
Approaches for IPv4 as a Service
 Brian Field Ph.D.
 Comcast

 Abstract

IPv6 has been gaining traction both as a
necessary service provider technology and as
an increasing carrier of Internet
traffic. Within Comcast, dual-stack has been
an important step to help IPv6 deployment
mature and grow. As IPv6 traffic grows and
as IPv4 traffic diminishes, we would like to
avoid the need to make software changes to
enable network features, while also avoiding
hardware operational costs that accompany
the treatment of IPv4 as native transport in
our infrastructure. As such, we are looking at
ways for our next generation infrastructure to
incrementally evolve towards an IPv6 focused
infrastructure. We realize we must continue
to support IPv4 for the foreseeable future.
Our our thinking is to support IPv4 as a
Service (IPv4aaS) — meaning we will carry
IPv4 traffic over a “lean” IPv6 focused
network infrastructure. In this paper, we
detail the insights and learnings Comcast
acquired in evaluating technologies that
enable or support IPv4aaS over a lean core
infrastructure. We also describe how these
technologies synergize with current Software
Defined Network (SDN) methodologies.

INTRODUCTION

The unmistakable rise of IPv6, both as a
necessary service provider technology and as
an increasing carrier of Internet traffic,
prompted Comcast to take a leadership
position in IPv6 deployment. Comcast
operates a 100% dual-stack network, with a
significant portion of our cable modem
infrastructure strictly using IPv6. As part of
this effort, Comcast has developed and shared
with the Internet community enhancements to
OpenStack that support IPv6 for virtual
machine (VM) and related infrastructure.

Within Comcast, dual-stack represents an
important step to the deployment, maturation
and growth of IPv6. None the less, we are
looking at ways for our next generation
infrastructure to natively support only IPv6.

We believe this direction will result in a
number of benefits. One such infrastructure
benefit would be a reduced Forward
Information Base (FIB) size, because the
network will only need to carry IPv6
routes. This translates into much less high-
speed memory required on routing line cards,
which reduces the cost to build them, and the
energy they consume. Less memory on router
line cards also translates into more compact
form factors, which makes for better port
densities. Further, less memory means less
heat generation, which lowers overall
environmental costs.

If we are able to totally eliminate IPv4 as a
native citizen in the network, we can also
eliminate IPv4-specific features in the router
configs— which, in turn, reduces both our
configuration and operational
overhead. Further, we could operate router
code revisions that only contain IPv6
capabilities— which yields more efficient
code, fewer bugs, and fewer unintended
operational interactions with our equipment
vendors. It follows that a simpler router
environment lowers the bar for new vendors
to enter the eco-system and makes it more
plausible to seamlessly mix and match
differing vendor router platforms.

While we certainly see value in making the
infrastructure IPv6 only, we can’t abandon
IPv4 — even as its traffic share
decreases. By supporting IPv4 as a Service
(IPv4aaS), we can carry IPv4 traffic over our
“lean” network infrastructure.

2015 Spring Technical Forum Proceedings

Lean, IPv6 Focused, & Lean IPv6 Networks

The technologies we present in the subsequent
sections represent different capabilities and
solve slightly different problems. We define a
“lean” network as one with a relatively small
FIB table, with a goal of keeping the FIB size
small, to reduce capital and facility expenses.
A lean network can be dual-stack.

An IPv6-only network is one in which the
network infrastructure only supports the IPv6
protocol natively. The goal of this network
architecture is to drive towards a IPv6-only
feature set; a small FIB is not a specific
optimization.

A “lean IPv6 core” is one where the
underlaying network has the characteristics of
reduced FIB size, and is a single stack
network, namely based on IPv6.

Before considering the technology options
that enable a lean or IPv6-focused network,
we need to consider how much IPv4 traffic
currently exists on our network. For
instance, if we attempt to move to an IPv6-
only network today, how much IPv4 traffic
might need to be carried, via an overlay
technology?

To determine the traffic load, we used
Netflow information processed through
Deepfield1 to show how much traffic was
traversing the Comcast Backbone. The
amount of traffic observed over a five-day
period is show in Figure 1. In the following
sections, we have opted to use qualitative
terms to characterize the load on our network
rather than specific values.

Figure 1 shows that the Comcast backbone
carries, at peak, multiple Tb/s of traffic. Even
during non-peak hours, the backbone carries
traffic a significant IPv4 traffic load. This is a
sizeable amount of traffic to carry via an
alternative technology were we to attempt to
migrate to an IPv6 only network.

