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 Abstract 
 
     Service providers around the world are 
embracing Network Function Virtualization 
(NFV) and Software Defined Networks (SDN) 
as enabling technologies to help increase 
service velocity and reduce costs.  While some 
network functions may be suitable for 
deployment in a centralized data center, 
others (such as content caching and 
distributed denial of service attack (DDOS) 
detection and mitigation) are most effectively 
deployed at the network edge in order to meet 
the necessary latency targets and avoid 
degrading the user’s quality of experience.  
This paper explores the concept of an Edge 
Resource Center, a small-scale virtual 
machine infrastructure (VMI) co-located with 
the CCAP devices in a cable head-end that 
supports high availability and high capacity 
SDN/NFV resources.  
 
 
 

INTRODUCTION 
 
     Software Defined Networks (SDN) and 
Network Function Virtualization (NFV) are 
creating enormous interest as enabling 
technologies to help increase service velocity 
and reduce costs.  SDN helps increase service 
velocity by adding a level of programmability 
to the network that’s not typically found in 
purpose-built network elements. This 
programmability typically comes in the form 
of abstract RESTful web-service style 
application program interfaces (APIs) for 
configuring, monitoring, and managing 
network elements and services, allowing 
service provider and third party developers to 
quickly create new network applications. This 

promises the opportunity for increased 
automation of the service provisioning and 
service management functions, including the 
potential for end user self-provisioning, 
resulting in faster and more accurate 
deployment of new services. 
 
     Network Function Virtualization aims to 
reduce network operator CAPEX and OPEX 
by implementing network functions on 
commercial off-the-shelf (COTS) servers 
rather than on dedicated hardware appliances.  
NFV takes some of the technologies 
developed over the last decade to enable large 
scale multi-tenant data centers– namely 
virtualization of compute and storage 
resources, in many cases implemented with 
open source software – and applies them to 
network functions that have typically been 
implemented with ASICs, specialized packet 
processors, and embedded software.  Using 
SDN or other techniques, multiple virtual 
network functions (VNFs) can be linked 
together into a service chain, applying the 
appropriate functions to each user’s traffic in 
the proper order.  Standard data center virtual 
infrastructure management software can be 
employed to create a dynamic elastic network 
service infrastructure where common 
compute, storage, and network resources are 
allocated to specific network functions based 
on demand. 
 
     One of the value propositions for SDN and 
NFV deployments proposed for cable MSOs 
is the opportunity to move network service 
functions onto standard virtualization 
infrastructure in large centralized data centers. 
While some network functions may be 
suitable for deployment in a centralized data 
center, others (such as content caching and 
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DDOS detection and mitigation) are most 
effectively deployed at the network edge in 
order to use network bandwidth more 
efficiently and to meet the desired latency 
targets to avoid degrading the user’s quality of 
experience.  This paper explores the concept 
of an Edge Resource Center (ERC), a small-
scale virtual machine infrastructure (VMI) co-
located with the CCAP devices in a cable 
head-end that supports high availability and 
high capacity SDN/NFV resources, along 
with the enhancements needed to allow the 
CCAP device to participate in the distributed 
NFV service chain. 
 

PROBLEM STATEMENT 
 
     The motivation for MSOs to develop an 
architecture for network services based on 
SDN and NFV is well-documented: costs to 
satisfy exponentially increasing bandwidth 
demand are growing faster than service 
revenues, making rapid development and 
introduction of new revenue-generating 
services a necessity. 
 
     To meet the network operational goals 
needed to address this business challenge –  
increased service velocity, reduced equipment 
cost, and lower operational complexity – the 
industry is looking to technologies and 
solutions that have been successful for the 
large-scale cloud computing providers.  Some 
of the desired characteristics are: 
• A cloud-based architecture using 

standard IT virtualization technology 
• Use of standard COTS servers to replace 

multiple network appliances, reducing 
costs 

• Service scalability, including the ability 
to locate network functions at different 
locations 

• Elastic compute and network capability 
for efficient resource utilization with 
changing service demands 

• Network programmability, based on 
RESTful APIs, for rapid service creation 
and increased automation  

• Open standards and interfaces, to avoid 
vendor lock-in 

• Co-existence and compatibility with 
existing network equipment 

 
     This is an aggressive list and it remains to 
be seen whether many of these benefits can be 
realized. Some of the challenges to be 
addressed are listed below. 
 
