
The Edge Resource Center: Leveraging NFV and SDN for High
Availability/High Performance Network Functions

 Jeff DeMent, Erich Arnold, and Mircea Orban
 ARRIS Group, Inc.

 Abstract

 Service providers around the world are
embracing Network Function Virtualization
(NFV) and Software Defined Networks (SDN)
as enabling technologies to help increase
service velocity and reduce costs. While some
network functions may be suitable for
deployment in a centralized data center,
others (such as content caching and
distributed denial of service attack (DDOS)
detection and mitigation) are most effectively
deployed at the network edge in order to meet
the necessary latency targets and avoid
degrading the user’s quality of experience.
This paper explores the concept of an Edge
Resource Center, a small-scale virtual
machine infrastructure (VMI) co-located with
the CCAP devices in a cable head-end that
supports high availability and high capacity
SDN/NFV resources.

INTRODUCTION

 Software Defined Networks (SDN) and
Network Function Virtualization (NFV) are
creating enormous interest as enabling
technologies to help increase service velocity
and reduce costs. SDN helps increase service
velocity by adding a level of programmability
to the network that’s not typically found in
purpose-built network elements. This
programmability typically comes in the form
of abstract RESTful web-service style
application program interfaces (APIs) for
configuring, monitoring, and managing
network elements and services, allowing
service provider and third party developers to
quickly create new network applications. This

promises the opportunity for increased
automation of the service provisioning and
service management functions, including the
potential for end user self-provisioning,
resulting in faster and more accurate
deployment of new services.

 Network Function Virtualization aims to
reduce network operator CAPEX and OPEX
by implementing network functions on
commercial off-the-shelf (COTS) servers
rather than on dedicated hardware appliances.
NFV takes some of the technologies
developed over the last decade to enable large
scale multi-tenant data centers– namely
virtualization of compute and storage
resources, in many cases implemented with
open source software – and applies them to
network functions that have typically been
implemented with ASICs, specialized packet
processors, and embedded software. Using
SDN or other techniques, multiple virtual
network functions (VNFs) can be linked
together into a service chain, applying the
appropriate functions to each user’s traffic in
the proper order. Standard data center virtual
infrastructure management software can be
employed to create a dynamic elastic network
service infrastructure where common
compute, storage, and network resources are
allocated to specific network functions based
on demand.

 One of the value propositions for SDN and
NFV deployments proposed for cable MSOs
is the opportunity to move network service
functions onto standard virtualization
infrastructure in large centralized data centers.
While some network functions may be
suitable for deployment in a centralized data
center, others (such as content caching and

2015 Spring Technical Forum Proceedings - Page 12015 Spring Technical Forum Proceedings

DDOS detection and mitigation) are most
effectively deployed at the network edge in
order to use network bandwidth more
efficiently and to meet the desired latency
targets to avoid degrading the user’s quality of
experience. This paper explores the concept
of an Edge Resource Center (ERC), a small-
scale virtual machine infrastructure (VMI) co-
located with the CCAP devices in a cable
head-end that supports high availability and
high capacity SDN/NFV resources, along
with the enhancements needed to allow the
CCAP device to participate in the distributed
NFV service chain.

PROBLEM STATEMENT

 The motivation for MSOs to develop an
architecture for network services based on
SDN and NFV is well-documented: costs to
satisfy exponentially increasing bandwidth
demand are growing faster than service
revenues, making rapid development and
introduction of new revenue-generating
services a necessity.

 To meet the network operational goals
needed to address this business challenge –
increased service velocity, reduced equipment
cost, and lower operational complexity – the
industry is looking to technologies and
solutions that have been successful for the
large-scale cloud computing providers. Some
of the desired characteristics are:
• A cloud-based architecture using

standard IT virtualization technology
• Use of standard COTS servers to replace

multiple network appliances, reducing
costs

• Service scalability, including the ability
to locate network functions at different
locations

• Elastic compute and network capability
for efficient resource utilization with
changing service demands

• Network programmability, based on
RESTful APIs, for rapid service creation
and increased automation

• Open standards and interfaces, to avoid
vendor lock-in

• Co-existence and compatibility with
existing network equipment

 This is an aggressive list and it remains to
be seen whether many of these benefits can be
realized. Some of the challenges to be
addressed are listed below.