Thus, in the near term, it might not be cost
effective to transition all of this IPv4 traffic to
an overlay technology in order to obtain an
IPv6 only infrastructure. However, there is
value in understanding the specific traffic
load, by IPv4 prefix, as a means to determine
if we can incrementally evolve to a lean
network core.

Figure 1: Measured Load

IPv4 FIB and Per Prefix Usage

Our IPv4 Internet routing table contains a mix
of Comcast local IPv4 routes (for internal
connectivity) and Internet routes (routes
received from peers that provide the Internet-
wide connectivity). As of Q1 2015, the size
of the IPv4 routing table is 575,000 routes.
Each route has a “prefix” and a “mask” and
consumes a FIB entry.

Operators of ISPs around the world tend to
differ in business and operational directions,
and those directions tend to influence how an
ISPs announces its IPv4 address space to the
Internet. ISPs (us amongst them) often have
limited means to manage these received
announcements, while still maintaining full
Internet connectivity.

While full Internet connectivity is a
requirement for the backbone, it wasn’t clear
how much traffic was being delivered to each
IPv4 route in the FIB.

2015 Spring Technical Forum Proceedings

Using Deepfield, we performed an analysis on
the IPv4 traffic observed on the backbone.
Specifically, we configured Deepfield to
monitor and report on the amount of traffic
observed per IPv4 prefix contained in the
routing table. We configured Deepfield to
report data on five-minute intervals, meaning
the information returned as average over a
five-minute window.

Figure 2: Observed Prefix count per

Sample

Figure 2 shows the number of prefixes
Deepfield reported in each five-minute
window, observed during a five-day stretch
in February 2015. As it turns out, the number
of prefixes varies between 140k (in the very
early morning hours in the U.S.) to just over
160k prefixes during the day and into the
early peak hours.

Recall that the full Internet routing table is
about 575k routes, and at peak, Deepfield sees
traffic of only 160k prefixes. This means that
Deepfield doesn’t see traffic for 415k prefixes
(or more) in each 5-minute sample.

Part of the reason we might not see traffic to
these prefixes is related to our Netflow
sampling configuration (1 packet per 8000).
However, not seeing traffic to many prefixes
(415k, in our case) likely indicates that there
is very little traffic to those prefixes in the
first place.

The first observation from this data: Nearly
three quarters (72%) of the IPv4 prefixes in
our FIB have no measureable traffic.

Details on the Prefixes Observed

We continued our analyses by looking at the
load reported for the prefixes within one five-
minute snapshot. We picked a snapshot near
peak load -- specifically, the 3:15 GMT
snapshot on 2/20/2015. Figure 3 displays
analysis from this five-minute snapshot.

Figure 3: Cumulative Load Percent

Specifically, the graph in Figure 3 shows the
cumulative load observed from the most
loaded prefixes, as a percent of the total
overall load.

The first item of note: While the snapshot
analysis contained 160,102 prefixes, the graph
reports information for the 40k most heavily
loaded prefixes (x-axis). The graph doesn’t
show the remaining 120,102 other prefixes
because while there is some load to them, it’s
insignificant compared to the total load.

A number of additional key points are
highlighted on the graph. First, the 3,156
most heavily loaded prefixes account for 90%
of the total traffic on our backbone (red line).
Recall that the backbone FIB consisted of
575k routes. What this means is that 0.0054%
of the IPv4 prefixes carry 90% of the load in

2015 Spring Technical Forum Proceedings

this snapshot. The 3,156 most heavily loaded
prefixes are derived from 2,281 Comcast
prefixes (green line) and 875 Internet prefixes
(blue line).

A second highlight involves the point at
which 99% of the traffic is carried. The top
25,893 prefixes carry 99% of the overall total
load. These prefixes are made up of 5,884
Comcast prefixes and 20,009 Internet
prefixes. What this means is that while our
full Internet routes consist of 575k routes,
99% of the IPv4 load is carried via 25,893
prefixes—or 4.5% of the FIB. The inverse of
this is that 95.5% of the prefixes in our full
route FIB carry just 1% of the load, roughly a
few hundreds of Gb/s.

What this analysis suggests is that a very lean
FIB architecture is possible today—meaning
we could significantly reduce the size of the
IPv4 FIB with very little traffic (relative to the
overall traffic load) being carried in an
overlay IPv4aaS infrastructure.