Packet latency: Diverting each user packet to 
a centralized data center and forwarding it 
through multiple service functions, each of 
which inspects the packet and makes 
forwarding decisions, can add significant 
latency and impact the user’s perceived 
quality of experience for latency-sensitive 
applications such as gaming. When the 
service functions are running in virtualized 
environments, the packet latency can be 
further degraded by multiple hops through 
virtual switches and guest O/S stacks. 
 
Software complexity/reliability: Mission-
critical services need to be engineered to the 
same “5-9s” level of reliability as the existing 
access network equipment such as modern 
CCAP platforms.  Development of fault-
tolerant software has always been a 
challenging exercise, even in a single-vendor 
homogenous hardware environment.  
Integration of loosely-coupled software 
modules from multiple vendors into a highly-
available service offering adds significant 
complexity to the modules themselves and to 
the SDN controller/orchestrator and 
associated applications responsible for 
managing the service. 
 
Congestion avoidance and mitigation:  
Adding a centralized programmable SDN 
controller with a global view of network 
operating conditions would seem to simplify 
the job of steering user traffic around 
congested points to keep services operating 

2015 Spring Technical Forum Proceedings - Page 22015 Spring Technical Forum Proceedings



efficiently. However, programmability can be 
a double-edged sword; SDN applications 
(potentially from different vendors) can 
choose conflicting recovery actions, resulting 
in congestion spread rather than abatement. 
Techniques to isolate congestion and apply 
consistent mitigation policies are needed. 
 
     The remainder of this paper provides an 
overview of some of the candidate SDN and 
NFV technologies under investigation and 
introduces the Edge Resource Center as an 
architectural model for addressing these 
challenges. 
 

TECHNOLOGY BACKGROUND 
 
SDN Overview 
 
     SDN traces its history back through at least 
three decades of research and experimentation 
in programmable networks in the telecom 
(e.g., Advanced Intelligent Network) and data 
networking fields [1], but has really gained 
traction with the development of the 
OpenFlow™ protocol in 2007-2008 and its 
subsequent standardization by the Open 
Network Foundation.  This generation of SDN 
attempts to break the dependence on network 
equipment vendors (and the resulting long 
development times) to implement new 
network features by completely separating the 
control plane (e.g., policy and routing) from 
the forwarding plane.  This allows the control 
plane to be moved to general purpose 
computing platforms, using OpenFlow 
technology to program the forwarding tables 
in the now simplified (and theoretically 
cheaper) data plane forwarding equipment.  
 
     In recent years the SDN focus, particularly 
in service provider networks, has shifted from 
complete decoupling of the control and 
forwarding planes, to augmenting existing 
networks with additional the programmability 
needed to rapidly design, prototype, test, and 
deploy new network services.  This requires 
programmatic access to network configuration 

and monitoring functions as well as 
programmable forwarding.  Accordingly, 
additional protocols beyond the OpenFlow 
protocol are now considered as part of the 
SDN toolset: NETCONF and SNMP for 
configuration and management, 
PacketCable™ Multimedia (PCMM) for 
policy and QoS in the cable access network, 
and others. 
 
SDN Architecture 
 
     The main distinguishing feature of the 
SDN architecture is a software-based SDN 
controller, which discovers (or is configured 
with) the network topology, provides abstract 
“northbound” APIs to applications for 
network control and management, and 
communicates forwarding, configuration, and 
policy instructions to the network elements it 
controls.  A number of both open source and 
proprietary SDN controllers have been 
developed over the past few years. Currently 
one of the more popular controllers is from 
the open source OpenDaylight project, 
referred to from here on as ODL (figure 1). 
 
 

 
Figure 1: OpenDaylight Controller Architecture 
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     The ODL controller consists of an 
extensible model-driven service abstraction 
layer that performs the mapping between API 
requests from applications (or internal higher-
level services) and the southbound protocols 
that execute the requests via interactions with 
network elements such as switches (physical 
and virtual), routers, and CCAP devices. 
Southbound protocols are implemented as 
Java™ plug-ins, allowing new protocols to be 
added without requiring frequent new 
releases. ODL’s capability to support legacy 
protocols such as SNMP and PCMM, as well 
as vendor-specific protocols, is an important 
feature for interoperating with existing cable 
network infrastructure.  
 
