
LOW-LATENCY IPTV NOTIFICATIONS WITH MINIMAL SERVER IMPACT

 Gary Horton

 Time Warner Cable

 Abstract

 IPTV platforms provide value-add

with notifications such as Caller ID and EAS

alerts. An efficient architecture provides

timely delivery of these messaging events

without unnecessarily binding resources in

their absence. The technology choice to

support this is influenced by message

frequency, latency requirements and client

population size.

 Among the contexts combining those

variables, low latency delivery of infrequent

messages becomes more challenging for the

server as client size increases. A system is

described here targeting that scenario,

scaling gently with increases in client size and

latency constraints. The system impacts server

resources only when a message is available.

INTRODUCTION

Background

 With HTTP as the application protocol,

notification across the Internet relies on a

client-initiated request. This presents the

problem of how to convey event information

from a service to a client, for example an EAS

service delivering a flash flood alert to an

HTML5 browser.

 Periodic client requests provide

opportunities for the server to send the EAS

alert. However, with such “short poll”

solutions, the client can suffer from high

latency and untimely message delivery if

polling frequency is too low; or server

capacity is challenged when frequency is

high. In particular, the aggregate cost of setup,

maintenance and teardown of TCP

connections
[1]

 increases as a function of the

polling frequency and client size.

 So-called COMET
[2]

 or “long poll”

solutions have been developed to reduce the

TCP activity. With these approaches, a

connection is established and held by the

server, either until a message is available or

with periodic timeouts. Streaming servers can

hold the connections open persistently and

deliver ongoing messages as information

becomes available. These techniques not only

reduce TCP setup and teardown cost, but also

support the requirement for low-latency

message delivery. However, while setup and

teardown cost is lessened, maintenance

remains: system provisioning requires

concurrent connection capacity as a function

of client size. This incurs cost in RAM
[1]

 and

brings other considerations
[3].

 The benefit of the RAM cost is a function

of messaging frequency. That is, in a context

with frequent message availability such as a

stock exchange, the capacity is well utilized.

However, that use declines with decreasing

messaging frequency. Persistent connections

are increasingly idle, becoming an unused

commitment.

 Examples calling for low-latency delivery

of infrequent messages include EAS, Caller

ID and location-aware advertising.

LightWeight Polling

 The traffic profile combining timely

delivery of infrequent messaging events is the

context for this discussion. Targeting that

context, “LightWeight Polling” (LWP) is a

communication protocol described here, with

performance test results suggesting it provides

low-latency messaging while moderating

many shortcomings of traditional short poll

systems. In particular, significant savings in

network and CPU activity have been

measured and will be discussed in detail. In

short, LWP accomplishes this by opening its

destination port for clients only when a

message is available. Resources are used

primarily for those events while terminating

any TCP connection attempt immediately in

their absence.

Acronyms

 For purposes of this discussion, the

following acronyms are used:

 CPU Central Processing Unit

 EAS Emergency Alert System

 HTTP HyperText Transfer Protocol

 JVM Java Virtual Machine

 LP Long Poll

 LWP LightWeight Poll

 RAM Random Access Memory

 SP Short Poll (traditional polling)

 TCP Transmission Control Protocol

 TTL Time To Live

ARCHITECTURAL CONSIDERATIONS

Use Cases

 Testing done here is intended to simulate

broadcast messages that occur infrequently

but call for timely delivery.

 The point-to-point class of use cases, for

example Caller ID and soft remote, imply

private instead of broadcast messages. This is

not an intended use for LWP as it is currently

implemented. The current prototype relies on

a port-per-topic protocol, using a single

destination port to host a given topic. For

example, the “topic” for Caller ID is the

individual phone number, and this requires N

ports for N phone numbers. Supportable

Caller ID client size then becomes a function

of available ports
[9]

. While larger values of N

appear to be a variation of the unused

commitment problem, LWP capacity is not

dedicated in the absence of messaging since

ports are not opened. Given this, LWP applied

with point-to-point may show benefits, but

experiments remain to-date undone.

 Latency requirements that are more relaxed

are not examined here since this is not a

particularly challenging context.

 The class of use cases calling for frequent

messaging, for example a stock exchange, are

also not an intended application of LWP

systems. As frequency of messaging

increases, LWP systems increasingly

resemble standard polling, and long poll

systems become increasingly favorable.

System Requirements

 An example set of requirements where an

LWP system would be suitable include the

following:

1. one-second-latency: The system must

support latency requirements of one

second or better after message availability.

2. 120s-messaging: System capacity

requirements must grow linearly or better

as a function of messaging frequency with

a period of 120 seconds or more.

3. graceful-scalability: System capacity

requirements must grow in sublinear

fashion relative to client population size.

4. dynamic-capacity: The system must

release CPU and network resources when

messaging work is not required.

Candidate Approaches

 Given the target use cases and system

requirements, there are various candidate

solutions included in testing done here. The

range of candidates was not intended to be

exhaustive, for example omitting Web

Sockets
[4]

. The intention was to determine if

short polling with an LWP approach is a

viable alternative to long poll.