Packet latency: Diverting each user packet to
a centralized data center and forwarding it
through multiple service functions, each of
which inspects the packet and makes
forwarding decisions, can add significant
latency and impact the user’s perceived
quality of experience for latency-sensitive
applications such as gaming. When the
service functions are running in virtualized
environments, the packet latency can be
further degraded by multiple hops through
virtual switches and guest O/S stacks.

Software complexity/reliability: Mission-
critical services need to be engineered to the
same “5-9s” level of reliability as the existing
access network equipment such as modern
CCAP platforms. Development of fault-
tolerant software has always been a
challenging exercise, even in a single-vendor
homogenous hardware environment.
Integration of loosely-coupled software
modules from multiple vendors into a highly-
available service offering adds significant
complexity to the modules themselves and to
the SDN controller/orchestrator and
associated applications responsible for
managing the service.

Congestion avoidance and mitigation:
Adding a centralized programmable SDN
controller with a global view of network
operating conditions would seem to simplify
the job of steering user traffic around
congested points to keep services operating

2015 Spring Technical Forum Proceedings - Page 22015 Spring Technical Forum Proceedings

efficiently. However, programmability can be
a double-edged sword; SDN applications
(potentially from different vendors) can
choose conflicting recovery actions, resulting
in congestion spread rather than abatement.
Techniques to isolate congestion and apply
consistent mitigation policies are needed.

 The remainder of this paper provides an
overview of some of the candidate SDN and
NFV technologies under investigation and
introduces the Edge Resource Center as an
architectural model for addressing these
challenges.

TECHNOLOGY BACKGROUND

SDN Overview

 SDN traces its history back through at least
three decades of research and experimentation
in programmable networks in the telecom
(e.g., Advanced Intelligent Network) and data
networking fields [1], but has really gained
traction with the development of the
OpenFlow™ protocol in 2007-2008 and its
subsequent standardization by the Open
Network Foundation. This generation of SDN
attempts to break the dependence on network
equipment vendors (and the resulting long
development times) to implement new
network features by completely separating the
control plane (e.g., policy and routing) from
the forwarding plane. This allows the control
plane to be moved to general purpose
computing platforms, using OpenFlow
technology to program the forwarding tables
in the now simplified (and theoretically
cheaper) data plane forwarding equipment.

 In recent years the SDN focus, particularly
in service provider networks, has shifted from
complete decoupling of the control and
forwarding planes, to augmenting existing
networks with additional the programmability
needed to rapidly design, prototype, test, and
deploy new network services. This requires
programmatic access to network configuration

and monitoring functions as well as
programmable forwarding. Accordingly,
additional protocols beyond the OpenFlow
protocol are now considered as part of the
SDN toolset: NETCONF and SNMP for
configuration and management,
PacketCable™ Multimedia (PCMM) for
policy and QoS in the cable access network,
and others.

SDN Architecture

 The main distinguishing feature of the
SDN architecture is a software-based SDN
controller, which discovers (or is configured
with) the network topology, provides abstract
“northbound” APIs to applications for
network control and management, and
communicates forwarding, configuration, and
policy instructions to the network elements it
controls. A number of both open source and
proprietary SDN controllers have been
developed over the past few years. Currently
one of the more popular controllers is from
the open source OpenDaylight project,
referred to from here on as ODL (figure 1).

Figure 1: OpenDaylight Controller Architecture

2015 Spring Technical Forum Proceedings - Page 32015 Spring Technical Forum Proceedings

 The ODL controller consists of an
extensible model-driven service abstraction
layer that performs the mapping between API
requests from applications (or internal higher-
level services) and the southbound protocols
that execute the requests via interactions with
network elements such as switches (physical
and virtual), routers, and CCAP devices.
Southbound protocols are implemented as
Java™ plug-ins, allowing new protocols to be
added without requiring frequent new
releases. ODL’s capability to support legacy
protocols such as SNMP and PCMM, as well
as vendor-specific protocols, is an important
feature for interoperating with existing cable
network infrastructure.

