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 Abstract 
 
IPv6 has been gaining traction both as a 
necessary service provider technology and as 
an increasing carrier of Internet 
traffic.   Within Comcast, dual-stack has been 
an important step to help IPv6 deployment 
mature and grow.  As IPv6 traffic grows and 
as IPv4 traffic diminishes, we would like to 
avoid the need to make software changes to 
enable network features, while also avoiding 
hardware operational costs that accompany 
the treatment of  IPv4 as native transport in 
our infrastructure.  As such, we are looking at 
ways for our next generation infrastructure to 
incrementally evolve towards an IPv6 focused 
infrastructure.   We realize we must continue 
to support IPv4 for the foreseeable future. 
Our our thinking is to support IPv4 as a 
Service (IPv4aaS) — meaning we will carry 
IPv4 traffic over a “lean” IPv6 focused 
network infrastructure.    In this paper, we 
detail the insights and learnings Comcast  
acquired in evaluating technologies that 
enable or support IPv4aaS over a lean core 
infrastructure. We also describe how these 
technologies synergize with current Software 
Defined Network (SDN) methodologies. 
 
 

INTRODUCTION 
 
The unmistakable rise of IPv6, both as a 
necessary service provider technology and as 
an increasing carrier of Internet traffic, 
prompted Comcast to take a leadership 
position in IPv6 deployment. Comcast 
operates a 100% dual-stack network, with a 
significant portion of our cable modem 
infrastructure strictly using IPv6.  As part of 
this effort, Comcast has developed and shared 
with the Internet community enhancements to 
OpenStack that support IPv6 for virtual 
machine (VM) and related infrastructure. 

 
Within Comcast, dual-stack represents an 
important step to the deployment, maturation 
and growth of IPv6.  None the less, we are 
looking at ways for our next generation 
infrastructure to natively support only IPv6.   
 
We believe this direction will result in a 
number of benefits.  One such infrastructure 
benefit would be a reduced Forward 
Information Base (FIB) size, because the 
network will only need to carry IPv6 
routes.   This translates into much less high-
speed memory required on routing line cards, 
which reduces the cost to build them, and the 
energy they consume.  Less memory on router 
line cards also translates into more compact 
form factors, which makes for better port 
densities. Further, less memory means less 
heat generation, which lowers overall 
environmental costs.   
 
If we are able to totally eliminate IPv4 as a 
native citizen in the network, we can also 
eliminate IPv4-specific features in the router 
configs— which, in turn, reduces both our 
configuration and operational 
overhead.  Further, we could operate router 
code revisions that only contain IPv6 
capabilities— which yields more efficient 
code, fewer bugs, and fewer unintended 
operational interactions with our equipment 
vendors.  It follows that a simpler router 
environment lowers the bar for new vendors 
to enter the eco-system and makes it more 
plausible to  seamlessly mix and match 
differing vendor router platforms. 
 
While we certainly see value in making the 
infrastructure IPv6 only, we can’t abandon 
IPv4 — even as its traffic share 
decreases.   By supporting IPv4 as a Service 
(IPv4aaS), we can carry IPv4 traffic over our 
“lean” network infrastructure.   
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Lean, IPv6 Focused, & Lean IPv6 Networks 
 
The technologies we present in the subsequent 
sections represent different capabilities and 
solve slightly different problems. We define a 
“lean” network as one with a relatively small 
FIB table, with a goal of keeping the FIB size 
small, to reduce capital and facility expenses.   
A lean network can be dual-stack.  
 
An IPv6-only network is one in which the 
network infrastructure only supports the IPv6 
protocol natively.  The goal of this network 
architecture is to drive towards a IPv6-only 
feature set; a small FIB is not a specific 
optimization.   
 
A “lean IPv6 core” is one where the 
underlaying network has the characteristics of 
reduced FIB size, and is a single stack 
network, namely based on IPv6.   
 
