
A Stream Data Platform For Video Delivery Telemetry
Michael Bevilacqua-Linn

 Comcast

 Abstract

 As video delivery systems transition to all
IP, they are becoming massively scaled
distributed systems. Comcast’s video delivery
systems span hundreds of sites, and failures in
one site can have unexpected negative
imapcts on video delivery. When
troubleshooting these sorts of systems, it’s
useful to have as broad, but often shallow,
operational view of the system as a whole.

In addition, these systems generate data
essential for business intelligence, capacity
planning, reccomendations, and a whole
variety of other essential functions. Without a
system to methodically collect data from
across this infrastructure, data collection is
usually done via a set of ad-hoc integrations,
usually with log files, or, at best, custom
telemetry collection schemes. This leads to a
stew of ever-shifting data formats, which
much be parsed and reconciled to make sense
of the system as a whole

In this paper, we present an architecture for a
stream data platform which allows us to
comphrehensively collect high value data, for
both operational and other business
purpouses, at large scale. In addition, we
present a method of defining and evolving
schemas for this data.

INTRODUCTION

 Large scale distributed systems are
notoriously tricky to reason about and debug.
Our current methods generally assume that
only the engineering or operations team
responsible for an individual component in a
larger distributed system has visibility into
that component.

 When an incident occurs, those
engineering and operations teams are often
brought together in a conference bridge, chat
room, or email chain of doom. Using
parochial tools and data collection, the
individuals responsible for the
troubleshooting effort attempt to
communicate as best they can about complex
issues, often without the ability to effectively
share data.

 The data that’s collected for these
parochial toolsets often comes in the form of
unstructured logs, which are under the control
of an individual engineering team. They may
change the format of those logs at any time to
better meet their needs. As this is the often
only data collection source for a given
component, point-to-point integrations
between log collection systems and other
systems which produce business value, such
as business intelligence clusters, customer
care tools, and so on.

 As the primary motivation for the initial
data collection is parochial, and the logs are
not considered part of the contract that the
component has with the outside world, this
often causes much strife. A development
team may add to, modify the semantics of, or
remove elements from the log file at will.

 Additionally, the point-to-point
integrations between systems are expensive,
and involve time consuming, and error prone,
ETL from one system to another.

 These issues can be overcome with the
addition of a stream data platform, which is
intented to summplement existing parochial
data collection systems. The stream data
platform has several main goals.

2016 Spring Technical Forum Proceedings

 First and foremost, it serves as an
extremely high volume, resilient, real time
data bus for data which needs to leave the
parochial confines of an individual
component. When a stream goes into the
stream data platform once, it can be used by
many other systems which provide business
value. For instance, a stream of video starts
from an IP player may be used for business
intelligence reporting, operational tooling,
customer care tools, reccomendations, and so
on.

 Second, it provides a means to associate a
schema with streams of data, and a means to
evolve the schema for that data without
breaking existing consumers of it. A schema
is essential to aid consumers of the data in
their data integration projects, however, in
recent years, schemas have fallen somewhat
out of style in the big data ecosystem.

 As the ecosystem matures, this is
changing. However, the schema technology
needs to be more flexibile than traditional
RDBMS schemas. In particular, a single
stream may be consumed by many consumers,
and not all of them will be willing or able to
update their schema when a new version of it
is created. Through a combination of
technology choices and process, we enable
schemas to be evolved by a data producer
independent of any data consumer.

 Third, the stream data platform provides
ETL tools which can take raw streams of data,
and transform them into clean streams of data
once at ingest time. While we prefer, and
recommend, that a source system directly emit
clean data conforming to a schema, it’s often
impossible or impracticle to modify an
existing system to do so. Doing this ETL
once at ingest into the platform is still a win
over doing it in an ad-hoc, case by case bases
for point-to-point integration projects.

 Fourth, the stream data platform will
provide tools for data governance, security

and discovery. Through the platform we must
be able to secure an individual stream of data,
through authorization before the stream can
be accessed, as well as data security methods
such as encryption of the data while it’s at rest
in the platform, and tokenization of individual
fields. This security must be tied in with
reasonable data governance policies, which
specify what types of data need which
security policies.