 Early SDN proponents favored a logically
centralized SDN controller (although possibly
distributed across multiple compute nodes for
increased capacity and/or redundancy), on the
theory that a centralized controller with global
knowledge of the network topology and
current conditions could help optimize packet
forwarding decisions in the network elements.
While this may be feasible for smaller

networks, it becomes impractical for large
geographically dispersed service provider
networks with a variety of equipment types.
SDN architectures for service provider
networks today generally include multiple
domain-specific controllers, for example, an
access-network controller, data-center
controller, and core network controller as
illustrated in figure 2. These controllers may
then be coordinated by an orchestration layer
or “controller of controllers.”

 The prototype ERC includes a highly
available OpenDaylight SDN controller
cluster that controls the CCAP devices, local
switches, and virtual switch infrastructure for
the entire head-end. It’s anticipated that at
some point in the future the ERC controller
may contain an interface to an orchestrator or
higher-level controller that coordinates the
activities of all head-ends and other network
regions.

Figure 2: Distributed Domain-specific SDN Controllers

2015 Spring Technical Forum Proceedings - Page 42015 Spring Technical Forum Proceedings

Figure 3: OpenFlow Switch Model

OpenFlow Protocol

 The OpenFlow protocol provides a
standardized interface for a control process
(e.g., an SDN controller) to program flow
tables in switches and routers [2]. The
OpenFlow switch model is comprised of one
or more flow tables, with each table entry
containing a matching rule (set of header
fields, including wildcards) used to match
against incoming packets, along with a set of
actions to perform on matching packets such
as output port selection, header field
overwrites, and counts to increment (figure 3).
Later versions of OpenFlow technology allow
multiple tables to be chained together, with
packet metadata (intermediate results) passed
from table to table to be used as additional
matching criteria, and the resulting actions
accumulated until the end of the chain. The
OpenFlow switch initiates a secure connection
to its designated controller to advertise
capabilities and accept flow programming
commands.
 While OpenFlow technology has been
proposed as a replacement for the embedded
switch/router control plane, we propose here

using it to augment the existing control plane
in cable access network elements. Adding
OpenFlow capability to a CCAP device
allows for fine-grained dynamic traffic
steering of packets at the network edge. For
example, reacting to a detected DDOS attack
by steering all packets destined for the attack
target through a stateful firewall that scrubs
out the attack packets while allowing the valid
traffic to pass. OpenFlow protocols can also
be used to program virtual switches to direct
flows between network functions in the ERC.

Other SDN Protocols

 Several existing protocols have also been
repurposed for use in SDN, particularly for
support of service provisioning via the SDN
controller. We have already mentioned
PCMM, a cable-specific protocol for
configuring dynamic DOCSIS® service flows
with appropriate QoS attributes, and SNMP
for network management, particularly status
and statistics collection. Both are
implemented in the prototype ERC.

 Two other SDN-related protocols that are
being considered for future use in the ERC are

2015 Spring Technical Forum Proceedings - Page 52015 Spring Technical Forum Proceedings

NETCONF and BGP-Link State (BGP-LS).
NETCONF is an IETF®-originated protocol
for modifying configuration data in network
elements. In particular it differentiates the
“running” (active) configuration data store
from the “startup” configuration data store
and “candidate” configuration data stores that
may become active when committed.
NETCONF data stores are modeled by the
YANG data modeling language, which can be
directly mapped to XML. The NETCONF
protocol is based on a remote procedure call
(RPC) model.

 BGP-LS is a set of extensions to the well-
established Border Gateway Protocol to allow
BGP-speaking network elements to share link
state and traffic engineering information with
external agents such as an SDN controller. Its
main purpose is to enable topology discovery
in the SDN controller [3].

Network Function VirtualizationOverview

 NFV aims to change the network operator
cost structure by moving from the current
practice of deploying a separate hardware-
based network appliance per function to a
model with all software-based functions on
running COTS hardware. With NFV, each
server is capable of performing multiple roles
by leveraging standard IT industry compute,
storage, and network virtualization techniques
[4].

 The ETSI NFV Industry Specification
Group has taken the lead in publishing a
number of documents, including general
requirements, a reference architectural
framework, use cases, and best practices for
performance and portability. The ETSI NVF
architecture includes a standard virtual
machine infrastructure (VMI) capable of
hosting one or more virtualized network
functions (VNFs), each of which may also
have an element manager to manage it. The
architecture is agnostic to the actual

virtualization technology (e.g., hypervisor)
employed.