Before considering the technology options 
that enable a lean or IPv6-focused network, 
we need to consider how much IPv4 traffic 
currently exists on our network.   For 
instance, if we attempt to move to an IPv6-
only network today, how much IPv4 traffic 
might need to be carried, via an overlay 
technology?   
 
To determine the traffic load, we used 
Netflow information processed through 
Deepfield1 to show how much traffic was 
traversing the Comcast Backbone.   The 
amount of traffic observed over a five-day 
period is show in Figure 1.   In the following 
sections, we have opted to use qualitative 
terms to characterize the load on our network 
rather than specific values. 
 
Figure 1 shows that the Comcast backbone 
carries, at peak, multiple Tb/s of traffic.  Even 
during non-peak hours, the backbone carries 
traffic a significant IPv4 traffic load.  This is a 
sizeable amount of traffic to carry via an 
alternative technology were we to attempt to 
migrate to an IPv6 only network.   

 
Thus, in the near term, it might not be cost 
effective to transition all of this IPv4 traffic to 
an overlay technology in order to obtain an 
IPv6 only infrastructure.  However, there is 
value in understanding the specific traffic 
load, by IPv4 prefix, as a means to determine 
if we can incrementally evolve to a lean 
network core. 
 

 
Figure 1: Measured Load 

IPv4 FIB and Per Prefix Usage 
 
Our IPv4 Internet routing table contains a mix 
of Comcast local IPv4 routes (for internal 
connectivity) and Internet routes (routes 
received from peers that provide the Internet-
wide connectivity).   As of Q1 2015, the size 
of the IPv4 routing table is 575,000 routes. 
Each route has a “prefix” and a “mask” and 
consumes a FIB entry.    
 
Operators of ISPs around the world tend to 
differ in business and operational directions, 
and those directions tend to influence how an 
ISPs announces its IPv4 address space  to the 
Internet.   ISPs (us amongst them) often have 
limited means to manage these received 
announcements, while still maintaining full 
Internet connectivity.    
 
While full Internet connectivity is a 
requirement for the backbone, it wasn’t clear 
how much traffic was being delivered to each 
IPv4 route in the FIB.  
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Using Deepfield, we performed an analysis on 
the IPv4 traffic observed on the backbone.  
Specifically, we configured Deepfield to 
monitor and report on the amount of traffic 
observed per IPv4 prefix contained in the 
routing table.   We configured Deepfield to 
report data on five-minute intervals, meaning 
the information returned as average over a 
five-minute window.  
 

 
Figure 2: Observed Prefix count per 

Sample 

Figure 2 shows the number of prefixes 
Deepfield reported in each five-minute 
window, observed  during a five-day stretch 
in February 2015.   As it turns out, the number 
of prefixes varies between 140k (in the very 
early morning hours in the U.S.) to just over 
160k prefixes during the day and into the 
early peak hours.   
 
Recall that the full Internet routing table is 
about 575k routes, and at peak, Deepfield sees 
traffic of only 160k prefixes.  This means that 
Deepfield doesn’t see traffic for 415k prefixes 
(or more) in each 5-minute sample.   
 
Part of the reason we might not see traffic to 
these prefixes is related to our Netflow 
sampling configuration (1 packet per 8000).  
However, not seeing traffic to many prefixes 
(415k, in our case) likely indicates that there 
is very little traffic to  those prefixes in the 
first place.  

 
The first observation from this data:  Nearly 
three quarters (72%) of the IPv4 prefixes in 
our FIB have no measureable traffic.   
 
Details on the Prefixes Observed 
 
We continued our analyses by looking at the 
load reported for the prefixes within one five-
minute snapshot.  We picked a snapshot near 
peak load -- specifically, the 3:15 GMT 
snapshot on 2/20/2015. Figure 3 displays 
analysis from this five-minute snapshot. 
 