 In terms of the system requirements, the

120s-messaging context is not challenging

taken alone. However, low-frequency

messaging undermines the dynamic-capacity

requirement with a long poll system, which by

design is unwilling to release capacity in the

absence of messages. The one-second latency

requirement is problematic with a traditional

short poll system in terms of support for

graceful-scalability
[5]

. This is true regardless

of messaging period, due to impact on RAM

and network. Increasing client sizes with a

long poll system would require corresponding

growth in concurrent connection capacity,

failing to support graceful-scalability.

LIGHTWEIGHT POLLING: DETAILS

Overview

 The “LightWeight Polling” mechanism

described here is not sensitive to high rates of

client polling, with the destination port

opening only when messages appear. Without

messaging, TCP connection attempts are

terminated immediately. This is done with a

connection reset issued from the network

stack on the LWP host
[6]

, incurring modest

impact solely on that stack.

 At message time, TCP communication in

LWP flows as usual
[7]

. When messaging

events are infrequent, the cost of TCP setup,

maintenance and teardown are reduced

relative to traditional short poll. With lessened

demand on server, network capacity and CPU,

these resources are available for other

activities when no messages are available.

LWP capacity needs are largely determined

by messaging frequency.

 The LWP protocol side-steps the

provisioning needs of long poll solutions,

where capacity for “always-open” connections

must grow as a function of population size.

These connections are idle a majority of the

time when messages are infrequent.

 The combination of “strict latency” (timely

delivery) and infrequent messages is the most

suitable context for an LWP system. The

remainder of this discussion assumes strict-

infrequent as the context.

Communication Flow

 The sequence diagram in Figure 1

illustrates the typical LWP flows. The

timeline is captured to the left of the Client,

with system State changes to the left of the

Publisher. To elaborate on the numbered

steps:

 1: A web Client “subscribes” for

“notification” when an EAS alert occurs. The

notion of EAS alerts is regarded as a “topic”,

and the client request is referred to as a

“subscription”. Port 8088 is used for the

subscription, with this port remaining open for

the duration of LWP execution.

 The LWP service responds to the Client

subscription with information on the port for

polling and a TTL (Time To Live) – that is,

how long any EAS alert will be cached for

availability. The TTL is the maximum

recommended polling interval for this

particular topic.

 In this example, the port to be used for

polling is 8091 and the TTL is 10 seconds. If

the Client polls more frequently, it is less

likely to miss any messages and may receive

messages with less delay. If polling is done

less frequently, the Client may miss messages.

 2a-2c: The client is motivated to get any

EAS alerts with little delay, polling every

second. Note from the current State (No Alert,

Alert, …) that each of steps 2a, 2b and 2c are

executed when no alert is available.

 The impact from one-second polling is

quite low as quantified in the TEST

RESULTS section. When no message is

available, LWP is not aware of the polling

frequency, since the Network terminates the

connection attempt immediately with a TCP

reset.

 3a: The Publisher provides an EAS

message to LWP at 3a using port 8088. LWP

responds at 3b by

opening port 8091 with

the message and

establishing port 8092

for subsequent

messages. Note that

port 8092 is not opened

until that next message

arrives. The next time

any Client requests an

EAS alert on 8091 (3c),

the message is

delivered (3d), and

LWP informs that

client to poll for

subsequent messages

on port 8092 with a

TTL of 5s.

 Note that the port

and TTL have changed.

LWP changes the port

so that this first client is

not repeatedly asking

for the same message

on port 8091, which

remains open for other

clients during the TTL.

This would undermine

the LWP goal of “no

unneeded work” and

result in duplicate

messaging to the first

client. Other clients that

have not yet received

the message will find it

at port 8091 for the

next 10 seconds.

Meanwhile the first client will now poll

Figure 1: Typical LWP Communication Flows

against 8092.

 This port-per-message protocol requires a

client to resubscribe if it has not contacted

LWP within the TTL period. If a message was

delivered during that TTL, the port will have

changed for the EAS topic. Alternately,

clients can resubscribe on port 8088 on a

regular basis as insurance against changed

port numbers, and a message numbering

scheme can be used to deliver potentially

missed messages to clients.

 Note that proof-of-concept for the port-

per-message protocol remains undone. Tests

done here use a port-per-topic implementation

of LWP, and this did result in duplicate

messages for a given client and additional

impact on LWP during the TTL period. A

port-per-topic approach is sufficient for point-

to-point, since this is equivalent to port-per-

client and no redundant requests for the same

message will happen (since the port is closed

immediately after message delivery).

 Finally, as illustrated in the sequence, LWP

optionally changes the TTL to adaptively

manage its resources as needed. TTL

adjustments are also used to encourage higher

polling frequencies. For example, an initial

EAS alert is likely to soon be followed by

more.

