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 Abstract 

 

     IPTV platforms provide value-add 

with notifications such as Caller ID and EAS 

alerts.  An efficient architecture provides 

timely delivery of these messaging events 

without unnecessarily binding resources in 

their absence. The technology choice to 

support this is influenced by message 

frequency, latency requirements and client 

population size.  

 

     Among the contexts combining those 

variables, low latency delivery of infrequent 

messages becomes more challenging for the 

server as client size increases. A system is 

described here targeting that scenario, 

scaling gently with increases in client size and 

latency constraints. The system impacts server 

resources only when a message is available.  
 

 

 

INTRODUCTION 

 

Background 

 

     With HTTP as the application protocol, 

notification across the Internet relies on a 

client-initiated request. This presents the 

problem of how to convey event information 

from a service to a client, for example an EAS 

service delivering a flash flood alert to an 

HTML5 browser.  

 

     Periodic client requests provide 

opportunities for the server to send the EAS 

alert. However, with such “short poll” 

solutions, the client can suffer from high 

latency and untimely message delivery if 

polling frequency is too low; or server 

capacity is challenged when frequency is 

high. In particular, the aggregate cost of setup, 

maintenance and teardown of TCP 

connections
[1]

 increases as a function of the 

polling frequency and client size. 

 

      So-called COMET
[2]

 or “long poll” 

solutions have been developed to reduce the 

TCP activity. With these approaches, a 

connection is established and held by the 

server, either until a message is available or 

with periodic timeouts. Streaming servers can 

hold the connections open persistently and 

deliver ongoing messages as information 

becomes available. These techniques not only 

reduce TCP setup and teardown cost, but also 

support the requirement for low-latency 

message delivery. However, while setup and 

teardown cost is lessened, maintenance 

remains: system provisioning requires 

concurrent connection capacity as a function 

of client size. This incurs cost in RAM
[1]

 and 

brings other considerations
[3].

 

 

     The benefit of the RAM cost is a function 

of messaging frequency. That is, in a context 

with frequent message availability such as a 

stock exchange, the capacity is well utilized. 

However, that use declines with decreasing 

messaging frequency. Persistent connections 

are increasingly idle, becoming an unused 

commitment.  

 

     Examples calling for low-latency delivery 

of infrequent messages include EAS, Caller 

ID and location-aware advertising.  

 

LightWeight Polling 

 

     The traffic profile combining timely 

delivery of infrequent messaging events is the 

context for this discussion. Targeting that 

context, “LightWeight Polling” (LWP) is a 

communication protocol described here, with 

performance test results suggesting it provides 

low-latency messaging while moderating 

many shortcomings of traditional short poll 



systems. In particular, significant savings in 

network and CPU activity have been 

measured and will be discussed in detail. In 

short, LWP accomplishes this by opening its 

destination port for clients only when a 

message is available. Resources are used 

primarily for those events while terminating 

any TCP connection attempt immediately in 

their absence. 

 

Acronyms 

 

     For purposes of this discussion, the 

following acronyms are used: 

 

     CPU Central Processing Unit 

     EAS Emergency Alert System 

     HTTP HyperText Transfer Protocol 

     JVM Java Virtual Machine 

     LP  Long Poll 

     LWP LightWeight Poll 

     RAM Random Access Memory 

     SP  Short Poll (traditional polling) 

     TCP Transmission Control Protocol 

     TTL Time To Live 
 

 

 

ARCHITECTURAL CONSIDERATIONS 

 

Use Cases 

 

     Testing done here is intended to simulate 

broadcast messages that occur infrequently 

but call for timely delivery.  

 

     The point-to-point class of use cases, for 

example Caller ID and soft remote, imply 

private instead of broadcast messages. This is 

not an intended use for LWP as it is currently 

implemented. The current prototype relies on 

a port-per-topic protocol, using a single 

destination port to host a given topic. For 

example, the “topic” for Caller ID is the 

individual phone number, and this requires N 

ports for N phone numbers. Supportable 

Caller ID client size then becomes a function 

of available ports
[9]

. While larger values of N 

appear to be a variation of the unused 

commitment problem, LWP capacity is not 

dedicated in the absence of messaging since 

ports are not opened. Given this, LWP applied 

with point-to-point may show benefits, but 

experiments remain to-date undone. 