 For example, a data stream which has
elements in it which, when combined with
other data sets, may constitue PII may need to
both be encrypted while at rest, and have the
the sensitive fields tokenized, to limit the risk
of a data breach and ensure regulatory
compliance.

 Subject to data governance and security
concerns, any user of the system should be
able to discover the data sets, associated
schemas and other metadata. This will ensure
that users can find existing data streams and
have a holistic view of the data available.

 As of the writing of this paper, we mainly
address the first three concerns of the stream
data platform, and have done experimental
work on the fourth.

THE ELEMENTS OF A STREAM DATA
PLATFORM

 The stream data platform has several
elements. We have chosen to build the
platform on top of open source software,
primarily from the Apache foundation, along
with some home grown components.

 First, a system for high capacity data
transfer. For this, we have chosen Apache’s
Kafka, a distributed messaging system which
is highly optimized to ensure that all messages
can be persisted to disk. This is essential to
ensure that many consumers, all of which may
not be consuming at the same time, can access

2016 Spring Technical Forum Proceedings

the datt streams. We have been scaled Kafka
to a point where an individual cluster can
handle over one million messages per second,
without much tuning or effort, and are
confident we will be able to scale it to meet
our throughput targets as we grow the system.

 A key element in Kafka is the topic, which
represenents an individual data stream. We
have tooling to create topics conforming to a
naming convention, so that we can separate
out different types of data streams

 Our Kafkas are organized into ingest
clusters, which ingest some subset of data
from across our entire footprint, and larger
aggregate clusters, which aggregate data from
ingest clusters. Producers produce data to an
ingest cluster, and consumers consume from
an aggregate cluster. For resillency
purpouses, we provide both ingest and
aggregates in multiple, geographically
isolated datacenters

 Second, we have chosen Apache’s Avro as
our schema language. Avro allows us to
create a schema for a given event, and also
provides a set of libraries which allow us to
serialize and deserialize data conforming to
that schema in a variety of languages.

 We have built a home-grown schema
mananger that allows us to associate a schema
with a topic, and evolve that schema. In the
next section, we will describe the evolution
process in more detail.

 Third, we have chosen Apache’s NiFi for
basic data cleansing and ETL. While there
will always be a need for advanced ETL, both
at the batch and stream level, outside of this
system, we decided that the capability to
provide simple ETL was essential.

 We use NiFi only to take streams of data
that are in some non-standard format, such as
raw logs, ad-hoc JSON, XML, etc, and put
them into a standard format with a schema.

NiFi was the right tool for this job because the
vast majority of these transformations can be
done by stringing together and configuring
existing NiFi processors, without the need to
write custom code. This makes it possible for
analysts to do this ETL without needing
engineering assistance.

 Fourth, we provide a home grown HTTP
ingest system. This is stood up alongside the
ingest Kafka clusters, and allows us to work
with systems which would be difficult or
impractical to ingest a Kafka client into. This
includes CPE and COAM devices.

 The HTTP ingest system allows for two
rough modes of operation. First, we allow
data that comes into it in a clean format. This
data is placed directly into a clean Kafka
topic.

 Second, we allow data that comes into the
system in a raw format. This could be some
legacy CSV, XML, JSON, etc. This data is
placed into a raw, staging topic. From there,
we use our data cleansing tool, NiFi, to clean
and wrap a schema around the data. This
allows us to avoid the need to duplicate data
cleansing functionality in the HTTP ingest
layer, as well as NiFi.

 The final important platform we will
provide in the stream data platform are tools
for data security, discover, and governance.
We are still early on in the selection of this
toolset, but we have a good idea of some of
the properties that we’ll need.

 Our data security tooling will need to
allow us to enforce and configure two types of
security policies, both of which we want to
manage centrally.