 The reference framework also includes an
NFV management and orchestration
component (known as MANO) which is
responsible for lifecycle management of the
VNFs [5]. The MANO is responsible for
normal FCAPS functions. It also has the
responsibility for understanding the
operational characteristics of the VNF (called
key performance indicators, or KPI) and
scaling the VNF up by adding resources (for
example, CPU or memory) or creating new
VM instances, or scaling down by reallocating
resources or removing VM instances. The
Orchestrator component of the MANO also
integrates with the operator’s OSS/BSS
system.

The prototype ERC deploys a highly available
OpenStack® cluster to implement the MANO
virtual infrastructure management component.
VNF management (e.g., dynamic scaling of
VNF capacity) and orchestration are topics for
future research.

VMs and Docker™ Containers

 Virtual Machine technology has been
widely deployed in data centers for Web-
based applications and is the basis for NFV.
VM technology is usually implemented with a
hypervisor that logically partitions a server’s
physical resources – CPUs, memory, disk
space, and network interfaces – and allocates
the resource slices to individual VMs. Each
VM contains its own operating system
instance (called the guest O/S), allowing for
different operating systems to be running in
different VMs on the same physical server.
These extra layers of software add overhead
and can be the source of additional packet
latency for data plane VNFs.

2015 Spring Technical Forum Proceedings - Page 62015 Spring Technical Forum Proceedings

Figure 4: Example Docker Build and Deployment Model

 Docker containers are independent but
complimentary technology that has become
popular recently. The Docker architecture is
an open platform for distributing and
deploying cloud applications based on the
Linux container model [6]. Docker
containers are used to provide an isolated
runtime environment for the application that
encapsulates all components, libraries, and
configuration dependencies. Docker
containers are hardware and platform-
independent, allowing applications packaged
as Docker containers to run on many different
platforms (both physical and virtualized) and
improves portability across different operating
systems. Figure 4 illustrates the Docker build
and deployment model for applications
packaged in Docker containers.

 A Docker container differs from a virtual
machine in that it only encapsulates the
application and its dependencies, but not the
guest operating system. This makes it lighter
weight than a VM – it runs as a process in

user space on a host operating system – but
still provides isolation from other applications
running on the same platform. Note that the
actual deployment platform for the application
may be either a physical server or a VM itself.

EDGE RESOURCE CENTER OVERVIEW

 An Edge Resource Center (ERC) is a
small-footprint virtual machine infrastructure
(VMI) co-located with a group of CCAP
devices in a cable head-end that provides
highly available/high performance SDN/NFV
resources (figure 5). Locating these resources
at the network edge helps to control packet
latency for network functions requiring
minimal and/or predictable latency to provide
users with the desired quality of experience.
It can also help reduce network bandwidth
utilization by keeping traffic that can be
processed locally in the head-end rather than
back-hauling it to a centralized data center,
only to be forwarded back to the originating
head-end.

2015 Spring Technical Forum Proceedings - Page 72015 Spring Technical Forum Proceedings

Figure 5: Edge Resource Center Model – Scaled for 2 CCAP devices

ERC Functional Components

 The primary components of the ERC are:

COTS Server Array: The ERC hosts are low
cost COTS servers running the KVM (Kernel-
based Virtual Machine) hypervisor that
provide high capacity elastic compute and
network resources. Each server runs an Open
vSwitch (OVS) instance that provides layer 2
switching between VMs in the same server as
well as access to external networks, and can
be controlled via OpenFlow technology. This
configuration supports a large population of

lightweight VMs that provide local subscriber
services such as virtualized firewalls, deep
packet inspection (DPI) filters, edge caches,
and virtual CPE. The servers typically provide
only minimal storage resources, but can be
upgraded to support edge services such as
content caching that have more significant
storage requirements.

OpenStack VIM: The ERC VMI is managed
by a local OpenStack Virtual Infrastructure
Manager in a high-availability cluster
controlling the KVM hypervisor hosts
(compute/storage nodes) in a distributed
redundant configuration. OpenStack software

2015 Spring Technical Forum Proceedings - Page 82015 Spring Technical Forum Proceedings

provides a web-based dashboard for creating
and removing VM instances, configuring
virtual networks, and managing virtual
storage volumes. It also includes an image
service for managing VM images with
different guest operating systems and
configurations.