 

     Latency requirements that are more relaxed 

are not examined here since this is not a 

particularly challenging context. 

 

     The class of use cases calling for frequent 

messaging, for example a stock exchange, are 

also not an intended application of LWP 

systems. As frequency of messaging 

increases, LWP systems increasingly 

resemble standard polling, and long poll 

systems become increasingly favorable. 

 

System Requirements 

 

     An example set of requirements where an 

LWP system would be suitable include the 

following: 

 

1. one-second-latency: The system must 

support latency requirements of one 

second or better after message availability. 

2. 120s-messaging: System capacity 

requirements must grow linearly or better 

as a function of messaging frequency with 

a period of 120 seconds or more. 

3. graceful-scalability: System capacity 

requirements must grow in sublinear 

fashion relative to client population size. 

4. dynamic-capacity: The system must 

release CPU and network resources when 

messaging work is not required. 

  



Candidate Approaches 

 

     Given the target use cases and system 

requirements, there are various candidate 

solutions included in testing done here. The 

range of candidates was not intended to be 

exhaustive, for example omitting Web 

Sockets
[4]

. The intention was to determine if 

short polling with an LWP approach is a 

viable alternative to long poll. 

 

     In terms of the system requirements, the 

120s-messaging context is not challenging 

taken alone. However, low-frequency 

messaging undermines the dynamic-capacity 

requirement with a long poll system, which by 

design is unwilling to release capacity in the 

absence of messages. The one-second latency 

requirement is problematic with a traditional 

short poll system in terms of support for 

graceful-scalability
[5]

. This is true regardless 

of messaging period, due to impact on RAM 

and network. Increasing client sizes with a 

long poll system would require corresponding 

growth in concurrent connection capacity, 

failing to support graceful-scalability. 
 

 

 

LIGHTWEIGHT POLLING: DETAILS 

 

Overview 

 

     The “LightWeight Polling” mechanism 

described here is not sensitive to high rates of 

client polling, with the destination port 

opening only when messages appear. Without 

messaging, TCP connection attempts are 

terminated immediately. This is done with a 

connection reset issued from the network 

stack on the LWP host
[6]

, incurring modest 

impact solely on that stack. 

 

     At message time, TCP communication in 

LWP flows as usual
[7]

. When messaging 

events are infrequent, the cost of TCP setup, 

maintenance and teardown are reduced 

relative to traditional short poll. With lessened 

demand on server, network capacity and CPU, 

these resources are available for other 

activities when no messages are available. 

LWP capacity needs are largely determined 

by messaging frequency. 

 

     The LWP protocol side-steps the 

provisioning needs of long poll solutions, 

where capacity for “always-open” connections 

must grow as a function of population size. 

These connections are idle a majority of the 

time when messages are infrequent.  

 

     The combination of “strict latency” (timely 

delivery) and infrequent messages is the most 

suitable context for an LWP system. The 

remainder of this discussion assumes strict-

infrequent as the context. 

 

Communication Flow 

 

     The sequence diagram in Figure 1 

illustrates the typical LWP flows. The 

timeline is captured to the left of the Client, 

with system State changes to the left of the 

Publisher. To elaborate on the numbered 

steps: 

 

     1: A web Client “subscribes” for 

“notification” when an EAS alert occurs. The 

notion of EAS alerts is regarded as a “topic”, 

and the client request is referred to as a 

“subscription”. Port 8088 is used for the 

subscription, with this port remaining open for 

the duration of LWP execution. 

 

     The LWP service responds to the Client 

subscription with information on the port for 

polling and a TTL (Time To Live) – that is, 

how long any EAS alert will be cached for 

availability. The TTL is the maximum 

recommended polling interval for this 

particular topic.  

 

     In this example, the port to be used for 

polling is 8091 and the TTL is 10 seconds. If 

the Client polls more frequently, it is less 

likely to miss any messages and may receive 



messages with less delay. If polling is done 

less frequently, the Client may miss messages. 

 

     2a-2c: The client is motivated to get any 

EAS alerts with little delay, polling every 

second. Note from the current State (No Alert, 

Alert, …) that each of steps 2a, 2b and 2c are 

executed when no alert is available.  

