
RDK + CA/DRM: ENHANCING INTEROPERABILITY FOR ROBUST 
REVENUE SECURITY 

Petr Peterka 
Verimatrix 

 
Abstract 

 
Open source platforms such as 

RDK offer many advantages, including 
the benefit of having a common 
implementation instead of a common 
specification; however, they are not 
without challenges, such as security 
threats and interoperability with 
proprietary components such as 
conditional access system (CAS) or 
digital rights management (DRM).  
 

In this paper, the author explores 
how to optimize CA/DRM integration in 
the RDK bundle and ensure the revenue 
security of RDK applications. 
 
 The pay-TV industry relies on 
many moving parts to put an end-to-end 
television distribution system together. 
The set-top box (STB) on its own is an 
expensive custom-designed piece of 
consumer electronics. The Reference 
Design Kit (RDK) is trying to ease the 
cost burden of designing and integrating 
the STB by providing a common 
reusable middleware platform. 
 

As a joint venture between 
several operators (Comcast Cable, Time 
Warner Cable, and Liberty Global), the 
RDK open source platform is well-
poised for future growth and adoption. 
The platform currently has more than 
200 licensees but will certainly add more 
in coming months as it continues to 
expand its capabilities. Although RDK 
was initially designed for the needs of 
North American operators, it is 
becoming allocable world-wide. 

Consider for example RDK 
Management’s recent announcement that 
RDK now features support for the 
Digital Video Broadcasting (DVB) 
standard1, which is widely used 
throughout Europe and other parts of the 
world. 
 
UNDERSTANDING THE BENEFITS 

 
RDK has become an increasingly 

popular pre-integrated software bundle 
as it offers many advantages, including 
the ability to support a common 
implementation instead of a common 
specification, which can accelerate the 
deployment of next-gen video products 
and services. According to RDK Central, 
using the bundle can also “enable TV 
service providers to standardize certain 
elements of these devices, but also to 
easily customize the applications and 
user experiences that ride on top.”2 
 

There are also cost benefits – 
RDK is a $0/royalty free commercial 
source code license – as well as the 
ability to enhance collaboration through 
full transparency into the source code. 
As an open source code initiative, the 
RDK enables community members to 
add new features and resolve issues on 
their own schedule and make 
contributions back to the community. 
Such an approach enables multichannel 
video programming distributors 
(MVPDs) to focus, innovate, and 
differentiate at the application and                                                         
1 http://rdkcentral.com/rdk-management-
expands-dvb-support-for-operators/ 
2 www.redkcentral.com 

2015 Spring Technical Forum Proceedings



services layer. 
 

OUTLINING THE CHALLENGES 
 

However, RDK is not without 
challenges, such as security threats and 
interoperability with proprietary 
components such as conditional access 
system (CAS) or digital rights 
management (DRM). Content protection 
in the form of a CAS client and DRM 
client must be supported by RDK in 
order to realize its benefit, however 
today’s proprietary integrations with 
CAS clients are not scalable and create 
forked versions that are difficult to keep 
in sync with the main trunk RDK code. 
Once a forked version becomes stale and 
starts missing new features that have 
been developed after the forked version, 
the RDK benefits quickly diminish.  
 

It is also worth noting that while 
RDK takes advantage of the open-source 
nature of RDK-M managed software 
development, the OSS license 
obligations need to be carefully managed 
when integrating with a proprietary 
implementation of a CAS or DRM 
client. Specifically, the abstract CAS 
APIs integrated into RDK must have an 
OSS license that allows CAS or DRM 
clients to be plugged in without putting 
OSS obligations on the CAS vendor that 
they could not comply with.  
 

RDK AND REVENUE SECURITY 
 

CA/DRM plays an important role 
in an RDK bundle. Typically, an MSO is 
providing a pay-TV service and needs to 
protect that service and the associated 
revenue. While, subscribers are mainly 
interested in premium content such as 
Disney, HBO or ESPN, content owners 
are focused on protecting their content 

from theft and illegal distribution.  This 
is why MSOs have used CAS in their 
content distribution networks for 
decades. 
 