     Early SDN proponents favored a logically 
centralized SDN controller (although possibly 
distributed across multiple compute nodes for 
increased capacity and/or redundancy), on the 
theory that a centralized controller with global 
knowledge of the network topology and 
current conditions could help optimize packet 
forwarding decisions in the network elements. 
While this may be feasible for smaller 

networks, it becomes impractical for large 
geographically dispersed service provider 
networks with a variety of equipment types.  
SDN architectures for service provider 
networks today generally include multiple 
domain-specific controllers, for example, an 
access-network controller, data-center 
controller, and core network controller as 
illustrated in figure 2.  These controllers may 
then be coordinated by an orchestration layer 
or “controller of controllers.” 
 
     The prototype ERC includes a highly 
available OpenDaylight SDN controller 
cluster that controls the CCAP devices, local 
switches, and virtual switch infrastructure for 
the entire head-end.   It’s anticipated that at 
some point in the future the ERC controller 
may contain an interface to an orchestrator or 
higher-level controller that coordinates the 
activities of all head-ends and other network 
regions. 
 
 
 

 
 
 
 

 

Figure 2: Distributed Domain-specific SDN Controllers 
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Figure 3: OpenFlow Switch Model 

 
 
 
OpenFlow Protocol 
 
     The OpenFlow protocol provides a 
standardized interface for a control process 
(e.g., an SDN controller) to program flow 
tables in switches and routers [2].  The 
OpenFlow switch model is comprised of one 
or more flow tables, with each table entry 
containing a matching rule (set of header 
fields, including wildcards) used to match 
against incoming packets, along with a set of 
actions to perform on matching packets such 
as output port selection, header field 
overwrites, and counts to increment (figure 3). 
Later versions of OpenFlow technology allow 
multiple tables to be chained together, with 
packet metadata (intermediate results) passed 
from table to table to be used as additional 
matching criteria, and the resulting actions 
accumulated until the end of the chain. The 
OpenFlow switch initiates a secure connection 
to its designated controller to advertise 
capabilities and accept flow programming 
commands. 
     While OpenFlow technology has been 
proposed as a replacement for the embedded 
switch/router control plane, we propose here 

using it to augment the existing control plane 
in cable access network elements.  Adding 
OpenFlow capability to a CCAP device 
allows for fine-grained dynamic traffic 
steering of packets at the network edge. For 
example, reacting to a detected DDOS attack 
by steering all packets destined for the attack 
target through a stateful firewall that scrubs 
out the attack packets while allowing the valid 
traffic to pass. OpenFlow protocols can also 
be used to program virtual switches to direct 
flows between network functions in the ERC. 
 
Other SDN Protocols 
 
     Several existing protocols have also been 
repurposed for use in SDN, particularly for 
support of service provisioning via the SDN 
controller.  We have already mentioned 
PCMM, a cable-specific protocol for 
configuring dynamic DOCSIS® service flows 
with appropriate QoS attributes, and SNMP 
for network management, particularly status 
and statistics collection. Both are 
implemented in the prototype ERC.  
 
     Two other SDN-related protocols that are 
being considered for future use in the ERC are 
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NETCONF and BGP-Link State (BGP-LS).  
NETCONF is an IETF®-originated protocol 
for modifying configuration data in network 
elements. In particular it differentiates the 
“running” (active) configuration data store 
from the “startup” configuration data store 
and “candidate” configuration data stores that 
may become active when committed.  
NETCONF data stores are modeled by the 
YANG data modeling language, which can be 
directly mapped to XML. The NETCONF 
protocol is based on a remote procedure call 
(RPC) model. 
 
     BGP-LS is a set of extensions to the well-
established Border Gateway Protocol to allow 
BGP-speaking network elements to share link 
state and traffic engineering information with 
external agents such as an SDN controller. Its 
main purpose is to enable topology discovery 
in the SDN controller [3]. 
 
