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 Abstract 
 
     As video delivery systems transition to all 
IP, they are becoming massively scaled 
distributed systems.  Comcast’s video delivery 
systems span hundreds of sites, and failures in 
one site can have unexpected negative 
imapcts on video delivery.  When 
troubleshooting these sorts of systems, it’s 
useful to have as broad, but often shallow, 
operational view of the system as a whole.  
 
In addition, these systems generate data 
essential for business intelligence, capacity 
planning, reccomendations, and a whole 
variety of other essential functions.  Without a 
system to methodically collect data from 
across this infrastructure, data collection is 
usually done via a set of ad-hoc integrations, 
usually with log files, or, at best, custom 
telemetry collection schemes.  This leads to a 
stew of ever-shifting data formats, which 
much be parsed and reconciled to make sense 
of the system as a whole 
 
In this paper, we present an architecture for a 
stream data platform which allows us to 
comphrehensively collect high value data, for 
both operational and other business 
purpouses, at large scale.  In addition, we 
present a method of defining and evolving 
schemas for this data. 
 
 

INTRODUCTION 
 

     Large scale distributed systems are 
notoriously tricky to reason about and debug.  
Our current methods generally assume that 
only the engineering or operations team 
responsible for an individual component in a 
larger distributed system has visibility into 
that component.   

     When an incident occurs, those 
engineering and operations teams are often 
brought together in a conference bridge, chat 
room, or email chain of doom.  Using 
parochial tools and data collection, the 
individuals responsible for the 
troubleshooting effort attempt to 
communicate as best they can about complex 
issues, often without the ability to effectively 
share data. 
 
      The data that’s collected for these 
parochial toolsets often comes in the form of 
unstructured logs, which are under the control 
of an individual engineering team.  They may 
change the format of those logs at any time to 
better meet their needs.  As this is the often 
only data collection source for a given 
component, point-to-point integrations 
between log collection systems and other 
systems which produce business value, such 
as business intelligence clusters, customer 
care tools, and so on. 
 
     As the primary motivation for the initial 
data collection is parochial, and the logs are 
not considered part of the contract that the 
component has with the outside world, this 
often causes much strife.  A development 
team may add to, modify the semantics of, or 
remove elements from the log file at will. 
 
     Additionally, the point-to-point 
integrations between systems are expensive, 
and involve time consuming, and error prone, 
ETL from one system to another.   
 
     These issues can be overcome with the 
addition of a stream data platform, which is 
intented to summplement existing parochial 
data collection systems.  The stream data 
platform has several main goals. 
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     First and foremost, it serves as an 
extremely high volume, resilient, real time 
data bus for data which needs to leave the 
parochial confines of an individual 
component.  When a stream goes into the 
stream data platform once, it can be used by 
many other systems which provide business 
value.  For instance, a stream of video starts 
from an IP player may be used for business 
intelligence reporting, operational tooling, 
customer care tools, reccomendations, and so 
on. 
 
     Second, it provides a means to associate a 
schema with streams of data, and a means to 
evolve the schema for that data without 
breaking existing consumers of it.  A schema 
is essential to aid consumers of the data in 
their data integration projects, however, in 
recent years, schemas have fallen somewhat 
out of style in the big data ecosystem.   
 
     As the ecosystem matures, this is 
changing.  However, the schema technology 
needs to be more flexibile than traditional 
RDBMS schemas.  In particular, a single 
stream may be consumed by many consumers, 
and not all of them will be willing or able to 
update their schema when a new version of it 
is created.     Through a combination of 
technology choices and process, we enable 
schemas to be evolved by a data producer 
independent of any data consumer. 
 
     Third, the stream data platform provides 
ETL tools which can take raw streams of data, 
and transform them into clean streams of data 
once at ingest time.  While we prefer, and 
recommend, that a source system directly emit 
clean data conforming to a schema, it’s often 
impossible or impracticle to modify an 
existing system to do so.  Doing this ETL 
once at ingest into the platform is still a win 
over doing it in an ad-hoc, case by case bases 
for point-to-point integration projects.  
 
     Fourth, the stream data platform will 
provide  tools for data governance, security 

and discovery.  Through the platform we must 
be able to secure an individual stream of data, 
through authorization before the stream can 
be accessed, as well as data security methods 
such as encryption of the data while it’s at rest 
in the platform, and tokenization of individual 
fields.     This security must be tied in with 
reasonable data governance policies, which 
specify what types of data need which 
security policies. 
 