TEST CONSTRUCTION

Test Setup

 Test results provide some insight into why

traditional short poll systems are considered

inefficient and how LWP addresses the

problems. An LWP server prototype was

constructed using the netty (Java-based)

framework
[8]

. In the interest of reducing the

variations, SP and LP server prototypes were

also constructed with this framework. The SP

implementation represents a traditional short

poll system for purposes of testing and

subsequent analysis in this discussion.

 Each server was load tested in separate

executions on a physical hardware machine

dedicated to the tests. The machine has two

Intel E6750 CPUs running at 2.66GHz. The

JVM was configured at 256MB minimum and

2GB maximum heap size.

SP and LWP Test Phases

 The SP and LWP systems were executed

in various test phases as described below, and

as annotated with the timeline in Figure 2 in

the TEST RESULTS section.

 The test phases Q, P, S, and M are, briefly:

 Q: the system is quiescent

 P: polling is underway

 S: server is running, handling polling only

 M: messages are being delivered

 The test phase details are as follows:

 Q: The system is in quiescent state for at

least 180 seconds to establish a system

baseline.

 P: Polling is initiated for 300 seconds to

establish a polling-only baseline. For each

test, either 3K or 30K client threads are

initiated in sets of 3K at a time. For the 30K

population, a 6-second delay is added between

each 3K set, with the intent of adding some

temporal spread to the client request traffic.

This results in a “bumpy” rather than a

uniform distribution of client request traffic,

due to staggering and resource contention

delays with thread startup.

 S: At the first of two “S” phases, a given

type of server (SP or LWP) is started and

opens port 8088 to accept publisher messages.

SP opens port 8091 to accept client requests.

LWP opens that port only when a message

appears, and then only for the TTL period.

Polling against SP and LWP continues

without any message delivery for 600 seconds

to establish a no-messaging baseline.

 M: Messages are delivered five times,

once every 120 seconds. Once a message

appears, the SP and LWP servers make it

available at port 8091 for the next 10 seconds.

 Clients of the SP server receive an “HTTP

204 No-Content” response in the absence of

messages. Clients of the LWP server receive a

connection reset in the absence of messages.

In each case, the client receives an “HTTP

200 OK” response if a message is available,

and the client sends a new request one second

after either a reset or response.

 S: At the second “S” phase, the server

continues running for 120 seconds after the

last message, with polling against SP and

LWP, but no message delivery. The server is

finally halted to allow the system to return to

quiescent state before the next test execution

is started.

 These executions were done first using SP

and LWP against a 3K population, and then

using SP and LWP against a 30K population.

This was the approach for all tests and

associated graphs that follow, except where

otherwise indicated.

LP Test

 A single test correlating RAM with

concurrent connections was done for the LP

server with the 30K population. For the LP

server, all clients connect immediately on

startup and remain connected until the first

message arrives. The LP server delivers the

message immediately with “HTTP 200 OK”

to these clients, which reconnect one second

later to wait for the next message.

SP and LWP Graphical Output

 Each graph of test results displays a

particular metric for a given population size.

Each graph includes both SP and LWP

executions:

1. 3K clients, SP and then LWP

2. 30K clients, SP and then LWP

 As annotated with Figure 2, the red

markers in each graph indicate the startup

times of SP and subsequently LWP servers,

with messaging events indicated by the

groupings of light-blue markers. While both

populations are shown for the bandwidth

metric in Figures 2 and 3, only the 30K

population is shown for any metrics with

similar results for both populations.

 The selected set of metrics captured

includes the following:

1. Network activity, to include bandwidth,

socket use, TIME-WAIT and connection

reset levels

2. CPU idle time

3. RAM and heap size usage

 Sampling of the metrics was done at five-

second intervals for finer-grained analysis.

Graphs were displayed using minimum or

maximum depending on the metric, with 20-

second resolution for simpler visualization.

 To facilitate understanding of overall test

results and graphical presentations, reference

the annotations in Figure 2. This can be

consulted as a template for subsequent graphs

in the TEST RESULTS section.

TEST RESULTS

Network Impact

 Maximum kilobytes of input and output

bandwidth are shown in Figure 2 for 3K

clients and Figure 3 for 30K clients, with SP

and LWP executions in each graph. Figure 2

provides detailed annotations of test phases.

 Variability in output peaks are likely due

to the bumpy profile of client traffic. If

capacity is to be provided for these infrequent

peaks, it would be useful to reclaim capacity

that is unused when there is no messaging. As

illustrated in Figures 2 and 3, an SP

environment exhibits bandwidth usage that

varies in a narrow range near its highest

levels, regardless of messaging traffic. This

leaves less bandwidth margin to be reclaimed.

 Alternately, bandwidth consumption for

LWP stabilizes at about 40% of the SP levels

in the absence of messaging traffic, engaging

network capacity only when messages arrive.

Additionally, the LWP bandwidth profile

tapers shortly after the message event. This

profile offers margin that can be applied to

alternate capacity allocation. This margin

increases as messaging frequency decreases.

With an LWP system, this inverse correlation

is independent of client population or polling

rates.