Network Function VirtualizationOverview 
 
     NFV aims to change the network operator 
cost structure by moving from the current 
practice of deploying a separate hardware-
based network appliance per function to a 
model with all software-based functions on 
running COTS hardware. With NFV, each 
server is capable of performing multiple roles 
by leveraging standard IT industry compute, 
storage, and network virtualization techniques 
[4].   
 
     The ETSI NFV Industry Specification 
Group has taken the lead in publishing a 
number of documents, including general 
requirements, a reference architectural 
framework, use cases, and best practices for 
performance and portability. The ETSI NVF 
architecture includes a standard virtual 
machine infrastructure (VMI) capable of 
hosting one or more virtualized network 
functions (VNFs), each of which may also 
have an element manager to manage it. The 
architecture is agnostic to the actual 

virtualization technology (e.g., hypervisor) 
employed.  
 
     The reference framework also includes an 
NFV management and orchestration 
component (known as MANO) which is 
responsible for lifecycle management of the 
VNFs [5].  The MANO is responsible for 
normal FCAPS functions. It also has the 
responsibility for understanding the 
operational characteristics of the VNF (called 
key performance indicators, or KPI) and 
scaling the VNF up by adding resources (for 
example, CPU or memory) or creating new 
VM instances, or scaling down by reallocating 
resources or removing VM instances.  The 
Orchestrator component of the MANO also 
integrates with the operator’s OSS/BSS 
system. 
      
The prototype ERC deploys a highly available 
OpenStack® cluster to implement the MANO 
virtual infrastructure management component.  
VNF management (e.g., dynamic scaling of 
VNF capacity) and orchestration are topics for 
future research. 
 
VMs and Docker™ Containers 
 
     Virtual Machine technology has been 
widely deployed in data centers for Web-
based applications and is the basis for NFV.  
VM technology is usually implemented with a 
hypervisor that logically partitions a server’s 
physical resources – CPUs, memory, disk 
space, and network interfaces – and allocates 
the resource slices to individual VMs. Each 
VM contains its own operating system 
instance (called the guest O/S), allowing for 
different operating systems to be running in 
different VMs on the same physical server. 
These extra layers of software add overhead 
and can be the source of additional packet 
latency for data plane VNFs. 
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Figure 4: Example Docker Build and Deployment Model 

 
 
 
     Docker containers are independent but 
complimentary technology that has become 
popular recently. The Docker architecture is 
an open platform for distributing and 
deploying cloud applications based on the 
Linux container model [6].   Docker 
containers are used to provide an isolated 
runtime environment for the application that 
encapsulates all components, libraries, and 
configuration dependencies.    Docker 
containers are hardware and platform-
independent, allowing applications packaged 
as Docker containers to run on many different 
platforms (both physical and virtualized) and 
improves portability across different operating 
systems.  Figure 4 illustrates the Docker build 
and deployment model for applications 
packaged in Docker containers. 
 
     A Docker container differs from a virtual 
machine in that it only encapsulates the 
application and its dependencies, but not the 
guest operating system. This makes it lighter 
weight than a VM – it runs as a process in 

user space on a host operating system – but 
still provides isolation from other applications 
running on the same platform.  Note that the 
actual deployment platform for the application 
may be either a physical server or a VM itself. 
 
EDGE RESOURCE CENTER OVERVIEW 

 
     An Edge Resource Center (ERC) is a 
small-footprint virtual machine infrastructure 
(VMI) co-located with a group of CCAP 
devices in a cable head-end that provides 
highly available/high performance SDN/NFV 
resources (figure 5).  Locating these resources 
at the network edge helps to control packet 
latency for network functions requiring 
minimal and/or predictable latency to provide 
users with the desired quality of experience.  
It can also help reduce network bandwidth 
utilization by keeping traffic that can be 
processed locally in the head-end rather than 
back-hauling it to a centralized data center, 
only to be forwarded back to the originating 
head-end.   
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Figure 5: Edge Resource Center Model – Scaled for 2 CCAP devices 

 
 
 
ERC Functional Components 
 
     The primary components of the ERC are: 
 
COTS Server Array: The ERC hosts are low 
cost COTS servers running the KVM (Kernel-
based Virtual Machine) hypervisor that 
provide high capacity elastic compute and 
network resources.  Each server runs an Open 
vSwitch (OVS) instance that provides layer 2 
switching between VMs in the same server as 
well as access to external networks, and can 
be controlled via OpenFlow technology.  This 
configuration supports a large population of 

lightweight VMs that provide local subscriber 
services such as virtualized firewalls, deep 
packet inspection (DPI) filters, edge caches, 
and virtual CPE. The servers typically provide 
only minimal storage resources, but can be 
upgraded to support edge services such as 
content caching that have more significant 
storage requirements.  
 