More details on the relationship between
various possible lean FIB sizes and the
corresponding load that would be carried in an
overlay network are provided in the Figure 4.

Figure 4 shows the amount of traffic that
would need to be carried in an overlay
IPv4aaS network, if the underlay (physical
network) IPv4 FIB was limited to a number of
lean sizes. While not specifically shown on
the graph, the y-axis maximum value is on the
order of a few 100s of Gb/s—so all lines
represent loads well below this. Take, for
instance, the red line in Figure 4, which
corresponds to the IPv4 FIB of 25k prefixes.
The graph shows the amount of traffic that
would be in the overlay if the IPv4 FIB was
limited to 25k prefixes. As we increase the
size of the underlay FIB, we can carry more
prefixes and hence the load to the overlay
network decreases.

In this analysis, we choose which routes to put
into the underlay FIB -- and thus what traffic
would be carried in the overlay network. To
simplify the operation of the overlay network,
we opted to pack the underlay FIB with routes
in a particular order. The order in which we
selected routes to put into the underlay FIB
was 1) our routes (highest loaded prefixes, 2)
Internet aggregate routes (highest loaded
prefixes first), and 3) Internet most specific
routes (highest loaded prefixes first).

Figure 4: FIB sizes and Overlay Load

By putting all Comcast prefixes into the
underlay FIB, the overlay network would only
contain Internet prefixes and thus would only
need to operate in one direction. This
simplifies the routing architecture needed to
pull traffic into the overlay network. This
approach does, however, increase the load on
the overlay network, because we service
several thousand Comcast prefixes with very
little traffic (e.g. customers with static address
prefixes.) Internet aggregates were added
before more-specifics, as they tend to be
catchall announcements that subsume the load
of the more-specifics, if the more-specifics
disappeared from the upstream peer. This
approach results in a higher amount of traffic
in the overlay network, but we think it a
reasonable tradeoff, because it makes the
overlay network architecture simpler.

2015 Spring Technical Forum Proceedings

Traffic Patterns Enable Thin FIB

The data collected and corresponding analysis
strongly suggests that today’s IPv4 traffic
patterns easily lend themselves to a Thin FIB
underlay solution, without requiring excessive
resources to build an overlay network. As
shown in Figure 4, one could deploy routers
with IPv4 FIBs holding well under 100k
entries, and the overlay network would only
need to carry upwards of a few 100s Gb/s at
peak. Note that this overlay load would be
sourced from our regional networks, such that
any individual regional network would source
only a portion of this load.

This means that a collection of cloud
infrastructure resources, located within each
regional network, should be sufficient to
support the overlay infrastructure.

Next, let us examine the different
technologies which could be used to create
this overlay network.

IPV4AAS TECHNOLOGY OPTIONS

There are multiple technologies that could be
used as the overlay mechanism. In this paper
we focus our analysis and work on two
technologies, namely MAP and LISP.

MAP

MAP (Map Address and Port) is an approach
that enables a customer to have access to a
global IPv4 address, but removes the need for
this IPv4 address be natively carried by the
underlying infrastructure. (The customer
home network is assumed to be dual stack.)
The customer home gateway (HG) is assigned
an IPv6 address and a provisioned with a set
of MAP rules. The combination of the
assigned IPv6 address and the MAP rules are
used by the HG device to algorithmically
derive two things: Its globally (possibly
shared) IPv4 address, and the range of ports it
can use for its NATP (Network Address and

Port) function. Because MAP is used to
connect IPv4 islands over an IPv6
infrastructure, the MAP rules also define how
to map the IPv4 addresses into IPv6
addresses. Two approaches are defined, one
using encapsulation (MAP-E) and a second
using translation (MAP-T).

MAP-E

The key aspect to MAP-E2 is that traffic
between IPv4 islands is fuly encapsulated in
an IPv6 header. For traffic to an end-point
outside of the MAP domain, packets must be
encapsulated and sent to a MAP Border
Router (BR), which then de-encapsulates the
packet and forwards the IPv4 packet natively.
When both IPv4 end-points are within the
MAP domain, it is possible for the sending
end-point to derive the destination end-point’s
IPv6 address, based on the mapping rules
provided. In this case, traffic need not transit
through a BR. It can be sent to the remote
end-point directly, where it is de-encapsulated
and IPv4 processing occurs. In the current
MAP-E Internet draft, the model is that the
HG device would have a default route to an
identified BR for off-domain traffic.