 
Figure 3:  Cumulative Load Percent 

Specifically, the graph in Figure 3 shows the 
cumulative load observed from the most 
loaded prefixes, as a percent of the total 
overall load.   
 
The first item of note: While the snapshot 
analysis contained 160,102 prefixes, the graph 
reports information for the 40k most heavily 
loaded prefixes (x-axis).  The graph doesn’t 
show the remaining 120,102 other prefixes 
because while there is some load to them, it’s 
insignificant compared to the total load. 
 
A number of additional key points are 
highlighted on the graph.  First, the 3,156 
most heavily loaded prefixes account for 90% 
of the total traffic on our backbone (red line).   
Recall that the backbone FIB consisted of 
575k routes.  What this means is that 0.0054% 
of the IPv4 prefixes carry 90% of the load in 

2015 Spring Technical Forum Proceedings



this snapshot.  The 3,156 most heavily loaded 
prefixes are derived from 2,281 Comcast 
prefixes (green line) and 875 Internet prefixes 
(blue line).   
 
A second highlight involves the point at 
which 99% of the traffic is carried. The top 
25,893 prefixes carry 99% of the overall total 
load.  These prefixes are made up of 5,884 
Comcast prefixes and 20,009 Internet 
prefixes.  What this means is that while our 
full Internet routes consist of 575k routes, 
99% of the IPv4 load is carried via 25,893 
prefixes—or 4.5% of the FIB.   The inverse of 
this is that 95.5% of the prefixes in our full 
route FIB carry just 1% of the load, roughly a 
few hundreds of Gb/s. 
 
What this analysis suggests is that a very lean 
FIB architecture is possible today—meaning 
we could significantly reduce the size of the 
IPv4 FIB with very little traffic (relative to the 
overall traffic load) being carried in an 
overlay IPv4aaS infrastructure.     
 
More details on the relationship between 
various possible lean FIB sizes and the 
corresponding load that would be carried in an 
overlay network are provided in the Figure 4. 
 
Figure 4 shows the amount of traffic that 
would need to be carried in an overlay 
IPv4aaS network, if the underlay (physical 
network) IPv4 FIB was limited to a number of 
lean sizes.   While not specifically shown on 
the graph, the y-axis maximum value is on the 
order of a few 100s of Gb/s—so all lines 
represent loads well below this.   Take, for 
instance, the red line in Figure 4, which 
corresponds to the IPv4 FIB of 25k prefixes.  
The graph shows the amount of traffic that 
would be in the overlay if the IPv4 FIB was 
limited to 25k prefixes.   As we increase the 
size of the underlay FIB, we can carry more 
prefixes and hence the load to the overlay 
network decreases.   
 

In this analysis, we choose which routes to put 
into the underlay FIB -- and thus what traffic 
would be carried in the overlay network.  To 
simplify the operation of the overlay network, 
we opted to pack the underlay FIB with routes 
in a particular order.  The order in which we 
selected routes to put into the underlay FIB 
was 1) our routes (highest loaded prefixes, 2) 
Internet aggregate routes (highest loaded 
prefixes first), and 3) Internet most specific 
routes (highest loaded prefixes first). 
 

 
Figure 4: FIB sizes and Overlay Load 

By putting all Comcast prefixes into the 
underlay FIB, the overlay network would only 
contain Internet prefixes and thus would only 
need to operate in one direction.  This 
simplifies the routing architecture needed to 
pull traffic into the overlay network. This 
approach does, however, increase the load on 
the overlay network, because we service 
several thousand Comcast prefixes with very 
little traffic (e.g. customers with static address 
prefixes.)   Internet aggregates were added 
before more-specifics, as they tend to be 
catchall announcements that subsume the load 
of the more-specifics, if the more-specifics 
disappeared from the upstream peer.  This 
approach results in a higher amount of traffic 
in the overlay network, but we think it a 
reasonable tradeoff, because it makes the 
overlay network architecture simpler. 
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Traffic Patterns Enable Thin FIB 
 
The data collected and corresponding analysis 
strongly suggests that today’s IPv4 traffic 
patterns easily lend themselves to a Thin FIB 
underlay solution, without requiring excessive 
resources to build an overlay network.   As 
shown in Figure 4, one could deploy routers 
with IPv4 FIBs holding well under 100k 
entries, and the overlay network would only 
need to carry upwards of a few 100s Gb/s at 
peak.  Note that this overlay load would be 
sourced from our regional networks, such that 
any individual regional network would source 
only a portion of this load.   
 