 

     The impact from one-second polling is 

quite low as quantified in the TEST 

RESULTS section. When no message is 

available, LWP is not aware of the polling 

frequency, since the Network terminates the 

connection attempt immediately with a TCP 

reset. 

 

     3a: The Publisher provides an EAS 

message to LWP at 3a using port 8088. LWP 

responds at 3b by 

opening port 8091 with 

the message and 

establishing port 8092 

for subsequent 

messages. Note that 

port 8092 is not opened 

until that next message 

arrives. The next time 

any Client requests an 

EAS alert on 8091 (3c), 

the message is 

delivered (3d), and 

LWP informs that 

client to poll for 

subsequent messages 

on port 8092 with a 

TTL of 5s.  

 

     Note that the port 

and TTL have changed. 

LWP changes the port 

so that this first client is 

not repeatedly asking 

for the same message 

on port 8091, which 

remains open for other 

clients during the TTL. 

This would undermine 

the LWP goal of “no 

unneeded work” and 

result in duplicate 

messaging to the first 

client. Other clients that 

have not yet received 

the message will find it 

at port 8091 for the 

next 10 seconds. 

Meanwhile the first client will now poll 

Figure 1: Typical LWP Communication Flows 



against 8092.  

 

     This port-per-message protocol requires a 

client to resubscribe if it has not contacted 

LWP within the TTL period. If a message was 

delivered during that TTL, the port will have 

changed for the EAS topic. Alternately, 

clients can resubscribe on port 8088 on a 

regular basis as insurance against changed 

port numbers, and a message numbering 

scheme can be used to deliver potentially 

missed messages to clients.  

 

     Note that proof-of-concept for the port-

per-message protocol remains undone. Tests 

done here use a port-per-topic implementation 

of LWP, and this did result in duplicate 

messages for a given client and additional 

impact on LWP during the TTL period. A 

port-per-topic approach is sufficient for point-

to-point, since this is equivalent to port-per-

client and no redundant requests for the same 

message will happen (since the port is closed 

immediately after message delivery). 

 

   Finally, as illustrated in the sequence, LWP 

optionally changes the TTL to adaptively 

manage its resources as needed. TTL 

adjustments are also used to encourage higher 

polling frequencies. For example, an initial 

EAS alert is likely to soon be followed by 

more. 
 

 

 

TEST CONSTRUCTION 

 

Test Setup 

 

     Test results provide some insight into why 

traditional short poll systems are considered 

inefficient and how LWP addresses the 

problems. An LWP server prototype was 

constructed using the netty (Java-based) 

framework
[8]

. In the interest of reducing the 

variations, SP and LP server prototypes were 

also constructed with this framework. The SP 

implementation represents a traditional short 

poll system for purposes of testing and 

subsequent analysis in this discussion.  

 

     Each server was load tested in separate 

executions on a physical hardware machine 

dedicated to the tests. The machine has two 

Intel E6750 CPUs running at 2.66GHz. The 

JVM was configured at 256MB minimum and 

2GB maximum heap size. 

 

SP and LWP Test Phases 

 

     The SP and LWP systems were executed 

in various test phases as described below, and 

as annotated with the timeline in Figure 2 in 

the TEST RESULTS section.  

 

     The test phases Q, P, S, and M are, briefly: 

      

     Q: the system is quiescent  

     P: polling is underway  

     S: server is running, handling polling only  

     M: messages are being delivered 

 

     The test phase details are as follows: 

 

     Q: The system is in quiescent state for at 

least 180 seconds to establish a system 

baseline.  

 

     P: Polling is initiated for 300 seconds to 

establish a polling-only baseline. For each 

test, either 3K or 30K client threads are 

initiated in sets of 3K at a time. For the 30K 

population, a 6-second delay is added between 

each 3K set, with the intent of adding some 

temporal spread to the client request traffic. 

This results in a “bumpy” rather than a 

uniform distribution of client request traffic, 

due to staggering and resource contention 

delays with thread startup. 

 

     S: At the first of two “S” phases, a given 

type of server (SP or LWP) is started and 

opens port 8088 to accept publisher messages. 

SP opens port 8091 to accept client requests. 