MAP-T

In MAP-E, the IPv4 packet (header and
payload) is encapsulated within a newly
created IPv6 header. This extra level of
overhead is avoided in MAP-T3, because in
MAP-T, the IPv6 header is synthesized from
the original IPv4 header. The IPv4 payload
(UDP, TCP) is then carried directly within the
synthesized IPv6 header. In this approach, the
IPv4 addresses are embedded into the
synthesized IPv6 header. Much like the
MAP-E system, for end-points within a
domain, traffic can be directly transmitted.
For an off-net end-point, the traffic must be
sent to a Border Router (BR) device, which
performs the de-translation process—meaning
it takes the IPv6 header info and derives from
it the original IPv4 header. The IPv6 payload

2015 Spring Technical Forum Proceedings

is then attached to the IPv4 header, and the
reconstituted IPv4 packet is then forwarded
by the BR.

Analysis of MAP

In both MAP approaches, the goal is to
eliminate the carriage of IPv4 packets over the
underlying infrastructure. A consequence is
that it effectively enables a HG based stateless
version of a Carrier Grade NAT—meaning an
IPv4 address can be shared by many
individual customers. The MAP solution is
IPv4-specific, meaning its applicability is to
carry IPv4 within an IPv6 infrastructure. It
can’t be extended to non-IPv4 payloads.
MAP lends itself to an IPv6-focused network
-- but doesn’t eliminate the need for a portion
of the network infrastructure to be fully IPv4-
aware.

In order for a MAP solution to carry the same
traffic engineering capabilities as our fully
routed IPv4 network today, the BR devices
likely need to be interconnected via a IPv4-
based infrastructure, with corresponding IPv4
routing mechanisms in place. MAP can
eliminate the need for IPv4 routing in the
domain covered by MAP --it can enable a
lean core in that portion of the network.
However, the practicality of lifting the current
scale of our IPv4 traffic into a MAP solution
would be a serious undertaking. Further, the
MAP solution is geared towards a solution
where the domain edge is the customer home
gateway (HG)—which means the HG device
must support the MAP functionality.

LISP

An IPv4 address is both an identity (what an
application binds to) and a location (used to
announce how to reach an end-point.) The
semantics of an address being both an identity
and locator contributed to the scaling issues
we see with IPv4 today. LISP4 (Location
Identity Separation Protocol) has its roots
back in the late 1990s, when an active

discussion thread about the “Next-
Generation” Internet Protocol led to the
development of IPv6. During the discussions
leading up to the creation of IPv6, it was
suggested that this “Next-Generation” IP
address should have new semantics.
Specifically, it was suggested that the identity
of a device itself did not imply the location of
the device.

In the end, IPv6 carried forward the same
semantics location-identify semantics of IPv4.
However, researchers continued to see value
in technologies which decoupled a device’s
location from its identify. This thinking
evolved into a protocol called LISP.

LISP really consists of two functions: an
encapsulation protocol and a control plane.
The encapsulation mechanism allows the
carriage of one address family, inside another
address family. LISP could, for instance,
encapsulate IPv4 inside IPv4—if one wanted
to create a lean IPv4 infrastructure. In this
paper, we will examine LISP encapsulating of
IPv4 packets inside of IPv6 packets.

The second LISP component is a control
plane—a mechanism by which one
determines the current, best remote-end point
for the outer encapsulation layer address. The
default LISP control plane is called DDT
(Delegated Database Tree). It’s a DNS-like
query mechanism, where the LISP
encapsulation engine receives a packet, looks
at its destination, and then queries the DDT
tree to determine the remote end point to send
the packet to. The structure of the DDT tree is
similar to DNS, in that there’s a root node,
and then portions of the “name space” are
delegated to sub-nodes, with further sub-
delegation possible. The LISP encapsulation
engine performs the iterative queries through
the DDT that determine the best current
remote end-point and its IP address. Once
this end-point IP address is determined, the
packet is encapsulated and sent to the remote
end-point. Much like DNS, scaling is

2015 Spring Technical Forum Proceedings

achieved by caching information learned from
the DDT tree during the lookups. Like DNS,
the cached information has a TTL (time-to-
live) value to prevent the encapsulator from
having stale information. Besides a TTL
value associated with cached entries, the LISP
encapsulation mechanism can also perform
“probes” to remote end-points, to make sure
they’re still reachable and functioning
correctly.