This means that a collection of cloud 
infrastructure resources, located within each 
regional network, should be sufficient to 
support the overlay infrastructure. 
 
Next, let us examine the different 
technologies which could be used to create 
this overlay network. 
 

IPV4AAS TECHNOLOGY OPTIONS 
 
There are multiple technologies that could be 
used as the overlay mechanism.   In this paper 
we focus our analysis and work on two 
technologies, namely MAP and LISP. 
 
MAP 
 
MAP (Map Address and Port) is an approach 
that enables a customer to have access to a 
global IPv4 address, but removes the need for 
this IPv4 address be natively carried by the 
underlying infrastructure.  (The customer 
home network is assumed to be dual stack.)  
The customer home gateway (HG) is assigned 
an IPv6 address and a provisioned with a set 
of MAP rules. The combination of the 
assigned IPv6 address and the MAP rules are 
used by the HG device to algorithmically 
derive two things: Its globally (possibly 
shared) IPv4 address, and the range of ports it 
can use for its NATP (Network Address and 

Port) function.    Because MAP is used to 
connect IPv4 islands over an IPv6 
infrastructure, the MAP rules also define how 
to map the IPv4 addresses into IPv6 
addresses.   Two approaches are defined, one 
using encapsulation (MAP-E) and a second 
using translation (MAP-T). 
 
MAP-E 
 
The key aspect to MAP-E2 is that traffic 
between IPv4 islands is fuly encapsulated in 
an IPv6 header. For traffic to an end-point 
outside of the MAP domain, packets must be 
encapsulated and sent to a MAP Border 
Router (BR), which then de-encapsulates the 
packet and forwards the IPv4 packet natively.     
When both IPv4 end-points are within the 
MAP domain, it is possible for the sending 
end-point to derive the destination end-point’s 
IPv6 address, based on the mapping rules 
provided.  In this case, traffic need not transit 
through a BR. It can be sent to the remote 
end-point directly, where it is de-encapsulated 
and IPv4 processing occurs.  In the current 
MAP-E Internet draft, the model is that the 
HG device would have a default route to an 
identified BR for off-domain traffic.   
 
MAP-T 
 
In MAP-E, the IPv4 packet (header and 
payload) is encapsulated within a newly 
created IPv6 header.  This extra level of 
overhead is avoided in MAP-T3, because in 
MAP-T, the IPv6 header is synthesized from 
the original IPv4 header.  The IPv4 payload 
(UDP, TCP) is then carried directly within the 
synthesized IPv6 header.  In this approach, the 
IPv4 addresses are embedded into the 
synthesized IPv6 header.   Much like the 
MAP-E system, for end-points within a 
domain, traffic can be directly transmitted.  
For an off-net end-point, the traffic must be 
sent to a Border Router (BR) device, which 
performs the de-translation process—meaning 
it takes the IPv6 header info and derives from 
it the original IPv4 header.  The IPv6 payload 
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is then attached to the IPv4 header, and the 
reconstituted IPv4 packet is then forwarded 
by the BR. 
 
Analysis of MAP 
 
In both MAP approaches, the goal is to 
eliminate the carriage of IPv4 packets over the 
underlying infrastructure.  A consequence is 
that it effectively enables a HG based stateless 
version of a Carrier Grade NAT—meaning an 
IPv4 address can be shared by many 
individual customers.  The MAP solution is 
IPv4-specific, meaning its applicability is to 
carry IPv4 within an IPv6 infrastructure. It 
can’t be extended to non-IPv4 payloads.  
MAP lends itself to an IPv6-focused network 
-- but doesn’t eliminate the need for a portion 
of the network infrastructure to be fully IPv4-
aware.   
 