 The correlation with TIME-WAIT

behavior can be seen in Figure 4. Because of

configuration on the load generator machine,

the limit on source IP-port tuples (which are

stored in TIME-WAIT structures) was about

28K
[13]

. The chart shows that SP systems max

out the potential TIME-WAIT levels for those

connected source IP-ports immediately,

keeping those levels high for its entire

execution. However, LWP establishes fewer

connections since the destination port is only

Figure 3: Bandwidth Impacts, 30K

clients for SP and LWP executions

Figure 2: Bandwidth Impacts, 3K

clients for SP and LWP executions

Figure 4: TIME-WAIT Activity, 30K

clients for SP and LWP executions

open for brief periods, exhibiting the same

reduced peak and post-message tapering for

TIME-WAIT as seen with bandwidth. TIME-

WAIT activity can have impact on scalability

and performance in various ways, as

discussed in the FOOTNOTES section
[10]

.

 Maximum levels of sockets used by SP

and LWP are shown in Figure 5 for 3K clients

and Figure 6 for 30K clients. As with

bandwidth, these peaks drive capacity

planning. SP peaks are higher relative to LWP

for both population sizes. LWP use of sockets

remains slightly elevated above baseline

independent of population size, peaking at

higher levels for the 30K population. The

difference in absolute levels of socket use

with the 30K population is about 50% greater

with SP vs. LWP; this suggests that LWP

would scale more gradually (providing spare

capacity in terms of sockets) as the population

increases. More full-featured load generation

would be needed for higher confidence.

 The engagement of TCP connection reset

activity using an LWP system accounts for the

reductions in bandwidth, TIME-WAIT and

socket levels. This is illustrated with Figure 7.

 A TCP connection reset can be triggered

by various conditions
[11]

; in this case it is due

to an unopened destination port. This happens

immediately at test startup, as seen in Figure 7

preceding both red startup markers; this is

because tests are begun with the polling-only

baselines without the server running.

Immediately on SP startup, the reset rate

drops effectively to zero since SP has opened

port 8091 and is returning “HTTP 204 No-

Content” with no messages available.

However, the resets continue after LWP

startup since LWP waits until a message is

available to open the destination port.

Figure 6: Total Sockets Profile, 30K

clients for SP and LWP executions

Figure 7: Connection Reset Activity, 30K

clients for SP and LWP executions

Figures 5: Total Sockets Profile, 3K

clients for SP and LWP executions

CPU Impact

 The timeline in Figure 8 illustrates the

minimum levels provided by SP and LWP for

CPU idle percentage.

 Available CPU declines immediately at SP

startup time, with no benefit to the delivery of

messages. Idle CPU remains below the 40%

mark for the duration of the SP run for both

populations. The CPU exhibits no noticeable

reaction at LWP startup, remains high in the

absence of messaging and has minimums

higher than the SP maximums with messaging

events. LWP engages the CPU only when

delivery of a message is needed, and unlike an

SP system, that CPU usage is transient with a

quick recovery after the message.

 It would seem LWP should drop to the

same levels of idle CPU during message

events as seen for SP, but it remains

significantly higher. This is due to thousands

of No-Content responses from SP to clients

continuing to poll at one-second intervals.

While SP engages the CPU to tell the client

that there is no message, LWP systems avoid

this wasteful activity.

 The differences in CPU availability are

shown with a frequency distribution of idle

percentages, for SP and LWP in Figures 9 and

10 respectively. LWP never uses more than

50% of CPU, while SP sometimes consumes

100%.

 With LWP there are many fewer 204

responses during messaging periods, since

LWP closes its port at TTL expiration. This

raises the question of why any 204 responses

are seen, instead of all requests receiving

either 200 OK or a connection reset. The

reason is that the LWP implementation does

not apply locks to the processing, allowing

some requests into the request-handling

pipeline while the port is open. By the time

the last handful of these requests are

processed by the handling logic, the TTL has

expired and the message has been removed. In

this case, as with the SP system, the response

handler sends out the 204 responses.

Figure 9: CPU Idle, Frequency

Distributions, 30K clients for SP

Figure 10: CPU Idle, Frequency

Distributions, 30K clients for LWP

Figure 8: CPU Impact, 30K clients for SP

and LWP executions

RAM Impact

 There is only a slight difference in

maximum RAM usage between SP and LWP

systems, regardless of client size. Both

plateau after all 30K clients have been

engaged, as per Figure 11. The absolute

values of RAM used by the SP and LWP

systems are about 140MB and 170MB

respectively.

 Figure 12 shows the RAM levels achieved

by the LP implementation for the same 30K

population, displayed with the incremental

increase in connections as clients are started

in 3K sets. Connection levels here are

multiplied by eight to more readily visualize

the correlation. The peak RAM level

approaches 30% higher than LWP (220MB).

Note that the LP execution did not include

any messaging events; it was done solely to

determine the influence of additional

connections on growth in RAM.