LWP opens that port only when a message 

appears, and then only for the TTL period. 



Polling against SP and LWP continues 

without any message delivery for 600 seconds 

to establish a no-messaging baseline.  

 

     M: Messages are delivered five times, 

once every 120 seconds. Once a message 

appears, the SP and LWP servers make it 

available at port 8091 for the next 10 seconds.  

 

     Clients of the SP server receive an “HTTP 

204 No-Content” response in the absence of 

messages. Clients of the LWP server receive a 

connection reset in the absence of messages. 

In each case, the client receives an “HTTP 

200 OK” response if a message is available, 

and the client sends a new request one second 

after either a reset or response.  

      

     S: At the second “S” phase, the server 

continues running for 120 seconds after the 

last message, with polling against SP and 

LWP, but no message delivery. The server is 

finally halted to allow the system to return to 

quiescent state before the next test execution 

is started. 

 

     These executions were done first using SP 

and LWP against a 3K population, and then 

using SP and LWP against a 30K population. 

This was the approach for all tests and 

associated graphs that follow, except where 

otherwise indicated.  

 

LP Test 

 

     A single test correlating RAM with 

concurrent connections was done for the LP 

server with the 30K population. For the LP 

server, all clients connect immediately on 

startup and remain connected until the first 

message arrives. The LP server delivers the 

message immediately with “HTTP 200 OK” 

to these clients, which reconnect one second 

later to wait for the next message. 

 

SP and LWP Graphical Output 

 

     Each graph of test results displays a 

particular metric for a given population size. 

Each graph includes both SP and LWP 

executions: 

 

1. 3K clients, SP and then LWP 

2. 30K clients, SP and then LWP 

 

     As annotated with Figure 2, the red 

markers in each graph indicate the startup 

times of SP and subsequently LWP servers, 

with messaging events indicated by the 

groupings of light-blue markers. While both 

populations are shown for the bandwidth 

metric in Figures 2 and 3, only the 30K 

population is shown for any metrics with 

similar results for both populations. 

 

     The selected set of metrics captured 

includes the following: 

 

1. Network activity, to include bandwidth, 

socket use, TIME-WAIT and connection 

reset levels 

2. CPU idle time 

3. RAM and heap size usage  

 

     Sampling of the metrics was done at five-

second intervals for finer-grained analysis. 

Graphs were displayed using minimum or 

maximum depending on the metric, with 20-

second resolution for simpler visualization. 
 

     To facilitate understanding of overall test 

results and graphical presentations, reference 

the annotations in Figure 2. This can be 

consulted as a template for subsequent graphs 

in the TEST RESULTS section.  



TEST RESULTS 
 

Network Impact 

 

     Maximum kilobytes of input and output 

bandwidth are shown in Figure 2 for 3K 

clients and Figure 3 for 30K clients, with SP 

and LWP executions in each graph. Figure 2 

provides detailed annotations of test phases.  

 

 

     Variability in output peaks are likely due 

to the bumpy profile of client traffic. If 

capacity is to be provided for these infrequent 

peaks, it would be useful to reclaim capacity 

that is unused when there is no messaging. As 

illustrated in Figures 2 and 3,  an SP 

environment exhibits bandwidth usage that 

varies in a narrow range near its highest 

levels, regardless of messaging traffic. This 

leaves less bandwidth margin to be reclaimed. 

 

     Alternately, bandwidth consumption for 

LWP stabilizes at about 40% of the SP levels 

in the absence of messaging traffic, engaging 

network capacity only when messages arrive. 

Additionally, the LWP bandwidth profile 

tapers shortly after the message event. This 

profile offers margin that can be applied to 

alternate capacity allocation. This margin 

increases as messaging frequency decreases. 

With an LWP system, this inverse correlation 

is independent of client population or polling 

rates. 