In order for a MAP solution to carry the same 
traffic engineering capabilities as our fully 
routed IPv4 network today, the BR devices 
likely need to be interconnected via a  IPv4-
based infrastructure, with corresponding IPv4 
routing mechanisms in place.   MAP can 
eliminate the need for IPv4 routing in the 
domain covered by MAP --it can enable a 
lean core in that portion of the network.  
However, the practicality of lifting the current 
scale of our IPv4 traffic into a MAP solution 
would be a serious undertaking.  Further, the 
MAP solution is geared towards a solution 
where the domain edge is the customer home 
gateway (HG)—which means the HG device 
must support the MAP functionality.   
 
LISP 
 
An IPv4 address is both an identity (what an 
application binds to) and a location (used to 
announce how to reach an end-point.)  The 
semantics of an address being both an identity 
and locator contributed to the scaling issues 
we see with  IPv4 today.   LISP4 (Location 
Identity Separation Protocol) has its roots 
back in the late 1990s, when an active 

discussion thread about the “Next-
Generation” Internet Protocol led to the 
development of IPv6.   During the discussions 
leading up to the creation of IPv6, it was 
suggested that this “Next-Generation” IP 
address should have new semantics.  
Specifically, it was suggested that the identity 
of a device itself did not imply the location of 
the device.   
 
In the end, IPv6 carried forward the same 
semantics location-identify semantics of IPv4.  
However, researchers continued to see value 
in technologies which decoupled a device’s 
location from its identify.   This thinking 
evolved into a protocol called LISP.    
 
LISP really consists of two functions: an 
encapsulation protocol and a control plane.  
The encapsulation mechanism allows the 
carriage of one address family, inside another 
address family.   LISP could, for instance, 
encapsulate IPv4 inside IPv4—if one wanted 
to create a lean IPv4 infrastructure.  In this 
paper, we will examine LISP encapsulating of 
IPv4 packets inside of IPv6 packets.   
 
The second LISP component is a control 
plane—a mechanism by which one 
determines the current, best remote-end point 
for the outer encapsulation layer address.  The 
default LISP control plane is called DDT 
(Delegated Database Tree).  It’s a DNS-like 
query mechanism, where the LISP 
encapsulation engine receives a packet, looks 
at its destination, and then queries the DDT 
tree to determine the remote end point to send 
the packet to. The structure of the DDT tree is 
similar to DNS, in that there’s a root node, 
and then portions of the “name space” are 
delegated to sub-nodes, with further sub-
delegation possible.  The LISP encapsulation 
engine performs the iterative queries through 
the DDT that determine the best current 
remote end-point and its IP address.  Once 
this end-point IP address is determined, the 
packet is encapsulated and sent to the remote 
end-point.    Much like DNS, scaling is 
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achieved by caching information learned from 
the DDT tree during the lookups.   Like DNS, 
the cached information has a TTL (time-to-
live) value to prevent the encapsulator from 
having stale information.   Besides a TTL 
value associated with cached entries, the LISP 
encapsulation mechanism can also perform 
“probes” to remote end-points, to make sure 
they’re still reachable and functioning 
correctly. 
 
LISP Analysis 
 
LISP is well suited to enable a lean core, 
carrying one address family as an overlay to 
another address family, operating as the 
underlay.   For instance, one could build a 
IPv6-focused underlay and use the LISP 
encapsulation and control protocol for an IPv4 
overlay.    Overlays could also be created for 
L2 VPNs or L3 VPNs.   
 