 Figure 13 shows the incremental changes

in RAM size as connections increase. The

RAM cost for each connection averages about

9K. For all 30K connections the increase

totals about 275MB, which is primarily

unused capacity in an infrequent-messaging

context. Note the cost of RAM per connection

found here should not be regarded as typical,

since implementations, system tuning and

other factors will vary
[1]

.

Figure 12: RAM Growth with Increases in

of Connections, 30K clients for LP only

Figure 13: RAM Delta with Increases in #

of Connections, 30K clients for LP only

Figure 11: Process Resident Memory,

30K clients for SP and LWP executions

Heap Size Impact

 Java heap activity is shown using SP in

Figure 14 and LWP in Figure 15, against the

30K population only.

 Both heaps achieved approximately the

same size, but this is a function of JVM and

garbage collection tuning parameters. The

variations in heap size appear to be a result of

garbage collection activity, which is known to

have measurable impacts on system

response
[12]

. There is considerably less of that

activity in the LWP system.

 Another test execution over a longer period

compares heap activity for SP in the first half,

followed by LWP in Figure 16. SP has a great

deal more activity but is losing ground over

time, while LWP shows more desirable

behavior. Additional testing would be useful

here to capture not only heap size, but also

generational activity and pause times for a

more insightful analysis.

CONSIDERATIONS

 All tests were done with HTTP (no SSL).

LWP Tradeoffs

 LWP has many considerations, to include

at least the following:

1. A specialized server is required.

2. This is prototype technology, barely

emerging from proof-of-concept stages.

3. Clients must be aware that they will

receive frequent connection resets.

4. Clients cannot determine if the service is

down since connection resets are the

norm. That said, clients – including load

balancing systems that manage failover –

can execute health checks against LWP at

port 8088, which is open permanently. See

the Class Diagram in the APPENDIX for

details.

5. If SSL is used and the load balancer

handles SSL offload, then there is an

undesirable impact against that network

component. This undermines the original

purpose of LWP.

6. If SSL is used but the load balancer does

not handle SSL offload, then load balancer

Figure 16: JVM Heap Size, 30K

clients for SP and LWP executions

Figure 14: JVM Heap, 30K clients for SP

Figure 15: JVM Heap, 30K clients for LWP

caching cannot be leveraged. This would

call for SSL offload at LWP and a shared

cache instead, assuming horizontal scale

for LWP servers.

7. If SSL is used but the load balancer does

not handle SSL offload, then routing

decisions, session management based on

headers, and any other application-layer

functionality provided by the load

balancer cannot be leveraged.

8. Messages must be cached for a TTL of at

least the expected latency tolerance of the

clients. However, LWP is intended only

for “strict latency” environments, so that

TTL is expected to be short.

9. If the message TTL is longer than the

polling interval, the port-per-message

protocol (which is to-date undeveloped)

should be used. Otherwise, clients polling

at high frequency will unnecessarily

burden LWP, and these clients must

distinguish duplicates.

 The points in items 5-7 raise a question of

whether LWP-type logic should live in a

proxy server acting as SSL offloader, load

balancer and centralized cache.

CONCLUSIONS

 The architectural goal of LWP is to use

resources only when needed to deliver

messages, releasing that capacity for other

purposes in their absence. Tests results show

that LWP makes low-impact demands on

network and CPU, moderating various

undesirable characteristics of traditional short

poll systems, and that it is well suited for

strict latency, infrequent messaging contexts.

 LWP also addresses the unused

commitment problem (dedicated but idle

capacity) of long poll systems in the strict-

infrequent context. This justifies a second

look at LWP-based short polling as an

alternative to long poll for use cases calling

for that context.

 In short, LWP accomplishes this by

opening a TCP port only when the message is

available. With this approach, data center

provisioning is now primarily driven by

messaging frequency rather than client size or

latency requirements. The resources

supporting an LWP system are increasingly

available for other activity as messaging

frequency decreases.

 Conversely, with increase in messaging

frequency, LWP performance degrades to

more closely resemble traditional short poll.

The increasingly leveraged capacity of long

poll provides more favorable cost-benefit in

this context.

 As with many technology solutions, LWP

brings trade-offs and considerations. The most

suitable use is narrow: strict latency

requirements with infrequent messaging. The

prototyping done to-date has moved beyond

proof-of-concept to demonstrate promising

performance results, but LWP remains for

now a research project with numerous open

questions to be resolved.

APPENDIX

Class Diagram

 For reference at the implementation level,

an overview class diagram describing

responsibilities and collaborations is given

here.

 The ContentListener is the component that

opens a port permanently (8088 as tested),

listening for both Client subscriptions and

messages from the Publisher. The

ContentListener is responsible for creating

one TopicHost for each supported topic.

 The TopicHost component opens a port

(8091 as tested) for its assigned topic only

when a message is available (and only for a

brief period as specified in the TTL).

TopicHost delegates to the MessageSender to

handle incoming client requests for that

message.

 Since the ContentListener always listening,

its port should be used for health checks

instead of the TopicHost port, which is

usually closed.