OpenDaylight SDN Controller: An
OpenDaylight SDN controller (ODL) cluster
is also hosted in a high-availability VM
configuration on the KVM hosts, to support
dynamic network configuration and
automation. The ERC ODL configuration
includes a PCMM protocol plug-in to support
dynamic service flows with specified QoS
attributes in the cable access network, as well
as OpenFlow protocol support for dynamic
service chaining and SNMP for configuration
and monitoring.

Switched Management Network: An Nx1
Gbps switched management network
connecting all devices.

Switched Data Plane Network: An Nx10
Gbps switched data plane network connecting
the servers and CCAP devices, with the
potential to connect to remote data centers.
The data plane switch also utilizes OpenFlow
technology.

CCAP Devices: The CCAP devices provide
the termination point for the cable access
network. The ERC CCAPs include a
prototype OpenFlow switch capability to
augment their standard routing and switching
capability.

Service Availability and Performance

 One of the primary goals of the ERC is to
support virtual network functions at the same
“5-9s” level of reliability as the existing
CCAP platforms. Achieving this level of

reliability requires that both the network
function itself and the supporting
infrastructure services – i.e., the OpenStack
VIM and the OpenDaylight SDN controller –
operate at this level of reliability.

 Since the underlying server hardware does
not typically meet this target, software
redundancy techniques are needed to meet
this goal. Both OpenStack and ODL are
deployed in the ERC as 3-instance clusters,
using existing open source clustering and data
replication technologies. Interfaces to
applications employ virtual IP addresses that
can float between cluster instances.

 High availability for individual network
functions running on the ERC is up to the
VNF developer. Different redundancy models
are used depending on whether the VNF is
stateful or stateless. Stateless VNFs are
commonly deployed in an active/active model
using load-balancing. A failure of a VNF
instance using this model can affect as little as
a single transaction, with remaining instances
taking over the load until a new VNF instance
can be created. Availability for stateful VNFs
is a little more complicated, typically
requiring multiple instances of the VNF in
active/backup arrangements, with state data
replicated or check-pointed from the active
instance to the backup instances. A failure of
the active instance in this case requires
interaction with the SDN controller to
reconfigure the traffic flow towards the
backup instance, with a resynchronization
phase later when the failed VNF instance is
restored. The same clustering and replication
technologies employed by OpenStack
software and ODL may be used by VNFs
using either model.

2015 Spring Technical Forum Proceedings - Page 92015 Spring Technical Forum Proceedings

Figure 6: The VM Container Ship Model

 Key performance characteristics for any
deployed network function are bandwidth and
packet latency. In virtualized environments,
delivering predictable bandwidth and packet
latency depends on many factors: the
capability of the underlying hardware (e.g.,
number of CPU cores, threading capability,
memory and I/O bandwidth), the performance
of the virtualization software and O/S stacks
(including the virtual switch implementation),
and the loading factors of other functions
sharing the platform to name just a few.

 The ETSI NFV Industry Specification
Group has published a set of best practices for
performance and portability of NFV data
plane workloads to help guide network
operators in making appropriate choices for
virtualization infrastructure [7]. The
recommendations include suggested
requirements for the architecture and
capabilities of both the underlying hardware
and hypervisor/host O/S. Also included are
proposed templates for specifying the
capabilities of a compute host and its
virtualization infrastructure and for specifying
the requirements of a VNF virtual machine
image. The virtual infrastructure manager or
orchestration system could then match VNF
image requirements against host capabilities
when deciding where to locate the VNF.

The VM Container Ship Model

 One of the models under evaluation in the
prototype ERC to help manage both
performance and availability of VNFs is the
use of a combination of VMs and Docker
containers to group related VNFs or multiple
components of a single logical VNF. In this
model, the VM acts as a “container ship”
running the related Docker containers as
independent processes on the VM’s guest O/S
(figure 6).

This model can have several advantages.
• The related VNF components share a

single guest O/S image and can use
more efficient inter-process
communication techniques than
switching between VM images through
the virtual switch.

• The related VNF components can
comprise a single “fault group” with a
shared fate. This means that the failure
of a single VNF component fails the
group. This can simplify the design of
the VNF components since each
component does not have to be designed
to deal with the failure and recovery of
its dependent components; instead the
entire VM instance can be destroyed and
restarted.