Even though a CAS client is 
typically a very small component for an 
RDK bundle, it interacts with several 
other modules within RDK as well as the 
overall device such as a set top box 
(STB), DVR, HDMI dongle or a 
connected TV. There are several main 
interfaces: 
 

• Interaction with the content 
tuner/demultiplexer – typical 
liner and on-demand television 
channel is encoded in MPEG-2 
Transport Stream (TS) format. 
Systems-on-chips (SOCs) and 
middleware such as RDK 
provide tuning and de-
multiplexing capability to 
optimize the channel tuning and 
channel changing experience. 
When a channel is encrypted by a 
CAS system, the TS carries 
additional messages such as 
EMMs and optionally EMMs. 
These need to be provided to the 
CAS client in order to properly 
decrypt the content. Newer 
systems utilize other formats 
such as MPEG-DASH, which 
has an equivalent mechanism to 
carry CAS or DRM specific data.  
 

• Interaction with a hardware 
root of trust – most premium 
content requires high level of 
security robustness. It can be 
achieved through several 
methods but most often the 
system relies on unique hardware 
identity and hardware-based 
keys. Such functionality can be 

2015 Spring Technical Forum Proceedings



exposed through a standardized 
key ladder or Trusted Execution 
Environment (TEE).  
Additionally, content is typically 
decrypted in hardware for 
performance and security 
reasons; therefore, additional 
access to these hardware 
resources is required. 
 

• Interaction with the 
application layer – it is 
desirable to isolate the CAS 
functionality from the application 
layer as much as possible but 
some high-level APIs are needed. 
(This will be addressed in more 
detail later in the paper.) 
 

• Access to IP stack - as many 
operators are migrating to all-IP 
architectures, IP-based CAS 
systems are more suitable than 
traditional 1-way systems. IPTV 
CAS utilizes the 2-way IP 
connectivity back to the MSO 
head-end in order to perform 
device authentication, 
entitlement and key retrieval at 
the time protected content is 
being accessed.  
 

• Forensic watermarking – 
premium content such as UHD, 
requires additional level of 
protection in the form of forensic 
watermarking. Several methods 
of embedding the mark exist. 
Technologies embedding a mark 
into the decoded video require 
access to the decoder.   

 
The CAS/DRM cannot be included 

in the open source as CAS vendors 
require a strict control over the CAS 
client implementation to guarantee 

integrity and authenticity. Furthermore, 
intellectual property included in the 
secure key management protocol and 
other cryptographic algorithms needs to 
be protected. If CAS client code was 
included in the open source, hackers 
could include “back doors” or gain too 
much knowledge about the system 
which could help them in defeating 
overall security.   
 

Ideally, the CAS client should be 
isolated from the middleware and 
application functionality and minimally 
intrusive on the rest of the functionality. 
Therefore, abstracting out the main 
functions without exposing unnecessary 
details of the CAS system is highly 
desirable.  
 

Furthermore, the MSO may want to 
retain the choice of with which CAS 
vendors they want to partner. A well-
designed abstraction layer allows them 
to relatively easily upgrade one CAS 
client version with another or even 
replace one CAS technology for another.  
 

MITIGATING THREATS TO 
REVENUE SECURITY 

 
Isolating the CAS functionality 

also helps eliminate any negative impact 
on the RDK functionality, evolution and 
innovation while preserving the ability 
to quickly integrate a CAS system of 
choice without proprietary integration 
into RDK or requiring special forked 
versions of RDK. At the same time, any 
CAS client that will be integrated with 
RDK can be properly isolated through a 
set of abstract APIs whose OSS license 
allows a plug-in of a proprietary CAS 
client without contaminating it with 
undesirable OSS obligations.  
 

2015 Spring Technical Forum Proceedings



Even though security and content 
protection shouldn’t be exposed to the 
user in order to keep the user interface as 
simple as possible, there are some 
activities that need an interaction 
between the application and the CA 
client.  
 
Tuning/Navigation 
 

Tuning, channel change or on-
demand asset selection are the main 
activities initiated by the user. When a 
protected channel or asset is selected, the 
proper entitlement and decryption must 
occur. When everything works well, the 
user shouldn’t even see the security 
activity that is triggered in the 
background. The main steps shown on 
the diagram below (as application use 
case #1) are originated by the application 
(e.g. EPG, VOD library, PVR playback) 
and request the tuning (or more 
generally content selection) module 
which tunes to the indicated channel, 
starts parsing the associated metadata 
and determines whether this content 
needs any interaction with the CAS 
subsystem at all. Content metadata (e.g. 
MPEG PMT tables) may indicate 
presence of CAS or DRM information 
(e.g. ECMs, DASH PSSH). This is a 
point of interaction with the CAS client 
as this information needs to be passed in 
for CAS processing. Once the CAS 
function completes, assuming that the 
user is authorized to watch the selected 
content, the decryption module is 
properly armed.  
 