     For example, a data stream which has 
elements in it which, when combined with 
other data sets, may constitue PII may need to 
both be encrypted while at rest, and have the 
the sensitive fields tokenized, to limit the risk 
of a data breach and ensure regulatory 
compliance.   
 
     Subject to data governance and security 
concerns, any user of the system should be 
able to discover the data sets, associated 
schemas and other metadata.  This will ensure 
that users can find existing data streams and 
have a holistic view of the data available. 
 
     As of the writing of this paper, we mainly 
address the first three concerns of the stream 
data platform, and have done experimental 
work on the fourth.    
 
 

THE ELEMENTS OF A STREAM DATA 
PLATFORM 

 
     The stream data platform has several 
elements.  We have chosen to build the 
platform on top of open source software, 
primarily from the Apache foundation, along 
with some home grown components.   
 
     First, a system for high capacity data 
transfer.  For this, we have chosen Apache’s 
Kafka, a distributed messaging system which 
is highly optimized to ensure that all messages 
can be persisted to disk.  This is essential to 
ensure that many consumers, all of which may 
not be consuming at the same time, can access 
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the datt streams.  We have been scaled Kafka 
to a point where an individual cluster can 
handle over one million messages per second, 
without much tuning or effort, and are 
confident we will be able to scale it to meet 
our throughput targets as we grow the system.   
 
     A key element in Kafka is the topic, which 
represenents an individual data stream.  We 
have tooling to create topics conforming to a 
naming convention, so that we can separate 
out different types of data streams  
 
     Our Kafkas are organized into ingest 
clusters, which ingest some subset of data 
from across our entire footprint, and larger 
aggregate clusters, which aggregate data from 
ingest clusters.  Producers produce data to an 
ingest cluster, and consumers consume from 
an aggregate cluster.  For resillency 
purpouses, we provide both ingest and 
aggregates in multiple, geographically 
isolated datacenters 
 
     Second, we have chosen Apache’s Avro as 
our schema  language.  Avro allows us to 
create a schema for a given event, and also 
provides a set of libraries which allow us to 
serialize and deserialize data conforming to 
that schema in a variety of languages.   
 
     We have built a home-grown schema 
mananger that allows us to associate a schema 
with a topic, and evolve that schema.  In the 
next section, we will describe the evolution 
process in more detail.  
 
     Third, we have chosen Apache’s NiFi for 
basic data cleansing and ETL.  While there 
will always be a need for advanced ETL, both 
at the batch and stream level, outside of this 
system, we decided that the capability to 
provide simple ETL was essential. 
 
     We use NiFi only to take streams of data 
that are in some non-standard format, such as 
raw logs, ad-hoc JSON, XML, etc, and put 
them into a standard format with a schema.       

NiFi was the right tool for this job because the 
vast majority of these transformations can be 
done by stringing together and configuring 
existing NiFi processors, without the need to 
write custom code.  This makes it possible for 
analysts to do this ETL without needing 
engineering assistance.   
 
     Fourth, we provide a home grown HTTP 
ingest system.  This is stood  up alongside the 
ingest Kafka clusters, and allows us to work 
with systems which would be difficult or 
impractical to ingest a Kafka client into.  This 
includes CPE and COAM devices.   
 
     The HTTP ingest system allows for two 
rough modes of operation.  First, we allow 
data that comes into it in a clean format.  This 
data is placed directly into a clean Kafka 
topic. 
 
     Second, we allow data that comes into the 
system in a raw format.  This could be some 
legacy CSV, XML, JSON, etc.  This data is 
placed into a raw, staging topic.  From there, 
we use our data cleansing tool, NiFi, to clean 
and wrap a schema around the data.  This 
allows us to avoid the need to duplicate data 
cleansing functionality in the HTTP ingest 
layer, as well as NiFi. 
 
     The final important platform we will 
provide in the stream data platform are tools 
for data security, discover, and governance.  
We are still early on in the selection of this 
toolset, but we have a good idea of some of 
the properties that we’ll need.   
 
     Our data security tooling will need to 
allow us to enforce and configure two types of 
security policies, both of which we want to 
manage centrally. 
 