OpenStack VIM: The ERC VMI is managed 
by a local OpenStack Virtual Infrastructure 
Manager in a high-availability cluster 
controlling the KVM hypervisor hosts 
(compute/storage nodes) in a distributed 
redundant configuration.  OpenStack software 
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provides a web-based dashboard for creating 
and removing VM instances, configuring 
virtual networks, and managing virtual 
storage volumes. It also includes an image 
service for managing VM images with 
different guest operating systems and 
configurations. 
 
OpenDaylight SDN Controller:  An 
OpenDaylight SDN controller (ODL) cluster 
is also hosted in a high-availability VM 
configuration on the KVM hosts, to support 
dynamic network configuration and 
automation.  The ERC ODL configuration 
includes a PCMM protocol plug-in to support 
dynamic service flows with specified QoS 
attributes in the cable access network, as well 
as OpenFlow protocol support for dynamic 
service chaining and SNMP for configuration 
and monitoring. 

Switched Management Network:  An Nx1 
Gbps switched management network 
connecting all devices. 
 
Switched Data Plane Network:  An Nx10 
Gbps switched data plane network connecting 
the servers and CCAP devices, with the 
potential to connect to remote data centers. 
The data plane switch also utilizes OpenFlow 
technology. 
 
CCAP Devices:  The CCAP devices provide 
the termination point for the cable access 
network. The ERC CCAPs include a 
prototype OpenFlow switch capability to 
augment their standard routing and switching 
capability.  
 
Service Availability and Performance 
 
     One of the primary goals of the ERC is to 
support virtual network functions at the same 
“5-9s” level of reliability as the existing 
CCAP platforms.  Achieving this level of 

reliability requires that both the network 
function itself and the supporting 
infrastructure services – i.e., the OpenStack 
VIM and the OpenDaylight SDN controller – 
operate at this level of reliability.  
 
     Since the underlying server hardware does 
not typically meet this target, software 
redundancy techniques are needed to meet 
this goal. Both OpenStack and ODL are 
deployed in the ERC as 3-instance clusters, 
using existing open source clustering and data 
replication technologies.  Interfaces to 
applications employ virtual IP addresses that 
can float between cluster instances. 
 
     High availability for individual network 
functions running on the ERC is up to the 
VNF developer. Different redundancy models 
are used depending on whether the VNF is 
stateful or stateless.  Stateless VNFs are 
commonly deployed in an active/active model 
using load-balancing.  A failure of a VNF 
instance using this model can affect as little as 
a single transaction, with remaining instances 
taking over the load until a new VNF instance 
can be created.  Availability for stateful VNFs 
is a little more complicated, typically 
requiring multiple instances of the VNF in 
active/backup arrangements, with state data 
replicated or check-pointed from the active 
instance to the backup instances.  A failure of 
the active instance in this case requires 
interaction with the SDN controller to 
reconfigure the traffic flow towards the 
backup instance, with a resynchronization 
phase later when the failed VNF instance is 
restored.  The same clustering and replication 
technologies employed by OpenStack 
software and ODL may be used by VNFs 
using either model. 
 
 

 

2015 Spring Technical Forum Proceedings - Page 92015 Spring Technical Forum Proceedings



 

Figure 6: The VM Container Ship Model 

 
 
 
     Key performance characteristics for any 
deployed network function are bandwidth and 
packet latency. In virtualized environments, 
delivering predictable bandwidth and packet 
latency depends on many factors: the 
capability of the underlying hardware (e.g., 
number of CPU cores, threading capability, 
memory and I/O bandwidth), the performance 
of the virtualization software and O/S stacks 
(including the virtual switch implementation), 
and the loading factors of other functions 
sharing the platform to name just a few.   
 