 

     The correlation with TIME-WAIT 

behavior can be seen in Figure 4. Because of 

configuration on the load generator machine, 

the limit on source IP-port tuples (which are 

stored in TIME-WAIT structures) was about 

28K
[13]

. The chart shows that SP systems max 

out the potential TIME-WAIT levels for those 

connected source IP-ports immediately, 

keeping those levels high for its entire 

execution. However, LWP establishes fewer 

connections since the destination port is only 

Figure 3: Bandwidth Impacts, 30K 

clients for SP and LWP executions 

Figure 2: Bandwidth Impacts, 3K 

clients for SP and LWP executions 

Figure 4: TIME-WAIT Activity, 30K 

clients for SP and LWP executions 



open for brief periods, exhibiting the same 

reduced peak and post-message tapering for 

TIME-WAIT as seen with bandwidth. TIME-

WAIT activity can have impact on scalability 

and performance in various ways, as 

discussed in the FOOTNOTES section
[10]

.  

 

 

     Maximum levels of sockets used by SP 

and LWP are shown in Figure 5 for 3K clients 

and Figure 6 for 30K clients. As with 

bandwidth, these peaks drive capacity 

planning. SP peaks are higher relative to LWP 

for both population sizes. LWP use of sockets 

remains slightly elevated above baseline 

independent of population size, peaking at 

higher levels for the 30K population. The 

difference in absolute levels of socket use 

with the 30K population is about 50% greater 

with SP vs. LWP; this suggests that LWP 

would scale more gradually (providing spare 

capacity in terms of sockets) as the population 

increases. More full-featured load generation 

would be needed for higher confidence. 

 

     The engagement of TCP connection reset 

activity using an LWP system accounts for the 

reductions in bandwidth, TIME-WAIT and 

socket levels. This is illustrated with Figure 7. 

 

      

     A TCP connection reset can be triggered 

by various conditions
[11]

; in this case it is due 

to an unopened destination port. This happens 

immediately at test startup, as seen in Figure 7 

preceding both red startup markers; this is 

because tests are begun with the polling-only 

baselines without the server running. 

Immediately on SP startup, the reset rate 

drops effectively to zero since SP has opened 

port 8091 and is returning “HTTP 204 No-

Content” with no messages available. 

However, the resets continue after LWP 

startup since LWP waits until a message is 

available to open the destination port.   

Figure 6: Total Sockets Profile, 30K 

clients for SP and LWP executions 

Figure 7: Connection Reset Activity, 30K 

clients for SP and LWP executions  

Figures 5: Total Sockets Profile, 3K 

clients for SP and LWP executions 



CPU Impact 

 

     The timeline in Figure 8 illustrates the 

minimum levels provided by SP and LWP for 

CPU idle percentage. 

  

      

     Available CPU declines immediately at SP 

startup time, with no benefit to the delivery of 

messages. Idle CPU remains below the 40% 

mark for the duration of the SP run for both 

populations. The CPU exhibits no noticeable 

reaction at LWP startup, remains high in the 

absence of messaging and has minimums 

higher than the SP maximums with messaging 

events. LWP engages the CPU only when 

delivery of a message is needed, and unlike an 

SP system, that CPU usage is transient with a 

quick recovery after the message. 

 

     It would seem LWP should drop to the 

same levels of idle CPU during message 

events as seen for SP, but it remains 

significantly higher. This is due to thousands 

of No-Content responses from SP to clients 

continuing to poll at one-second intervals. 

While SP engages the CPU to tell the client 

that there is no message, LWP systems avoid 

this wasteful activity.  

 

     The differences in CPU availability are 

shown with a frequency distribution of idle 

percentages, for SP and LWP in Figures 9 and 

10 respectively. LWP never uses more than 

50% of CPU, while SP sometimes consumes 

100%. 

 

    With LWP there are many fewer 204 

responses during messaging periods, since 

LWP closes its port at TTL expiration. This 

raises the question of why any 204 responses 

are seen, instead of all requests receiving 

either 200 OK or a connection reset. The 

reason is that the LWP implementation does 

not apply locks to the processing, allowing 

some requests into the request-handling 

pipeline while the port is open. By the time 

the last handful of these requests are 

processed by the handling logic, the TTL has 

expired and the message has been removed. In 

this case, as with the SP system, the response 

handler sends out the 204 responses.   