Of course, behind the scene, the 
CAS client will use the TCP/IP stack to 
communicate with key management 
servers in the head-end to obtain content 
decryption keys, and with the SOC 
security functions to achieve desired 

level of robustness.  
 

The scenario is very similar 
between tuning to a live channel, playing 
from a local or network DVR, or 
selecting a movie or TV episode from a 
VOD library.  
 
Initialization/Provisioning 
 

STBs or more generally user 
devices capable of consuming MSO-
originated content may be leased by the 
operator following the typical traditional 
model, or could be retail devices such as 
connected TVs, retail STBs or dongles, 
etc. In the leased model, the STB and the 
CAS client may be preconfigured to 
connect and register to the operator with 
very little or no interaction with the user 
or the application. A retail device may 
be connected to one of several MSOs 
without the device manufacturer 
knowing the specifics. In this case, it 
may be the application that provides 
configuration information to the CAS 
client to provision to a specific MSO key 
management or license server.  
 

This is shown on the diagram 
below as application use case #2.  
 
Entitlements 
 

CAS systems have different ways 
for obtaining entitlements. In traditional 
systems they are delivered using EMM 
messages that are demultiplexed from 
the MPEG 2 Transport Stream and 
passed to the CAS client. In IP-based 
systems, the CAS client contacts the 
head-end key management server and 
requests entitlements (and corresponding 
keys) over the 2-way IP channel. Most 
of this functionality can be hidden from 
the application but under certain 

2015 Spring Technical Forum Proceedings



circumstances, the application may 
trigger an entitlement refresh action. The 
reason may be that the user subscribed to 
a new channel but the CAS client has not 
proactively requested the corresponding 
keys, yet.  This is shown on the diagram 
below as application use case #3.  

 
 
 
 
 
 

On-screen Display (OSD) 
 

Even though CAS clients 
typically do not have a user interface, 
there are scenarios where it needs to 
provide some status to the user or even 
solicit input form the user.  
 

For instance, when a user tunes 
to a channel that it is not entitled for, the 
decryption and eventual rendering of the 
content will fail. An application should 
know the reason so that it can provide 
adequate information to the user, show 
instructions how to sign up for that 
channel or tune to an alternative channel. 
 

Another example is based on 
events that may be controlled by the user 
such as parental control or pay-per-view 
purchases. If these events require a user 
action, such as providing a security PIN 

code, the CAS client must have an 
ability to communicate with the right 
application. 
 

When a specific channel or on-
demand content is forensically 
watermarked, the use may need to be 
notified. This is another instance where 
the CAS client needs to provide 
additional information to the user via the 
application layer.   
 

THE POWER OF 
STANDARDIZATION 

 
There are different methods to 

standardizing on RDK. One way is to 
create an OSS implementation and share 
it with all vendors who need that 
functionality. All users of OSS benefit 
from a single implementation centralize 
code management process and testing 

2015 Spring Technical Forum Proceedings



responsibilities. Another, possibly more 
traditional method is to create a 
standards organization which publishes a 
specification based on contribution of 
interested parties.  
 

There are several standards 
organizations that help the TV industry. 
The main international one is MPEG but 
there are several others at the national 
level, including SCTE, CEA, CableLabs, 
etc.  
 

One area that has been 
historically covered by a proprietary 
integration between a SOC vendor and 
the CAS vendor is what is generically 
called hardware root of trust. This may 
include unique chip identifier, access to 
unique chip root keys, a proprietary key 
ladder which implements a complex key 
hierarchy that is specific to each CAS 
vendor, and actual content decryption by 
secure hardware. There has been 
progress made in the last several years to 
standardize this functionality in order to 
assist with CAS interoperability. Such 
approaches make client downloadability 
more feasible, provide options for 
running multiple CAS clients on the 
same device or to replace an old version 
of a CAS client with new one.   
  