 First, we’ll need to be able to configure
access and authorization policies. This will
allow access to topics on a per topic basis.
Second, we’ll need to configure data security
policies. This is much more difficult, but at a

2016 Spring Technical Forum Proceedings

high level, these policies will allow us to
encrypt streams of data, both at rest and in
flight, and allow us to tokenize sensitive fields
in the data.

 Note that encryption at rest is not sufficient
data protection. While at rest encryption will
protect the data from filesystem access,
assuming that the key management system
has not been compromised, doing any analysis
of large amounts of data will require it to be
decrypted.

 This means that many analysts, and
analysis systems, will be authorized to access
the data. If any of those systems, or people,
are compromised, they will be able to decrypt
and acquire large amounts of sensitive data.

 The solution to this problem is to tokenize
the most sensitive pieces of data, such as
account identifiers, and other pieces of data
which, when combined, could constitue PII.
This must be done in a consistent way, so that
analysts can still do joins, between datasets.

 When done consistently, this level of
tokenization will protect from de-
ananomyization attacks associated with large
scale data breaches.

 Hand in hand with these security tools are
our data governance and discovery tools.
These tools will allow us to view the schemas
for different data streams, view sample data
for data streams (subject to security policy).

 Basic, lightweight data governance, such
as ensuring that clean data streams have a
schema that conforms to basic guidelines, and
so on, are essential to the ensuring that the
stream data platform serves as a landing
ground for high quality data, and not just a
dumping ground of data streams.

SCHEMA DEFINITION AND
EVOLUTION.

 Our schema definition and evolution
processes form the backbone of our data
governance policies. We’ll cover both in
detail here, starting with schema definition.

 We define certain core schemas, including
distributed trace metadata, a common header
format, common data types, such as account
and device identifiers, and so on.

 Schemas for a specific data stream are
composed of these core schemas, in addition
to data fields which are specific to that stream.
Our data governance policy is centered
around ensuring that we’re making
appropriate use of these schemas.

 Wherever possible, we will automate data
governance checks. For instance, we’ll
automatically validate schemas, check for
required fields, such as docstrings, and so on.
All of this will be done in a self-service
manner, and be backed by a lightweight
manual check.

 Once a schema is created, it will be placed
in the runtime schema management system
we described in the last section. From there, a
single producer system will write data into the
stream data platform, conforming to the
schema. Many consumers may then read and
work with the data.

 Producers must have the ability to evolve
their schema independent of any consumer, as
we cannot force new shcemas on highly
distributed set of consumers. In order to do
so, we take advantage of Avro’s schema
compatability feature. Avro allows for a
reader schema, which is the schema used by
the data consumer, and a writer schema, the
schema used by the data producer.

 Avro strictly specifies, and Avro libraries
enforce, what it means for a reader schema to
be compatible with a writer schema. The
exact semantics can be found in the Avro

2016 Spring Technical Forum Proceedings

specification, but as a motivating example: a
writer schema may have a field added to it,
and remain compatible with an existing reader
schema. However, a field can be removed if
and only if a default was provided for it in the
original schema.

 While Avro’s schema compatability
feature strictly specifies what it means for a
reader and writer schema to be compatibile, it
does not have semantics to deal with changing
a schema over time.

 For instance, as mentioned earlier, it’s
“safe” to remove a field with a default from a
writer schema. In this case, existing
consumers will see the default value for the
field.

 However, it’s possible to make a series of
safe modifications that result in incompatible
schemas. For instance, a field with a given
name could be removed in one revision, then
added back in in a subsequent revision, with a
different type.

 Consumers with the original schema would
no longer be able to parse data produced by
the new schema, as they would see data
produced with a different type than they were
expecting. At the time of this writing, we rely
only on Avro’s schema compatability, but we
expect to extend this through our schema
management system to enforce compatability
through multiple schema versions.

SUMMARY

 Comcast’s stream data platform allows for
the collection of telemetry data, at scale, and
for a wide variety of purpouses. To do so, we
provide a high capacity data bus, using
Apache Kafka, as well as schema
management and data ingest systems. Furture
work will center around advanced schema
management, data governance and security

2016 Spring Technical Forum Proceedings