     The ETSI NFV Industry Specification 
Group has published a set of best practices for 
performance and portability of NFV data 
plane workloads to help guide network 
operators in making appropriate choices for 
virtualization infrastructure [7].  The 
recommendations include suggested 
requirements for the architecture and 
capabilities of both the underlying hardware 
and hypervisor/host O/S.  Also included are 
proposed templates for specifying the 
capabilities of a compute host and its 
virtualization infrastructure and for specifying 
the requirements of a VNF virtual machine 
image.  The virtual infrastructure manager or 
orchestration system could then match VNF 
image requirements against host capabilities 
when deciding where to locate the VNF. 
 

 
The VM Container Ship Model 
 
     One of the models under evaluation in the 
prototype ERC to help manage both 
performance and availability of VNFs is the 
use of a combination of VMs and Docker 
containers to group related VNFs or multiple 
components of a single logical VNF. In this 
model, the VM acts as a “container ship” 
running the related Docker containers as 
independent processes on the VM’s guest O/S 
(figure 6).   
 
This model can have several advantages. 
• The related VNF components share a 

single guest O/S image and can use 
more efficient inter-process 
communication techniques than 
switching between VM images through 
the virtual switch. 

• The related VNF components can 
comprise a single “fault group” with a 
shared fate. This means that the failure 
of a single VNF component fails the 
group.  This can simplify the design of 
the VNF components since each 
component does not have to be designed 
to deal with the failure and recovery of 
its dependent components; instead the 
entire VM instance can be destroyed and 
restarted. 
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• Multiple small VNFs in a per-subscriber 
service chain could be co-located in a 
single VM image. This “vertical slicing” 
of related VNFs at the per-subscriber 
level can limit the impact of a VM 
failure to a single subscriber and take 
advantage of the improved performance 
and simplified recovery strategy 
described above. 

 
USE CASES 

 
     Two possible use cases for ERC-based 
services are discussed below: DDOS 
detection/mitigation and network DVR 
playback over IP.  The DDOS protection use 
case illustrates the use of SDN with the 
OpenFlow protocol for dynamic service chain 
creation, while the nDVR playback case 
illustrates the use of SDN with PCMM for 

dynamic bandwidth allocation in the cable 
access network. 
 
DDOS detection/mitigation 
 
     MSO-provided DDOS protection is a good 
candidate for deployment using an SDN and 
NFV-based architecture in the ERC. A typical 
implementation for DDOS protection today in 
an MSO network might be to connect a 
dedicated DDOS appliance supporting a small 
number of subscribers in the data path 
between the Internet and the CCAP device 
serving the subscriber.  The DDOS appliance 
examines all traffic to and from the 
subscriber, mostly just passing it through 
except for the rare times when an attack is in 
progress. 
 
 

 
 

 
 

Figure 7: Example DDOS Detecton/Mitigation Service in ERC 
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     An SDN/NFV approach using ERC 
resources (figure 7) instead would have 2 
components: 

• A DDOS detection application 
implemented as an SDN application, 
using OpenDaylight northbound APIs 
to monitor traffic statistics and derive 
usage patterns for DDOS protection 
subscribers. 

• A virtualized stateful firewall network 
function deployed in the ERC as a 
Docker container or as a standalone 
VM. The firewall can be dynamically 
created when a DDOS attack is 
detected or, for faster response or 
simplified load balancing, a firewall 
instance can be statically created for 
each subscriber.  

 
     The dynamic DDOS protection service 
works as follows. 
 

1) The user logs into a self-service 
application to provision the DDOS 
service.  Depending on the details of the 
service, the IP address or addresses to be 
protected may be derived from this 
request, or might be manually entered 
by the subscriber (other provisioning 
scenarios are possible, not considered 
further here). 

2) The self-service application notifies the 
DDOS detection application of the 
subscriber IPs to be protected. The 
DDOS detection application begins 
monitoring traffic statistics for the 
designated IP addresses via the ODL 
instance in the head-end serving the 
user. All data traffic continues to be 
passed straight through the network 
to/from the user device. 

3)  When the onset of a DDOS attack is 
detected, the DDOS application requests 
a stateful firewall instance to be 
allocated in the ERC. Using the 
OpenFlow protocol (via ODL), the 
application inserts flow entries in the 
serving CCAP device to forward all 
traffic to and from the attacked IP 
addresses through the stateful firewall 
VNF. 