LISP Analysis

LISP is well suited to enable a lean core,
carrying one address family as an overlay to
another address family, operating as the
underlay. For instance, one could build a
IPv6-focused underlay and use the LISP
encapsulation and control protocol for an IPv4
overlay. Overlays could also be created for
L2 VPNs or L3 VPNs.

One of the downsides to LISP is the query-
based control plane, in that the time to detect
a remote end-point failure is a function of a
cached TTL value, or how often probes are
sent. One powerful aspect to the route
announcement paradigm (not present with the
DDT control plane) is that it is push-based.
Changes to the routing system get pushed
asynchronously, which makes it well suited in
a dynamic environment.

Given LISP’s ability to enable a lean IPv6
focused core for both IPv4 and other address
families, the remainder of the paper details a
LISP-based network overlay solution.

To address the issues with LISP’s DDT
control plane, we instead considered a routing
approach --except this routing model
leverages aspects often associated with the
SDN. Details of an SDN-powered LISP
solution are presented in the following
sections.

IPV4AAS

Given the insights from our data analysis, we
can incrementally move to a lean IPv6
focused architecture by carrying the IPv4
prefixes with no or little traffic on them via an
overlay network. We propose that as a
starting point, only the unused or low
bandwidth internet prefixes be carried in the
overlay network. As such, we detail an
overlay network architecture that initially
operates only for a subset our Internet traffic.

The overlay architecture can be built on our
elastic OpenStack cloud infrastructure, and
will require the cloud infrastructure to migrate
from national data centers, down into the
regional networks, and into the larger hub site
locations. This evolution of the cloud eco-
system closer to the edge (both hub site edge
and peering edge) is being driven by multiple
service and business requirements—IPv4aaS
is but one of the service drivers for an edge-
based cloud infrastructure

Architecture

In order to lift traffic onto this overlay
network, we will deploy two or more “Ingress
Tunnel Routers” (iTR) per regional network.
An iTR is a LISP term for a device that takes
native traffic (in our case, IPv4 traffic),
performs a look-up on the destination address
to determine the remote end-point (in our case
an IPv6 address), and then encapsulates and
forwards this encapsulated packet. The iTR
can operate as VM within the regional
network edge cloud infrastructure.

The encapsulated traffic is addressed to an
Egress Tunnel Router (eTR). Its
responsibility is to de-encapsulate the packet,
then forward it, based on the inner IPv4
packet contents. eTRs can be co-located with
our peering routers, and can also be VMs
operating out of our cloud infrastructure. This
high layer architecture is depicted in Figure 5.

2015 Spring Technical Forum Proceedings

Figure 5: IPv4aaS Logical Architecture

Routing Architecture

In order to pull traffic into the overlay
network, the iTR will need to inject routes
into the underlay network. At the time of
this writing (winter 2015), we are evaluating a
number of routing designs, and present one of
the approaches below.

Consider the overlay network as depicted in
Figure 6. A peer will send IPv4 prefixes to
the Comcast underlay network’s peering
router PE-01. PE-01 then sends all received
routes to the overlay network eTR router. PE-
01 also sends a subset of these routes towards
the core underlay network’s backbone routers.
The selected underlay routes are the
combination of Comcast prefixes, and the
highest loaded Internet prefixes. Let’s call
these the Thin Fib Routes (TFRs). The TFRs
are propagated from the backbone routers into
each regional network and down into each
hub site router, effectively populating the
underlay network’s IPv4 FIB.

Netflow data from the underlay network
allows us to determine loads on the prefixes in
the underlay network. For the overlay
network, we are looking at how Openstack’s
Ceilometer5 could be used as an alternative
paradigm for Netflow-like data collection and
back-end data analysis. Further, we are
looking at how Openstack’s Heat6 might

allow us to adjust iTR or eTR capacity as
needed.

These collective systems would continue to
monitor load in the underlay and overlay and
over time adjust the prefixes in the underlay
accordingly.

Figure 6: IPv4aaS Routing Architecture

BGP, JSON and HTTP

The eTR router takes the received BGP7
(Border Gateway Patrol) announcements and
translates them -- from classic BGP protocol
format to BGP semantics encoded within a
JSON structure. The eTR wraps the BGP
JSON announcement information into an
encompassing JSON structure that contains
information for LISP. Specifically, the
encompassing LISP JSON structure provides
the RLOC (Routing Locator) which is the
IPv6 address of the eTR.

