
Accelerating big data applications with multi-Gigabit-per-second file transfers
 Charles Shiflett
 Aspera, an IBM company

 Aspera, an IBM company, provides a set of
collaboration and file transfer technologies
that leverage the Aspera FASP technology
which is a distance neutral transfer
technology.

 This paper will describe Aspera's FASP
transfer technology, both next generation
FASP which is designed for 100gbit/s
transfers as well as our standard FASP
technology. This paper will aslo describe
how the FASP protocol integrates into high
performance / high scalability environments.

A Brief Introduction to Aspera FASP

 Aspera FASP is a file transfer protocol
designed to give users a high performance
solution to sending data across the world
limited only by the performance of your
internet connection. Aspera FASP is a full
stack transfer solution, and as such it provides
congestion control, encryption, reliability, file
checksums, and direct-to-cloud functionality.

 Aspera FASP is a transfer solution
designed around real networks meant to just
work. It’s a point-to-point solution which
works on all platforms and within most use
cases; Desktop, Command Line, Mobile,
Web, REST, and as a library for most
programming languages. The FASP protocol
is typically layered on top of UDP with
reliability, congestion control, and data
transmission algorithms that are tailored to
real networks, long haul fiber, satellite,
wireless, firewalls, and VPNs.

 As compared to TCP/IP, which is the
standard IP congestion control protocol and
used in most data and file transfer scenarios,
TCP/IP

doesn't effectively utilize available bandwidth
in a number of scenario's.

Figure 1: TCP/IP network throughput

 As an example of why you wouldn't want
to use TCP/IP for everything, Figure 1 shows
typical TCP/IP performance as related to
round trip time and/or packet loss on a 1 gig
link. In contrast, Figure 2 shows Aspera
FASP performance across the same link. It is
exactly due to the relative increase in
performance that Aspera FASP is widely used
in a number of industries to speed content
delivery around the world. For use cases see
asperasoft.com.

Figure 2: FASP network throughput

2016 Spring Technical Forum Proceedings

 Aspera’s goal has constantly been to
remove bottle necks associated with high
throughput file transfers. In 2013 Aspera
showed that next-generation FASP was able
to utilize 4x10gbit interfaces for a total
transfer throughput of about 40 gbit/s in Big
Data Technologies for Ultra-High-Speed
Data Transfer in Life Sciences
[http://asperasoft.com/fileadmin/media/Asperasoft
.com/Resources/White_Papers/Big_Data_Life_Sci
ences_AsperaWP.pdf]. In 2014 Aspera showed
that FASP was able to operate at near to 80
gbit/s with 2 x 40gbit network cards
[https://communities.intel.com/community/itpeern
etwork/healthcare/blog/2014/11/12/sc14-
accelerating-life-sciences-at-80-gbits]. Our next
whitepaper scheduled to be released
contemporaneously with this paper will be
showing Aspera FASP utilizing a 100 gbit
network link using 3 x 40gbit network cards
to transfer scientific data sets between HPC
centers across the united states.

 As speeds increase into the hundred gigabit
range it becomes increasingly difficult to
expect the storage and operating systems to
keep up with network performance when
using traditional I/O interfaces. This paper
will describe some of the new and emerging
technologies which Aspera utilized in scaling
into and past 100gbit/s as well as how the
FASP framework plugs into those solutions to
provide a transfer framework that scales both
into the use case of meta data intensive
transfers (millions/billions of small files), as
well as high throughput transfers with
petabyte sized data sets.

A Design for 100 Gigabit Ethernet

 Traditional POSIX I/O interfaces, which
form the backbone of all I/O on every major
platform suffer from designs that assume
memory is fast and I/O is slow. As such they
are designed to arbitrate between software that

might be using hardware inefficiently and
hardware that needs to be coddled to achieve
maximum performance.

 In practice this means massive caching
between both storage and networking devices
where data sits staged, waiting to be
transformed and consumed by it's respective
device. This waiting data obviously must be
written to memory, and then re-read when a
kernel device wakes up and begins to handle
the associated queues. This typically means a
complete flush of cachelines (The data in a
CPU cache associated with an I/O operation),
along with increased pressure put on the
memory controller as it must write then re-
fetch data.