     First, we’ll need to be able to configure 
access and authorization policies.  This will 
allow access to topics on a per topic basis.  
Second, we’ll need to configure data security 
policies.  This is much more difficult, but at a 
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high level, these policies will allow us to 
encrypt streams of data, both at rest and in 
flight, and allow us to tokenize sensitive fields 
in the data. 
 
     Note that encryption at rest is not sufficient 
data protection.  While at rest encryption will 
protect the data from filesystem access, 
assuming that the key management system 
has not been compromised, doing any analysis 
of large amounts of data will require it to be 
decrypted.   
 
     This means that many analysts, and 
analysis systems, will be authorized to access 
the data.  If any of those systems, or people, 
are compromised, they will be able to decrypt 
and acquire large amounts of sensitive data.   
 
     The solution to this problem is to tokenize 
the most sensitive pieces of data, such as 
account identifiers, and other pieces of data 
which, when combined, could constitue PII.  
This must be done in a consistent way, so that 
analysts can still do joins, between datasets.   
 
     When done consistently, this level of 
tokenization will protect from de-
ananomyization attacks associated with large 
scale data breaches.   
 
     Hand in hand with these security tools are 
our data governance and discovery tools.  
These tools will allow us to view the schemas 
for different data streams, view sample data 
for data streams (subject to security policy).   
 
     Basic, lightweight data governance, such 
as ensuring that clean data streams have a 
schema that conforms to basic guidelines, and 
so on, are essential to the ensuring that the 
stream data platform serves as a landing 
ground for high quality data, and not just a 
dumping ground of data streams. 
 
 

SCHEMA DEFINITION AND 
EVOLUTION. 

 
     Our schema definition and evolution 
processes form the backbone of our data 
governance policies.  We’ll cover both in 
detail here, starting with schema definition. 
 
     We define certain core schemas, including 
distributed trace metadata, a common header 
format, common data types, such as account 
and device identifiers, and so on.   
 
     Schemas for a specific data stream are 
composed of these core schemas, in addition 
to data fields which are specific to that stream.  
Our data governance policy is centered 
around ensuring that we’re making 
appropriate use of  these schemas. 
 
     Wherever possible, we will automate data 
governance checks.  For instance, we’ll 
automatically validate schemas, check for 
required fields, such as docstrings, and so on.  
All of this will be done in a self-service 
manner, and be backed by a lightweight 
manual check. 
 
     Once a schema is created, it will be placed 
in the runtime schema management system 
we described in the last section.  From there, a 
single producer system will write data into the 
stream data platform, conforming to the 
schema.  Many consumers may then read and 
work with the data.  
 
     Producers must have the ability to evolve 
their schema independent of any consumer, as 
we cannot force new shcemas on highly 
distributed set of consumers.  In order to do 
so, we take advantage of Avro’s schema 
compatability feature.  Avro allows for a 
reader schema, which is the schema used by 
the data consumer, and a writer schema, the 
schema used by the data producer. 
 
     Avro strictly specifies, and Avro libraries 
enforce, what it means for a reader schema to 
be compatible with a  writer schema.  The 
exact semantics can be found in the Avro 
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specification, but as a motivating example: a 
writer schema may have a field added to it, 
and remain compatible with an existing reader 
schema.  However, a field can be removed if 
and only if  a default was provided for it in the 
original schema.   
 
     While Avro’s schema compatability 
feature strictly specifies what it means for a 
reader and writer schema to be compatibile, it 
does not have semantics to deal with changing 
a schema over time. 
 
     For instance, as mentioned earlier, it’s 
“safe” to remove a field with a default from a 
writer schema.  In this case, existing 
consumers will see the default value for the 
field. 
 
     However, it’s possible to make a series of 
safe modifications that result in incompatible 
schemas.  For instance, a field with a given 
name could be removed in one revision, then 
added back in in a subsequent revision, with a 
different type.   
 
     Consumers with the original schema would 
no longer be able to parse data produced by 
the new schema, as they would see data 
produced with a different type than they were 
expecting.  At the time of this writing, we rely 
only on Avro’s schema compatability, but we 
expect to extend this through our schema 
management system to enforce compatability 
through multiple schema versions. 
     

SUMMARY 
 

     Comcast’s stream data platform allows for 
the collection of telemetry data, at scale, and 
for a wide variety of purpouses.  To do so, we 
provide a high capacity data bus, using 
Apache Kafka, as well as schema 
management and data ingest systems.  Furture 
work will center around advanced schema 
management, data governance and security 
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