 The port-per-message protocol has not to-

date been implemented; only port-per-topic is

shown here.

Figure 17: Class Diagram for netty Implementation of LWP

FOOTNOTES AND REFERENCES

[1] TCP Cost

http://en.wikipedia.org/wiki/Transmission_Co

ntrol_Protocol#Resource_usage

http://stackoverflow.com/questions/7669293/p

erformance-implication-of-creating-new-tcp-

connection-per-message

http://stackoverflow.com/questions/4139379/h

ttp-keep-alive-in-the-modern-age

http://stackoverflow.com/questions/4840116/g

eneral-overhead-of-creating-a-tcp-connection

https://tools.ietf.org/html/rfc955

http://en.wikipedia.org/wiki/Transmission_Co

ntrol_Protocol#Resource_usage

http://stackoverflow.com/questions/3173720/k

eeping-1000-tcp-connections-open-inspite-of-

very-few10-20-actual-communicatio

 TCP setup involves a three-way

handshake, with teardown requiring a four-

way exchange, adding latency to each

connection. The size of each transfer is

typically small enough to fit into one network

packet. While network latency and impact on

network stacks (CPU and kernel) comprise

the majority of cost, bandwidth use is

proportional to client population size.

Estimates from others, as seen in some of the

discussions referenced above, suggest varying

levels of RAM cost per connection.

[2] COMET

http://en.wikipedia.org/wiki/Comet_(program

ming)

[3] Long-poll and Streaming Considerations

http://tools.ietf.org/html/draft-loreto-http-

bidirectional-07#section-2.2

[4] WebSockets

http://en.wikipedia.org/wiki/WebSocket

http://www.websocket.org/

http://www.whatwg.org/specs/web-

apps/current-work/multipage/network.html

[5] Options to Support “graceful-scalability”

http://www.w3.org/Protocols/rfc2616/rfc2616

-sec8.html#sec8.1

http://web.archive.org/web/20100813132504/

http://www.io.com/~maus/HttpKeepAlive.ht

ml

http://users.cis.fiu.edu/~downeyt/cgs4854/tim

eout

http://tools.ietf.org/id/draft-thomson-hybi-

http-timeout-01.html

http://stackoverflow.com/questions/4139379/h

ttp-keep-alive-in-the-modern-age

 Connection Keep-Alive is used by default

in HTTP 1.1, but the customized clients and

servers used here would require additional

steps to configure it. Those steps were not

done for the tests done here since the use case

under test assumes infrequent messages.

Given that assumption:

 Applying Keep-Alive to SP would blur

the distinction with LP and its unused

capacity problem;

 Applying Keep-Alive to LP would

moderate reconnect cost, but was left

undone since only the impact of persistent

connections on RAM (vs. latency and

CPU usage from setup and teardown) was

measured for the LP implementation; and

 Keep-Alive is irrelevant for LWP by

virtue of that system’s overall strategy (no

connections are made without messages)

 HTTP Pipelining is an interesting option

that can be revisited in follow-ups, but was

omitted here to reduce the number of test

permutations.

http://en.wikipedia.org/wiki/Transmission_Control_Protocol#Resource_usage
http://en.wikipedia.org/wiki/Transmission_Control_Protocol#Resource_usage
http://stackoverflow.com/questions/7669293/performance-implication-of-creating-new-tcp-connection-per-message
http://stackoverflow.com/questions/7669293/performance-implication-of-creating-new-tcp-connection-per-message
http://stackoverflow.com/questions/7669293/performance-implication-of-creating-new-tcp-connection-per-message
http://stackoverflow.com/questions/4139379/http-keep-alive-in-the-modern-age
http://stackoverflow.com/questions/4139379/http-keep-alive-in-the-modern-age
http://stackoverflow.com/questions/4840116/general-overhead-of-creating-a-tcp-connection
http://stackoverflow.com/questions/4840116/general-overhead-of-creating-a-tcp-connection
https://tools.ietf.org/html/rfc955
http://en.wikipedia.org/wiki/Transmission_Control_Protocol#Resource_usage
http://en.wikipedia.org/wiki/Transmission_Control_Protocol#Resource_usage
http://stackoverflow.com/questions/3173720/keeping-1000-tcp-connections-open-inspite-of-very-few10-20-actual-communicatio
http://stackoverflow.com/questions/3173720/keeping-1000-tcp-connections-open-inspite-of-very-few10-20-actual-communicatio
http://stackoverflow.com/questions/3173720/keeping-1000-tcp-connections-open-inspite-of-very-few10-20-actual-communicatio
http://en.wikipedia.org/wiki/Comet_(programming
http://en.wikipedia.org/wiki/Comet_(programming
http://tools.ietf.org/html/draft-loreto-http-bidirectional-07#section-2.2
http://tools.ietf.org/html/draft-loreto-http-bidirectional-07#section-2.2
http://en.wikipedia.org/wiki/WebSocket
http://www.websocket.org/
http://www.whatwg.org/specs/web-apps/current-work/multipage/network.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/network.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1
http://web.archive.org/web/20100813132504/http:/www.io.com/~maus/HttpKeepAlive.html
http://web.archive.org/web/20100813132504/http:/www.io.com/~maus/HttpKeepAlive.html
http://web.archive.org/web/20100813132504/http:/www.io.com/~maus/HttpKeepAlive.html
http://users.cis.fiu.edu/~downeyt/cgs4854/timeout
http://users.cis.fiu.edu/~downeyt/cgs4854/timeout
http://tools.ietf.org/id/draft-thomson-hybi-http-timeout-01.html
http://tools.ietf.org/id/draft-thomson-hybi-http-timeout-01.html
http://stackoverflow.com/questions/4139379/http-keep-alive-in-the-modern-age
http://stackoverflow.com/questions/4139379/http-keep-alive-in-the-modern-age