Figure 3: Memory Copies in POSIX Model

 Figure 3 shows roughly what this looks
like for a traditional transfer application
where each of the grey bars represents a copy
from one I/O queue/domain to another I/O
queue/domain. The result is increased
consumption of memory bandwidth and
increased latencies when waiting on memory
which in turn causes other processes waiting
on memory to slow down as individual cores
on the same physical piece of silicon compete
for the same resources. This is the principal
reason that transfers are slow when using
traditional I/O stacks and it is a problem that
compounds the more you are trying to do on
the transfer node.

 Exactly how slow this is depends on
exactly how things are configured and what
else is going on in the system. As an example,
using the reference system Aspera used to
show 100gbit/s transfers (XFS filesystem, 4x
DC P3608, Intel® Xeon® E5-2699 v3), results
in about 6 GBytes/s read with 2 or more I/O

2016 Spring Technical Forum Proceedings

threads, where as in direct mode (which
bypasses cache), or when using Intel® SPDK (
A userland storage framework, as opposed to
a kernel framework) it is trivial to show
results well past 12 GBytes/s on read.

 Using a more traditional or featureful
filesystem like EXT4 or ZFS yields reduced
performance and in these cases one would
expect performance closer to 2.5 GBytes/s (
20 gbit/s). As one puts more pressure on the
Memory Controller, the performance on the
file system drops and throughput decreases.
As an example using our classic FASP
transfer framework in multi-threaded mode,
we would see results on the same system of a
little over 1GB/s (9-12 gbit/s) and this is
largely due to the additional overhead caused
by using the in kernel networking stack
(Berkeley Sockets).

Figure 4: Zero Copy with FASP NX

 In Figure 4, an Ideal I/O stack is shown.
While this model doesn’t eliminate the need
to use memory, it fully eliminates the need to
perform memory copies and with that
significantly reduces the pressure put on the
Memory controllers which allows the
application to scale in proportion to available
memory and I/O bandwidth.

 We still retain the important POSIX
principles such that we give good
performance when doing a transfer. For
instance, we read from disk into memory, and
then transmit from memory which minimizes
latencies when it comes time to transmit a
block or in the event that we need to re-

transmit a packet due to packet loss or
corruption. This is almost the same as reading
from disk to cache, and then from cache to
application, application to NIC, only we have
removed the process domains (kernel->user
and vice/versa) as well as prevented double
caching of data. Of course a simpler design is
not to have an application Cache/queue and
just send all of our data to the file system
cache as soon as possible, and that is exactly
what we do with standard ASCP. The only
downside to that approach is that we lose the
ability to control fine-grained I/O and
memory performance which is important past
about 10 gbit/s.

 Of course it isn’t enough to just eliminate
memory copies and claim victory. Memory
copies are just part of the problem, and as we
consider that portion of the problem to be
solved other issues begin to become evident
such as how to handle processor intensive
tasks (like compression or encryption), per-
core limits to how much memory can be
utilized (each core is limited to how quickly
it can consume memory based on the number
of hardware memory prefetchers), and how
quickly we can write to I/O and NIC hardware
queues.

 Aspera FASP Next-generation attempts to
address each of these issues through things
like lockless multi-threaded architectures
which avoid contention for any single object,
in better utilizing Hardware offload such that
CPU cores can be pinned to specific RX or
TX queues on the hardware, and in how
threading and encryption is handled such that
we are able to fully utilize the hardware
available on modern processor architectures.

 One of the most interesting things about
next-generation FASP is that the architecture
had to change to accommodate these features.
For instance, it turns out that if you want to
design your own highly optimized network
stack (which Aspera did for FASP Next
Generation), you really can’t also coexist with

2016 Spring Technical Forum Proceedings

the Kernel, and you almost certainly don’t
want to plumb in those changes into a new
framework. To provide a high performance
path forward, Aspera utilized Intel® DPDK to
provide a userland transfer solution which
eliminates the need to depend on the Kernel to
provide network services. In this model,
clients are able to connect to a FASP service
via shared memory and initiate transfers
between systems.

 Intel® DPDK provides other benefits to
enable applications to maximize throughput
such as pinning a thread to a particular core
(which eliminates losing L1/L2 caches),
providing a framework to enable NUMA
aware applications, and providing a burst
oriented framework which enables efficient
packet processing.