2015 Spring Technical Forum Proceedings - Page 102015 Spring Technical Forum Proceedings

• Multiple small VNFs in a per-subscriber
service chain could be co-located in a
single VM image. This “vertical slicing”
of related VNFs at the per-subscriber
level can limit the impact of a VM
failure to a single subscriber and take
advantage of the improved performance
and simplified recovery strategy
described above.

USE CASES

 Two possible use cases for ERC-based
services are discussed below: DDOS
detection/mitigation and network DVR
playback over IP. The DDOS protection use
case illustrates the use of SDN with the
OpenFlow protocol for dynamic service chain
creation, while the nDVR playback case
illustrates the use of SDN with PCMM for

dynamic bandwidth allocation in the cable
access network.

DDOS detection/mitigation

 MSO-provided DDOS protection is a good
candidate for deployment using an SDN and
NFV-based architecture in the ERC. A typical
implementation for DDOS protection today in
an MSO network might be to connect a
dedicated DDOS appliance supporting a small
number of subscribers in the data path
between the Internet and the CCAP device
serving the subscriber. The DDOS appliance
examines all traffic to and from the
subscriber, mostly just passing it through
except for the rare times when an attack is in
progress.

Figure 7: Example DDOS Detecton/Mitigation Service in ERC

2015 Spring Technical Forum Proceedings - Page 112015 Spring Technical Forum Proceedings

 An SDN/NFV approach using ERC
resources (figure 7) instead would have 2
components:

• A DDOS detection application
implemented as an SDN application,
using OpenDaylight northbound APIs
to monitor traffic statistics and derive
usage patterns for DDOS protection
subscribers.

• A virtualized stateful firewall network
function deployed in the ERC as a
Docker container or as a standalone
VM. The firewall can be dynamically
created when a DDOS attack is
detected or, for faster response or
simplified load balancing, a firewall
instance can be statically created for
each subscriber.

 The dynamic DDOS protection service
works as follows.

1) The user logs into a self-service
application to provision the DDOS
service. Depending on the details of the
service, the IP address or addresses to be
protected may be derived from this
request, or might be manually entered
by the subscriber (other provisioning
scenarios are possible, not considered
further here).

2) The self-service application notifies the
DDOS detection application of the
subscriber IPs to be protected. The
DDOS detection application begins
monitoring traffic statistics for the
designated IP addresses via the ODL
instance in the head-end serving the
user. All data traffic continues to be
passed straight through the network
to/from the user device.

3) When the onset of a DDOS attack is
detected, the DDOS application requests
a stateful firewall instance to be
allocated in the ERC. Using the
OpenFlow protocol (via ODL), the
application inserts flow entries in the
serving CCAP device to forward all
traffic to and from the attacked IP
addresses through the stateful firewall
VNF.

4) The firewall VNF monitors traffic in
both directions to identify legitimate
downstream traffic, passing it back
through the CCAP device to the user.
Attack traffic is discarded at the
firewall.

5) Once the attack has ended, the DDOS
application removes the CCAP flow
entries for that subscriber, and traffic
flow resumes directly from/to the user
without going through the stateful
firewall VNF. The firewall VNF may
be destructed at this point or may just go
idle, waiting for the next attack on that
subscriber.

Network DVR Playback

 The IP nDVR playback use case (figure 8)
uses the PCMM capability of the ERC SDN
controller to provision a new service flow
across the DOCSIS network with desired QoS
characteristics for the user’s playback session.
The new service flow serves 2 purposes: (1)
allocating the required DOCSIS bandwidth
for the video playback session depending on
the video quality (SD, HD, or UHD) and (2)
ensuring the video playback is not counted in
the user’s normal High Speed Data service
counts.

2015 Spring Technical Forum Proceedings - Page 122015 Spring Technical Forum Proceedings

Figure 8: ERC nDVR Playback Example

 The nDVR playback operation is fairly
simple.

1) At the time of the playback request,
the nDVR server notifies the nDVR
application in the head-end ERC of the
user’s request, including the
destination IP address and port number
to be used for playback and the
required bandwidth.