An example of such standards is 
ETSI OMS KLAD3 and its North 
American extension SCTE 2014. This 
allows chip vendors to manufacture 
CAS-independent SOCs that can be used 
in devices that need the ability to 
download a CAS client either during the 
device manufacturing process or later                                                         3http://www.etsi.org/deliver/etsi_ts/103100_103
199/103162/01.01.01_60/ts_103162v010101p.pd
f 
4http://www.scte.org/documents/pdf/Standards/A
NSI_SCTE%20201%202013.pdf 

when the device is installed in 
consumer’s home. Such a solution may 
also require a Trust Authority (TA) that 
generates and manages the chip root 
keys and provides them to all CAS 
vendors who end up using those chips. 
Such companies exist today and provide 
this role to the industry today. 
 

Another standard that is very 
beneficial to the CAS interoperability 
goal is DVB Simulcrypt5. When an 
operator runs their pay-TV distribution 
system in the Simulcrypt mode, two or 
more CAS systems can coexist on the 
network. Some devices integrate or 
download CAS from vendor A while 
other devices may integrate a solution 
from CAS vendor B. Such systems have 
been successfully deployed around the 
world.  
 

These standards when supported 
by RDK will make integration with CAS 
clients much faster and almost plug-and-
play.  
 

When an in-the-field or over-the-
air downloadability of a specific CAS 
client is required, the actual download 
mechanism and the run-time 
environment need to be standardized as 
well. This is a very complex and difficult 
task but good progress has been done by 
the industry especially by 
GlobalPlatform6. The most relevant 
aspect of the GP activities is related to 
Trusted Execution Environment (TEE). 
The TEE architecture splits the SOC 
execution into a trusted world and 
untrusted world. Security sensitive                                                         
5http://www.etsi.org/deliver/etsi_ts/103100_1031
99/103197/01.05.01_60/ts_103197v010501p.pdf 
6 
https://www.globalplatform.org/mediaguidetee.a
sp 

2015 Spring Technical Forum Proceedings



computation such as ECM processing, 
content decryption and content 
watermarking is performed by a trusted 
application (TA) running in the TEE 
while non-secure parts of the CAS client 
run in the rich execution environment 
(REE). 
 

The REE part would primarily 
implement the mapping of the Abstract 
CAS API, which is used by the RDK 
internal modules to communicate with a 
CAS client, to the specific 
implementation of the CAS client 
running as a TA in the TEE. By securely 
downloading a new TA, the CAS 
functionality can be upgraded or even 
replaced by a different implementation. 
GlobalPlatform standardizes the APIs 
for communicating between the REE 
and the TEE as well as access to 
cryptographic functions inside the TEE 
to make portability of TAs between 
SOCs as transparent as possible.   
 

TEE has its own security 
architecture including secure boot, TA 
authentication and decryption, as well as 
HW root of trust. Additionally, the TEE 
may provide access to the OMS key 
ladder discussed above. 
 

LOOKING FORWARD 
 

From what has been discussed so 
far, it is clear that a significant amount 
of progress has been made already, RDK 
with all its OSS components is stable 
and enjoys real deployments. Standards 
such as SCTE, GlobalPlatform, MPEG-
DASH have released stable versions of 
their specifications. What is still missing 
are the abstract CAS APIs and HW 
security abstraction.  
 

The HW security abstraction can 

be modelled after the SCTE OMS 
standard and expose HW functions such 
as “get chip identifier”, “host 
authentication”, “set descrambler” and 
“get random number”.  
 

Tuner and demultiplexer 
modules of RDK will need APIs to 
“create a tuning session” such that 
multiple channels can be processed 
simultaneously. Within each context, 
CAS specific data, such as ECMs and 
EMMs, will be passed to the CAS client 
via “send CAS data” API, and finally the 
descrambling will be 
activated/deactivated by “start session” 
and “stop session”, respectively.  

 
Application oriented APIs will 

include “CAS initialization” to complete 
proper provisioning into a service, 
“purchase asset” and “update 
entitlements” related to access VOD or 
linear channels, “set parental rating” to 
limit what can be watched, and “get 
message” for any information that needs 
to be communicated to the user.   
 

The detailed object model of 
these APIs is certainly more complex 
that the outline above but several 
companies spent significant amount of 
time to put a concrete proposal together 
that is being evaluated by the RDK 
community.  
 

It is not difficult to see how the 
three seemingly antagonistic worlds of 
open source software, international and 
national standardization, and proprietary 
content protection can come together to 
assist in rapid deployment of a complex 
ecosystem.   
 

2015 Spring Technical Forum Proceedings