4) The firewall VNF monitors traffic in 
both directions to identify legitimate 
downstream traffic, passing it back 
through the CCAP device to the user.  
Attack traffic is discarded at the 
firewall. 

5) Once the attack has ended, the DDOS 
application removes the CCAP flow 
entries for that subscriber, and traffic 
flow resumes directly from/to the user 
without going through the stateful 
firewall VNF.  The firewall VNF may 
be destructed at this point or may just go 
idle, waiting for the next attack on that 
subscriber. 

 
Network DVR Playback 
 
     The IP nDVR playback use case (figure 8) 
uses the PCMM capability of the ERC SDN 
controller to provision a new service flow 
across the DOCSIS network with desired QoS 
characteristics for the user’s playback session. 
The new service flow serves 2 purposes: (1) 
allocating the required DOCSIS bandwidth 
for the video playback session depending on 
the video quality (SD, HD, or UHD) and (2) 
ensuring the video playback is not counted in 
the user’s normal High Speed Data service 
counts. 
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Figure 8: ERC nDVR Playback Example 

 
 

     The nDVR playback operation is fairly 
simple. 

1) At the time of the playback request, 
the nDVR server notifies the nDVR 
application in the head-end ERC of the 
user’s request, including the 
destination IP address and port number 
to be used for playback and the 
required bandwidth.   

2) The local nDVR application uses the 
ODL PCMM API to provision a new 
service flow for the playback session, 
including the classifiers (IP address & 
port number) to identify the playback 
traffic and the required QoS settings. 

3) The downstream playback session IP 
packets are classified to the newly 
created downstream service flow by 

the CCAP device serving the 
subscriber. 

4) At the end of the playback session, the 
nDVR server notifies the local nDVR 
application to remove the associated 
service flow. 

 
 

CONCLUSIONS & FUTURE WORK 
 

     Network operators have embraced SDN 
and NFV as critical technologies for 
improving service velocity and reducing 
costs, but some network functions have 
latency and availability requirements that may 
be difficult to meet using a standard 
centralized IT cloud infrastructure.  Locating 
these functions at the network edge can be an 
effective strategy to ensure predictable 
performance that provides users with the 
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desired quality of experience.  It can also help 
reduce network bandwidth utilization by 
keeping traffic that can processed locally in 
the head-end rather than back-hauling it to a 
centralized data center, only to be forwarded 
back to the originating head-end.   
 
     We propose deploying these services in an 
Edge Resource Center (ERC), a small-scale 
virtual machine infrastructure co-located with 
the CCAP devices in a cable head-end/hub 
that supports high availability, high capacity 
SDN/NFV resources.  The ERC includes 
high-availability OpenStack and 
OpenDaylight clusters and supports a large 
population of lightweight VMs that provide 
local subscriber services such as NFV 
firewalls, DPI filters, edge caches, and virtual 
CPE.  Adding OpenFlow capability to the 
CCAP devices takes advantage of their native 
packet classification functions to add 
programmable dynamic service chaining 
capability to the ERC. 
 
     The ERC supports a deployment model 
that groups related VNFs or VNF components 
packaged in Docker containers onto a single 
VM that acts as a “container ship” to help 
offset the overhead introduced by the 
hypervisor and vSwitch for packets that 
traverse multiple VNFs.  The VM container 
ship also acts as a fault group for the related 
VNF components to help simplify VNF 
failure and recovery strategies. 
 
     As SDN and NFV technologies are 
evolving rapidly there will surely be new 
capabilities needed in the ERC. The following 
are just a few of the capabilities being 
considered for future study: 

• Adding additional service chaining 
capabilities such as the Network Service 
Header (NSH) being standardized in the 
IETF SFC work group for passing packet 
metadata between VNFs; 

• Adding NETCONF or other protocols to 
add additional support for automating 
service provisioning; 

• Integrating the ERC with an orchestration 
system, or “controller of controllers”, to 
support distributed service chains with 
reach beyond the head-end; and 

• Adding data analytics capabilities to 
facilitate new applications in the ERC. 
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