2) The local nDVR application uses the
ODL PCMM API to provision a new
service flow for the playback session,
including the classifiers (IP address &
port number) to identify the playback
traffic and the required QoS settings.

3) The downstream playback session IP
packets are classified to the newly
created downstream service flow by

the CCAP device serving the
subscriber.

4) At the end of the playback session, the
nDVR server notifies the local nDVR
application to remove the associated
service flow.

CONCLUSIONS & FUTURE WORK

 Network operators have embraced SDN
and NFV as critical technologies for
improving service velocity and reducing
costs, but some network functions have
latency and availability requirements that may
be difficult to meet using a standard
centralized IT cloud infrastructure. Locating
these functions at the network edge can be an
effective strategy to ensure predictable
performance that provides users with the

2015 Spring Technical Forum Proceedings - Page 132015 Spring Technical Forum Proceedings

desired quality of experience. It can also help
reduce network bandwidth utilization by
keeping traffic that can processed locally in
the head-end rather than back-hauling it to a
centralized data center, only to be forwarded
back to the originating head-end.

 We propose deploying these services in an
Edge Resource Center (ERC), a small-scale
virtual machine infrastructure co-located with
the CCAP devices in a cable head-end/hub
that supports high availability, high capacity
SDN/NFV resources. The ERC includes
high-availability OpenStack and
OpenDaylight clusters and supports a large
population of lightweight VMs that provide
local subscriber services such as NFV
firewalls, DPI filters, edge caches, and virtual
CPE. Adding OpenFlow capability to the
CCAP devices takes advantage of their native
packet classification functions to add
programmable dynamic service chaining
capability to the ERC.

 The ERC supports a deployment model
that groups related VNFs or VNF components
packaged in Docker containers onto a single
VM that acts as a “container ship” to help
offset the overhead introduced by the
hypervisor and vSwitch for packets that
traverse multiple VNFs. The VM container
ship also acts as a fault group for the related
VNF components to help simplify VNF
failure and recovery strategies.

 As SDN and NFV technologies are
evolving rapidly there will surely be new
capabilities needed in the ERC. The following
are just a few of the capabilities being
considered for future study:

• Adding additional service chaining
capabilities such as the Network Service
Header (NSH) being standardized in the
IETF SFC work group for passing packet
metadata between VNFs;

• Adding NETCONF or other protocols to
add additional support for automating
service provisioning;

• Integrating the ERC with an orchestration
system, or “controller of controllers”, to
support distributed service chains with
reach beyond the head-end; and

• Adding data analytics capabilities to
facilitate new applications in the ERC.

REFERENCES

[1] J. R. a. E. Z. N. Feamster, "The road to sdn: an
intellectual history of programmable networks,"
ACM SIGCOMM Computer Communication
Review, vol. 44, no. 2, April 2014.

[2] N. McKeown and others, "OpenFlow: Enabling
Innovation in Campus Networks," ACM
SIGCOMM Computer Communication Review,
vol. 38, no. 2, April 2008.

[3] H. Gredler, J. Medved, S. Previdi, A. Farrel and
S. Ray, North-Bound Distribution of Link-State
and TE Information using BGP, IETF draft draft-
ietf-idr-ls-distribution-10.

[4] ETSI Industry Specification Group for NFV,
"Network Functions Virtualisation – Introductory
White Paper," October 2012. [Online]. Available:
http://portal.etsi.org/NFV/NFV_White_Paper.pdf.

[5] ETSI GS NFV-MAN 001 V1.1.1, Network
Functions Virtualisation (NFV); Management
and Orchestration, 2014-12.

[6] "What is Docker?," [Online]. Available:
https://www.docker.com/whatisdocker/.
[Accessed 4 March 2015].

[7] ETSI GS NFV-PER 001 V1.1.2, Network
Functions Virtualisation (NFV); NFV
Performance & Portability Best Practises, 2014-
12.

2015 Spring Technical Forum Proceedings - Page 142015 Spring Technical Forum Proceedings

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 179.25, 36.00 Width 253.50 Height 12.75 points
 Origin: bottom left

 1
 0
 BL

 Both
 AllDoc

 CurrentAVDoc

 179.2507 35.9971 253.501 12.75

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1b
 Quite Imposing Plus 2
 1

 1
 14
 13
 14

 1

 HistoryList_V1
 qi2base