What we are effectively doing is associating a
BGP IPv4 prefix announcement with an IPv6
Next Hop. Note that this is not possible with
BGP today, but, these semantics are easily
encoded via the JSON logic performed on the
eTR. The eTR then performs an HTTP PUT
of this JSON object to a Pub/Sub entity. One
can think of this Pub/Sub logic as being part
of an SDN controller. The controller can
process the incoming announcements, and
adjust the set of announcements sent to an
iTR. The iTR then receives the set of JSON

Comcast
Regional Network

Comcast
Backbone

PE-01

iTR VM

peer

Hub
Router

eTR
VM

Overlay

OverlayUnderlay CMTS

peer1

PE-01 eTR

Core
rtr

Metro
rtr

Hub
rtr iTRdefault

7922

OverlayUnderlay

Metro1
ASN

Control1Plane

Netflow
processing /
ceilometer

controller
[pub/sub]

2015 Spring Technical Forum Proceedings

based BGP IPv4 prefixes with an IPv6 Next
Hop, and performs classic BGP path
selection. For each chosen IPv4 prefix, the
iTR LISP forwarding engine is programmed
with the target eTR IPv6 RLOC address. The
iTR announces a default route, via classic
BGP, to the hub router in the regional routing
system.

The hub router will see the set of more
specific TFRs and a default from the iTR.
This way, traffic only gets pulled into the
overlay iTR if the packet doesn’t match
against any routes in the underlay network.
We envision the overlay network, and the
SDN controller, to be part of the backbone
ASN (Autonomous System Number). This
enables the backbone operational team to
adjust the amount of load which traverses the
overlay network based on the routes present in
the underlay FIB, and based on business rules
applied by the SDN controller on the routes
and associated BGP attributes sent to each
iTR.

Prototype Development Status

To date, we have developed a working proto-
type of a LISP overlay network, including
iTR and eTRs coupled with an
implementation of the routing control plane
architecture described above. This includes
the BGP JSON encoding with the associated
LISP extensions to enable a IPv4 prefix to
have a IPv6 next-hop value.

One issue that we have run into is related to
limited Network Function Virtualization
(NfV) capabilities in Openstack.
Specifically, a key feature needed for this
overlay implementation is expected in the
Kilo8 Openstack release slated to be released
in April 2015.

Alternative Encapsulations

While this work has leveraged LISP as the
encapsulation technology, other encapsulation

technologies could be used including Segment
Routing9 (SR). One could envision that an
eTR could associated not just an RLOC with a
IPv4 prefix, but also a stack of SR labels
(MPLS) or Segment IDs (IPv6) that would be
applied by the iTR for a prefix. Note that
changes to the routing announcements and
associated encapsulation details could also be
performed by the SDN controller before
sending the update announcement to an iTR.

Future Work

Future work includes considering how we
might use SR and the above routing based
push control plane to signal service chaining
semantics for specific prefixes and or possibly
more specific (prefix and port)
announcements.

Summary

In this paper we have measured the loading of
IPv4 prefixes carried in the Comcast full
routing table, and determined that a
significant number of FIB entries have little or
no traffic. We used that information to
suggest that a lean, IPv6-focused core
network is possible today. We then then
described a technology and routing
architecture to support an IPv4aaS overlay
network. We show that this overlay
architecture can be instantiated on an
OpenStack elastic cloud system, and can
leverage SDN approaches to build both the
routing control plane and a real-time
measurement system. The measurement
system ties classic network performance
information (Netflow) to OpenStack SDN
systems, including Ceilometer and Heat.

Acknowledgements

We would like to thank John Leddy, John
Brzozowski and Paul Mabey for their
thoughts in the many discussions we have had
in this subject area. Further, we would like to
thank Dino Farinacci for the use of his LISP

2015 Spring Technical Forum Proceedings

implementation and associated software
changes to support the described IPv4aaS
routing architecture.

1 www.deepfield.net
2 https://tools.ietf.org/html/draft-ietf-softwire-2 https://tools.ietf.org/html/draft-ietf-softwire-
map-13
3 https://tools.ietf.org/html/draft-ietf-softwire-
map-t-08
4 https://tools.ietf.org/html/rfc6830
5 https://wiki.openstack.org/wiki/Ceilometer
6 https://wiki.openstack.org/wiki/Heat
7 http://www.ietf.org/rfc/rfc4271.txt
8
https://wiki.openstack.org/wiki/Kilo_Release_
Schedule
9 http://www.segment-routing.net/home/ietf

2015 Spring Technical Forum Proceedings

