 
seamless switching between bitrate streams, 
the media segment is bordered by an IDR 
frame, which requires full decodable I frame. 
The smaller the media segment is, the more I 
frames are inserted. The more I frames exist, 
the more coding resource is required, thus the 
worse video encoding efficiency is achieved.  
 
     In addition, each segment delivery 
corresponds one HTTP get/reply transaction. 
The smaller the segment is, the more HTTP 
protocol traffic is in network. 
 
     This type of segmentation delay does not 
exist in an IPTV service that uses IP multicast 
technology. In this paper, we will propose a 
hybrid network architecture, which combines 
IP multicast in backbone network and HTTP 
in edge access network. With usage of HTTP 
Chunked Transfer Encoding [1], it minimizes 
the delivery latency for live/linear video 
service without sacrificing video encoding 
efficiency. 
 
Hybrid Network Architecture 
 
     IP multicast has been used in IPTV 
services and is proven to be capable of 
delivering low delay media to TV viewers. 
Why cannot we continue to leverage its 
benefit and use it for ABR OTT service? At 
the same time, cannot we also preserve the 
popular usage and attractiveness of HTTP  
protocol, especially when it interacts with 
ABR client?  

 

2016 Spring Technical Forum Proceedings



 

 
 

Figure 4: IP Multicast + HTTP Chunked Transfer Encoding 
 

 
     Figure 4 shows the hybrid network 
architecture, in which IP multicast is used in 
backbone network and HTTP is used in client 
oriented access network.  
 
     The live source is prepared by an ABR 
transcoder to create multiple bitrate streams 
per ABR OTT service profile. These streams 
are MPEG-2 Transport Stream (TS), just like 
legacy IPTV media streams carried in IP 
multicast network. The difference between the 
IPTV case and ABR OTT scenario is the 
number of streams. The IPTV has one single 
stream while the ABR OTT has a set of 
streams.  
 
     The IP multicast cloud is a backbone 
transport network. In general, the backbone 
network is well designed and engineered to 
meet media transport requirements. For 
example, the IP multicast cloud should be 
able to deliver all ABR streams in the case 
each of them is requested by a client. At the 
minimum, it should guarantee delivery of the 
stream in the lowest bitrate to keep smooth 
playback in client. 
 
     A new component, the ABR Aware 
Packager and HTTP Server, is introduced in 
Figure 4. It is different from a normal ABR 
HTTP server, which receives media segments  

 
 
from an ABR packager and simply serves 
ABR client via HTTP protocol. Instead, it is a 
Just In Time Packager (JITP) that can accept 
MPEG-2 TS carried in IP streams and 
generate client requested media segment in 
real-time when it responds to the client 
request for a media segment.  
 
     Similar to a normal ABR HTTP server, the 
JITP/HTTP server composes and publishes an 
ABR manifest file. For live/linear TV service, 
it just needs to tell what bit-rate/resolution 
streams are available with a virtual segment 
URL. When it receives a media segment 
request from ABR client, it checks if the 
requested bitrate stream is available or not. If 
the bitrate stream does not exist, it will join 
the IP multicast group of that bitrate stream. 
After the server receives the IP multicast 
stream, it starts to create the requested 
segment and prepare to serve the ABR client.  
 
     As we discussed in the previous section, if 
the JITP/HTTP server does not send the client 
requested media segment until the segment is 
ready, it still bears the extra segmentation 
delay to the media transportation. What we 
expect is to send the media segment 
incrementally in small chunks while the 
JITP/HTTP server receives and prepares it.  

ABR 
Trans-
coder 

Live  
Feed 

Cablelabs ATS  

IP Multicast 
Cloud 

ABR Aware 
Packager/HTT

P Server 

ABR 
Client 

HTTP CTE 

2016 Spring Technical Forum Proceedings



 
 
HTTP Chunked Transfer Encoding  
 
     The HTTP Chunked Transfer Encoding 
(CTE) is defined by HTTP/1.1: Message 
Syntax and Routing [1]. It is a data transfer 
mechanism in HTTP 1.1, in which data is sent 
in a series of "chunks". It uses the Transfer-
Encoding header, instead of the Content-
Length header. The HTTP sender does not 
need to wait for the total size of content and 
can start sending data as small chunk with any 
amount available while still receiving the 
content. When the chunk is sent, its size is 
indicated in the Transfer-Encoding header. If 
the chunk length is set to zero, then it is the 
end of content. 
 
     This is what exactly we want, isn’t it? 
When the JITP/HTTP server receives media 
segment request from ABR client and the 
corresponding IP multicast stream is 
available, it starts the segmentation process, 
but it can start sending the media chunks in 
meaningful small size, such as small as one 
video frame, while it still receives the IP 
multicast stream. At the end of segment, it 
just needs to send a zero sized chunk to finish 
the segment transfer. And then the ABR client 
repeats sending segment request one after 
another, the JITP/HTTP server continues 
serving it with incrementally delivered chunks 
of segment. In this way, the delay caused by 
media segmentation is eliminated. 
 
     Combining with the usage of IP multicast 
in backbone network, this hybrid network 
approach, together with the help of HTTP 
CTE, can reduce the end to end transport 
latency to minimum and makes ABR OTT 
service be comparable with IPTV service. 
 
CONCLUSION 
 
     We described an approach that combines 
viewer modeling with a hybrid network 
architecture to delivery content to ABR 

clients. The aim was to allocate network 
bandwidth effectively based on viewer 
clusters and then to deliver the content using a 
combination of IP multicast and HTTP-based 
ABR streaming to clients. Combining 
technologies is likely to provide much better 
performance with the advent of high bitrate 
services. 
 

1. IETF RFC7230, Section 4.1, 
“Chunked Transfer Coding”, 
http://tools.ietf.org/html/rfc7230#secti
on-4.1 

 
2. Bhat D., Kannan N., “Adaptive 

Television User Interface Using 
Machine Learning Concepts”, IBC 
2014, September 2014. 
 

3. Legout, A., Nonnenmacher, J. and 
Biersack, E. W.  , “Bandwidth 
Allocation Policies for Unicast and 
Multicast Flows”, Infocomm 99, 
March 1999. 
 

4. Cohen, J. “Television viewing 
preferences: Programs, schedules, and 
the structure of viewing choices made 
by Israeli adults”, Journal of 
Broadcasting & Electronic Media, 
June 2002 204-221. 

 

2016 Spring Technical Forum Proceedings