One of the downsides to LISP is the query-
based control plane, in that the time to detect 
a remote end-point failure is a function of a 
cached TTL value, or how often probes are 
sent.   One powerful aspect to the route 
announcement paradigm (not present with the 
DDT control plane) is that it is push-based. 
Changes to the routing system get pushed 
asynchronously, which makes it well suited in 
a dynamic environment. 
 
Given LISP’s ability to enable a lean IPv6 
focused core for both IPv4 and other address 
families, the remainder of the paper details a 
LISP-based network overlay solution.  
 
To address the issues with LISP’s DDT 
control plane, we instead considered a routing 
approach --except this routing model 
leverages aspects often associated with the 
SDN.  Details of an SDN-powered LISP 
solution are presented in the following 
sections. 
 

 
 

IPV4AAS  
 
Given the insights from our data analysis, we 
can incrementally move to a lean IPv6 
focused architecture by carrying the IPv4 
prefixes with no or little traffic on them via an 
overlay network.  We propose that as a 
starting point, only the unused or low 
bandwidth internet prefixes be carried in the 
overlay network.  As such, we detail an 
overlay network architecture that initially 
operates only for a subset our Internet traffic. 
 
The overlay architecture can be built on our 
elastic OpenStack cloud infrastructure, and 
will require the cloud infrastructure to migrate 
from national data centers, down into the 
regional networks, and into the larger hub site 
locations.  This evolution of the cloud eco-
system closer to the edge (both hub site edge 
and peering edge) is being driven by multiple 
service and business requirements—IPv4aaS 
is but one of the service drivers for an edge-
based cloud infrastructure 
 
Architecture  
 
In order to lift traffic onto this overlay 
network, we will deploy two or more “Ingress 
Tunnel Routers” (iTR) per regional network.  
An iTR is a LISP term for a device that takes 
native traffic (in our case, IPv4 traffic), 
performs a look-up on the destination address 
to determine the remote end-point (in our case 
an IPv6 address), and then encapsulates and 
forwards this encapsulated packet.  The iTR 
can operate as VM within the regional 
network edge cloud infrastructure.   
 
The encapsulated traffic is addressed to an 
Egress Tunnel Router (eTR).  Its 
responsibility is to de-encapsulate the packet, 
then forward it, based on the inner IPv4 
packet contents.   eTRs can be co-located with 
our peering routers, and can also be VMs 
operating out of our cloud infrastructure.  This 
high layer architecture is depicted in Figure 5. 
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Figure 5: IPv4aaS Logical Architecture 

Routing Architecture 
 
In order to pull traffic into the overlay 
network, the iTR will need to inject routes 
into the underlay network.    At the time of 
this writing (winter 2015), we are evaluating a 
number of routing designs, and present one of 
the approaches below. 
 
Consider the overlay network as depicted in 
Figure 6.   A peer will send IPv4 prefixes to 
the Comcast underlay network’s peering 
router PE-01.  PE-01 then sends all received 
routes to the overlay network eTR router.  PE-
01 also sends a subset of these routes towards 
the core underlay network’s backbone routers.  
The selected underlay routes are the 
combination of Comcast prefixes, and the 
highest loaded Internet prefixes.  Let’s call 
these the Thin Fib Routes (TFRs).  The TFRs 
are propagated from the backbone routers into 
each regional network and down into each 
hub site router, effectively populating the 
underlay network’s IPv4 FIB.   
 
Netflow data from the underlay network 
allows us to determine loads on the prefixes in 
the underlay network.  For the overlay 
network, we are looking at how Openstack’s 
Ceilometer5 could be used as an alternative 
paradigm for Netflow-like data collection and 
back-end data analysis.  Further, we are 
looking at how Openstack’s Heat6 might 

allow us to adjust iTR or eTR capacity as 
needed.   
 
These collective systems would continue to 
monitor load in the underlay and overlay and 
over time adjust the prefixes in the underlay 
accordingly. 
 