[6] TCP Reset Sequence

http://blog.creativeitp.com/posts-and-

articles/networking/exploring-idle-

scanzombie-scan/

http://en.wikipedia.org/wiki/Transmission_Co

ntrol_Protocol

 When a port is not open, as done with

LWP by design, the attempted setup consists

of a SYN from the source peer, followed

immediately by RST from the destination

peer. This terminates connection setup

immediately.

[7] TCP Setup/Teardown Sequences

http://blog.creativeitp.com/posts-and-

articles/networking/exploring-idle-

scanzombie-scan/

http://en.wikipedia.org/wiki/Transmission_Co

ntrol_Protocol

 TCP setup resulting in a connection

consists of three exchanges: the client sends a

SYN to start the dialog, the server responds

with a SYN, ACK, and finally the client sends

an ACK. From that point the connection is in

the ESTABLISHED state. Teardown uses

four exchanges, with FIN from terminating

peer, ACK and FIN from the remote peer,

followed by an ACK from the terminating

peer.

Figure 19: TCP Connection Setup Sequence

Figure 20: TCP Teardown Sequence

Figure 18: TCP Connection RST Sequence

http://blog.creativeitp.com/posts-and-articles/networking/exploring-idle-scanzombie-scan/
http://blog.creativeitp.com/posts-and-articles/networking/exploring-idle-scanzombie-scan/
http://blog.creativeitp.com/posts-and-articles/networking/exploring-idle-scanzombie-scan/
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://blog.creativeitp.com/posts-and-articles/networking/exploring-idle-scanzombie-scan/
http://blog.creativeitp.com/posts-and-articles/networking/exploring-idle-scanzombie-scan/
http://blog.creativeitp.com/posts-and-articles/networking/exploring-idle-scanzombie-scan/
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol

[8] netty

http://netty.io/

http://en.wikipedia.org/wiki/Netty_(software)

[9] Port Capacity on Linux

http://www.ncftp.com/ncftpd/doc/misc/ephem

eral_ports.html

http://www.nateware.com/linux-network-

tuning-for-2013.html

 Linux systems are configured to allow

ports with numbers ranging from 32768 to

61000 by default, whether ephemeral

(outbound from clients) or assigned to

applications (inbound to servers), as managed

using sysctl with

net.ipv4.ip_local_port_range. This

range can be increased up to 65535, and

possibly as low as 1024 depending on ports

reserved for system services.

[10] TIME-WAIT

http://www.ncftp.com/ncftpd/doc/misc/ephem

eral_ports.html

http://www.lognormal.com/blog/2012/09/27/li

nux-tcpip-tuning/

http://www.nateware.com/linux-network-

tuning-for-2013.html

http://www.hjp.at/doc/rfc/rfc3102.html#sec_6

.1

http://www.isi.edu/touch/pubs/infocomm99/in

focomm99-web/

http://www.serverframework.com/asynchrono

usevents/2011/01/time-wait-and-its-design-

implications-for-protocols-and-scalable-

servers.html

 The duration of TIME-WAIT (typically

between 60-240 seconds by default) prevents

the same client (source IP) from connecting to

the same service (destination IP-port) using

the same ephemeral port (source port). IP

stacks will typically allocate different

ephemeral ports for the next connection

request from that client, but as the ephemeral

port range decreases and the client polling

frequency increases, it becomes more possible

to run out of ephemeral ports and to be unable

to establish a connection.

 TIME-WAIT on Linux systems can be

managed using sysctl with the parameter

net.ipv4.tcp_fin_timeout. On the

system under test in experiments done here,

the TIME-WAIT timeout was 60 seconds.