Optimizing for faster Storage I/O

 Storage has undergone a radical
transformation as file systems transition from
single large systems to clustered and cloud
based object stores. In these configurations,
metadata is typically separated from the file
payload and specific access conditions are
typically required to fully utilize the
throughput offered by clustered parallel file
system and or cloud based object storage.

 In both FASP and next-generation FASP, a
filesystem abstraction layer is provided which
provides flexibility in both how metadata is
written and in how file data is written to disk.
The two are handled independently and each
stage of the I/O chain can be customized to
provide the integration you need to fully
maximize the potential of your storage
solution.

 For instance, if your local storage solution
requires that you read/write with specific
block sizes and you have slow meta-data
retrieval you can pass Aspera FASP exactly
those hints and it will eliminate all un-

necessary metadata queries and perform disk
I/O with fixed block sizes.

 In the same vein, if you are transferring to
or from cloud that same file system
abstraction is available to translate from
traditional file systems to object based file
systems where data is stored through REST
API calls.

 The same holds true if you are attempting
to transfer millions of very small files. In this
use case, you can have multiple readers which
do nothing but read metadata information
along with the file contents and once they
have packed enough data into a block they
then send the entire block across the internet
where the files are written as quickly as
possible.

 Even in use cases where we are doing
transfers on behalf of a system agent where it
is expected that we transfer files and then
transform that data and interact with system
services (as in Aspera's Avid Integration:
http://asperasoft.com/partners/joint-partner-
solutions/fasp-plug-in-for-avid), Aspera
provides a flexible enough framework that the
integration point is just going to be mapping
API's from one system to another.

 In most cases, the only optimization
needed for good performance is to use the
storage system as designed. However in some
cases it isn’t enough to just go fast, you need
to maximize your storage utilization and the
POSIX overhead is creating a barrier for
efficient utilization. In these cases we are able
to take advantage of Direct I/O when possible
to eliminate a copy to cache in use cases
where it is not expected that the data being
cached will be used again. Aspera can utilize
Direct I/O in a number of use cases such as,
when we are using RDMA or Intel® Omni-
Path, When the file system supports it (i.e.
XFS), or when we can take advantage of
Intel® QuickData or similar userland transfer
technologies.

2016 Spring Technical Forum Proceedings

 Aspera provides solutions which optimize
both network I/O and storage I/O in a way
that is vendor neutral and high performance.
Aspera’s goal is to provide solutions which
solve real problems in both sending data over
the network and in efficiently reading and
writing that data to disk. In addition Aspera
provides the safeguards you need to be sure
that the data you created is securely sent
across the Internet using industry standards as
well as safeguarding the integrity of your data
with end-to-end checksums.

A Flexible High Performance FASP Solution

 The goal of Aspera FASP is to provide a
transfer solution which efficiently utilizes
your unused bandwidth to move content as
quickly as possible. In the end, be it sending
8k uncompressed video @ 60 FPS (~26 Gbps)
in near real time, or replicating your data
center complete with disk images which need
to be compressed before being sent, Aspera
has a solution for you.

 All of our solutions are built around the
same core FASP framework, they are built to
be fast, and they are meant to be a solution to
your problems. Since 2004 we have been
approaching the problem of how can we send
faster, how can we provide more flexibility,
and how can we better meet the needs of
prospective customers. In addition to our core

FASP protocol we have a number of tools to
try to make our software easier to use. These
include things like web apps for
Collaboration, Management, Sharing, and
Distribution of content. Tools for
synchronizing massive amounts of data, along
with automation and policy tools.

 Aspera optimizes the FASP protocol across
the entire system domain, starting from
Storage and ending with people consuming
data. At almost every level of the transfer
chain, you can tweak things to provide the
policy you need within your organization.
This includes things like different transfer
priorities for different users, virtual links to
shape traffic how you want, API's and file
notification hooks.

 At Aspera our goal is to provide the
transfer solution you want and we are more
than happy to work with you until things are
exactly what you are looking for. Our
solutions currently scale to hundreds of
gigabits/s per system when utilizing our in
development Next-Generation FASP, and
they scale out to utilize as many systems as
you have when performing parallel transfers.

 Cloud, Hybrid, or On Premise Aspera
FASP provides the performance and
throughput to minimize the time you spend
waiting on content and maximize your ability
to consume and provide content.

2016 Spring Technical Forum Proceedings