 
Figure 6: IPv4aaS Routing Architecture 

BGP, JSON and HTTP 
 
The eTR router takes the received BGP7 
(Border Gateway Patrol) announcements and 
translates them -- from classic BGP protocol 
format to BGP semantics encoded within a 
JSON structure.   The eTR wraps the BGP 
JSON announcement information into an 
encompassing JSON structure that contains 
information for LISP. Specifically, the 
encompassing LISP JSON structure provides 
the RLOC (Routing Locator) which is the 
IPv6 address of the eTR.   
 
What we are effectively doing is associating a 
BGP IPv4 prefix announcement with an IPv6 
Next Hop.  Note that this is not possible with 
BGP today, but, these semantics are easily 
encoded via the JSON logic performed on the 
eTR.  The eTR then performs an HTTP PUT 
of this JSON object to a Pub/Sub entity.  One 
can think of this Pub/Sub logic as being part 
of an SDN controller.  The controller can 
process the incoming announcements, and 
adjust the set of announcements sent to an 
iTR.  The iTR then receives the set of JSON 
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based BGP IPv4 prefixes with an IPv6 Next 
Hop, and performs classic BGP path 
selection. For each chosen IPv4 prefix, the 
iTR LISP forwarding engine is programmed 
with the target eTR IPv6 RLOC address.  The 
iTR announces a default route, via classic 
BGP, to the hub router in the regional routing 
system. 
 
The hub router will see the set of more 
specific TFRs and a default from the iTR.  
This way, traffic only gets pulled into the 
overlay iTR if the packet doesn’t match 
against any routes in the underlay network.    
We envision the overlay network, and the 
SDN controller, to be part of the backbone 
ASN (Autonomous System Number).  This 
enables the backbone operational team to 
adjust the amount of load which traverses the 
overlay network based on the routes present in 
the underlay FIB, and based on business rules 
applied by the SDN controller on the routes 
and associated BGP attributes sent to each 
iTR. 
 
Prototype Development Status 
 
To date, we have developed a working proto-
type of a LISP overlay network, including 
iTR and eTRs coupled with an 
implementation of the routing control plane 
architecture described above.  This includes 
the BGP JSON encoding with the associated 
LISP extensions to enable a IPv4 prefix to 
have a IPv6 next-hop value. 
 
One issue that we have run into is related to 
limited Network Function Virtualization 
(NfV) capabilities in Openstack.    
Specifically, a key feature needed for this 
overlay implementation is expected in the 
Kilo8 Openstack release slated to be released 
in April 2015.   
 
Alternative Encapsulations 
 
While this work has leveraged LISP as the 
encapsulation technology, other encapsulation 

technologies could be used including Segment 
Routing9 (SR).  One could envision that an 
eTR could associated not just an RLOC with a 
IPv4 prefix, but also a stack of SR labels 
(MPLS) or Segment IDs (IPv6) that would be 
applied by the iTR for a prefix.  Note that 
changes to the routing announcements and 
associated encapsulation details could also be 
performed  by the SDN controller before 
sending the update announcement to an iTR. 
 
Future Work 
 
Future work includes considering how we 
might use SR and the above routing based 
push control plane to signal service chaining 
semantics for specific prefixes and or possibly 
more specific (prefix and port) 
announcements. 
 
Summary 
 
In this paper we have measured the loading of 
IPv4 prefixes carried in the Comcast full 
routing table, and determined that a 
significant number of FIB entries have little or 
no traffic.  We used that information to 
suggest that a lean, IPv6-focused core 
network is possible today. We then then 
described a technology and routing 
architecture to support an IPv4aaS overlay 
network.  We show that this overlay 
architecture can be instantiated on an 
OpenStack elastic cloud system, and can 
leverage SDN approaches to build both the 
routing control plane and a real-time 
measurement system. The measurement 
system ties classic network performance 
information (Netflow) to OpenStack SDN 
systems, including Ceilometer and Heat. 
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