[11] Causes of TCP Resets

http://stackoverflow.com/questions/251243/w

hat-causes-a-tcp-ip-reset-rst-flag-to-be-sent

http://myaccount.flukenetworks.com/fnet/en-

us/supportAndDownloads/KB/IT+Networkin

g/protocol+expert/What_are_TCP_RST_Pack

ets_-_Protocol_Expert

http://blogs.technet.com/b/networking/archive

/2009/08/12/where-do-resets-come-from-no-

the-stork-does-not-bring-them.aspx

[12] Java Heap and Garbage Collection

http://javabook.compuware.com/content/mem

ory/analyzing-java-memory.aspx

[13] Socket and Connection Capacity on

Linux

http://www.cyberciti.biz/faq/linux-increase-

the-maximum-number-of-open-files

http://www.lognormal.com/blog/2012/09/27/li

nux-tcpip-tuning/

http://www.nateware.com/linux-network-

tuning-for-2013.html

 On Linux systems, maximum sockets and

connections can be configured. The relevant

parameters for connections are under

net.netfilter and include the current

count nf_conntrack_count and the

maximum nf_conntrack_max, as

managed by sysctl. The maximum number

of connections configured for the system

under test in these experiments is about 64K.

http://netty.io/
http://en.wikipedia.org/wiki/Netty_(software
http://www.ncftp.com/ncftpd/doc/misc/ephemeral_ports.html
http://www.ncftp.com/ncftpd/doc/misc/ephemeral_ports.html
http://www.nateware.com/linux-network-tuning-for-2013.html
http://www.nateware.com/linux-network-tuning-for-2013.html
http://www.ncftp.com/ncftpd/doc/misc/ephemeral_ports.html
http://www.ncftp.com/ncftpd/doc/misc/ephemeral_ports.html
http://www.lognormal.com/blog/2012/09/27/linux-tcpip-tuning/
http://www.lognormal.com/blog/2012/09/27/linux-tcpip-tuning/
http://www.nateware.com/linux-network-tuning-for-2013.html
http://www.nateware.com/linux-network-tuning-for-2013.html
http://www.hjp.at/doc/rfc/rfc3102.html#sec_6.1
http://www.hjp.at/doc/rfc/rfc3102.html#sec_6.1
http://www.isi.edu/touch/pubs/infocomm99/infocomm99-web/
http://www.isi.edu/touch/pubs/infocomm99/infocomm99-web/
http://www.serverframework.com/asynchronousevents/2011/01/time-wait-and-its-design-implications-for-protocols-and-scalable-servers.html
http://www.serverframework.com/asynchronousevents/2011/01/time-wait-and-its-design-implications-for-protocols-and-scalable-servers.html
http://www.serverframework.com/asynchronousevents/2011/01/time-wait-and-its-design-implications-for-protocols-and-scalable-servers.html
http://www.serverframework.com/asynchronousevents/2011/01/time-wait-and-its-design-implications-for-protocols-and-scalable-servers.html
http://stackoverflow.com/questions/251243/what-causes-a-tcp-ip-reset-rst-flag-to-be-sent
http://stackoverflow.com/questions/251243/what-causes-a-tcp-ip-reset-rst-flag-to-be-sent
http://myaccount.flukenetworks.com/fnet/en-us/supportAndDownloads/KB/IT+Networking/protocol+expert/What_are_TCP_RST_Packets_-_Protocol_Expert
http://myaccount.flukenetworks.com/fnet/en-us/supportAndDownloads/KB/IT+Networking/protocol+expert/What_are_TCP_RST_Packets_-_Protocol_Expert
http://myaccount.flukenetworks.com/fnet/en-us/supportAndDownloads/KB/IT+Networking/protocol+expert/What_are_TCP_RST_Packets_-_Protocol_Expert
http://myaccount.flukenetworks.com/fnet/en-us/supportAndDownloads/KB/IT+Networking/protocol+expert/What_are_TCP_RST_Packets_-_Protocol_Expert
http://blogs.technet.com/b/networking/archive/2009/08/12/where-do-resets-come-from-no-the-stork-does-not-bring-them.aspx
http://blogs.technet.com/b/networking/archive/2009/08/12/where-do-resets-come-from-no-the-stork-does-not-bring-them.aspx
http://blogs.technet.com/b/networking/archive/2009/08/12/where-do-resets-come-from-no-the-stork-does-not-bring-them.aspx
http://javabook.compuware.com/content/memory/analyzing-java-memory.aspx
http://javabook.compuware.com/content/memory/analyzing-java-memory.aspx
http://www.cyberciti.biz/faq/linux-increase-the-maximum-number-of-open-files
http://www.cyberciti.biz/faq/linux-increase-the-maximum-number-of-open-files
http://www.lognormal.com/blog/2012/09/27/linux-tcpip-tuning/
http://www.lognormal.com/blog/2012/09/27/linux-tcpip-tuning/
http://www.nateware.com/linux-network-tuning-for-2013.html
http://www.nateware.com/linux-network-tuning-for-2013.html

As these limits increase, kernel memory usage

also increases. Sockets are also limited by

number of maximum open file handles, as

managed with fs.file-max.

 While the server could have accepted 64K

connections, the number of (outbound)

sockets for the load generator in these

experiments was limited by its ephemeral port

range of 28K (as per the default range of

32768 to 61000). This can be revisited in

subsequent testing to generate more client

threads, but more useful effort would go

towards establishing multiple source IP

addresses instead.