Figure 9: CPU Idle, Frequency 

Distributions, 30K clients for SP 

Figure 10: CPU Idle, Frequency 

Distributions, 30K clients for LWP 

Figure 8: CPU Impact, 30K clients for SP 

and LWP executions 



RAM Impact 

 

     There is only a slight difference in 

maximum RAM usage between SP and LWP 

systems, regardless of client size. Both 

plateau after all 30K clients have been 

engaged, as per Figure 11. The absolute 

values of RAM used by the SP and LWP 

systems are about 140MB and 170MB 

respectively. 

 

       

      

 

     Figure 12 shows the RAM levels achieved 

by the LP implementation for the same 30K 

population, displayed with the incremental 

increase in connections as clients are started 

in 3K sets. Connection levels here are 

multiplied by eight to more readily visualize 

the correlation. The peak RAM level 

approaches 30% higher than LWP (220MB). 

Note that the LP execution did not include 

any messaging events; it was done solely to 

determine the influence of additional 

connections on growth in RAM. 

 

     Figure 13 shows the incremental changes 

in RAM size as connections increase. The 

RAM cost for each connection averages about 

9K. For all 30K connections the increase 

totals about 275MB, which is primarily 

unused capacity in an infrequent-messaging 

context. Note the cost of RAM per connection 

found here should not be regarded as typical, 

since implementations, system tuning and 

other factors will vary
[1]

. 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 12: RAM Growth with Increases in 

# of Connections, 30K clients for LP only 

Figure 13: RAM Delta with Increases in # 

of Connections, 30K clients for LP only 

Figure 11: Process Resident Memory, 

30K clients for SP and LWP executions 



Heap Size Impact 

 

      Java heap activity is shown using SP in 

Figure 14 and LWP in Figure 15, against the 

30K population only. 

 

     Both heaps achieved approximately the 

same size, but this is a function of JVM and 

garbage collection tuning parameters. The 

variations in heap size appear to be a result of 

garbage collection activity, which is known to 

have measurable impacts on system 

response
[12]

. There is considerably less of that 

activity in the LWP system.  

 

     Another test execution over a longer period 

compares heap activity for SP in the first half, 

followed by LWP in Figure 16. SP has a great 

deal more activity but is losing ground over 

time, while LWP shows more desirable 

behavior. Additional testing would be useful 

here to capture not only heap size, but also 

generational activity and pause times for a 

more insightful analysis. 
 

 

 

CONSIDERATIONS 

 

    All tests were done with HTTP (no SSL). 

 

LWP Tradeoffs 

 

      LWP has many considerations, to include 

at least the following: 

 

1. A specialized server is required. 

2. This is prototype technology, barely 

emerging from proof-of-concept stages. 

3. Clients must be aware that they will 

receive frequent connection resets. 

4. Clients cannot determine if the service is 

down since connection resets are the 

norm. That said, clients – including load 

balancing systems that manage failover – 

can execute health checks against LWP at 

port 8088, which is open permanently. See 

the Class Diagram in the APPENDIX for 

details. 

5. If SSL is used and the load balancer 

handles SSL offload, then there is an 

undesirable impact against that network 

component. This undermines the original 

purpose of LWP. 

6. If SSL is used but the load balancer does 

not handle SSL offload, then load balancer 

Figure 16: JVM Heap Size, 30K 

clients for SP and LWP executions 

Figure 14: JVM Heap, 30K clients for SP 

Figure 15: JVM Heap, 30K clients for LWP 



caching cannot be leveraged. This would 

call for SSL offload at LWP and a shared 

cache instead, assuming horizontal scale 

for LWP servers. 

7. If SSL is used but the load balancer does 

not handle SSL offload, then routing 

decisions, session management based on 

headers, and any other application-layer 

functionality provided by the load 

balancer cannot be leveraged. 

8. Messages must be cached for a TTL of at 

least the expected latency tolerance of the 

clients. However, LWP is intended only 

for “strict latency” environments, so that 

TTL is expected to be short. 

9. If the message TTL is longer than the 

polling interval, the port-per-message 

protocol (which is to-date undeveloped) 

should be used. Otherwise, clients polling 

at high frequency will unnecessarily 

burden LWP, and these clients must 

distinguish duplicates. 

 

     The points in items 5-7 raise a question of 

whether LWP-type logic should live in a 

proxy server acting as SSL offloader, load 

balancer and centralized cache. 
 

 

 

CONCLUSIONS 

 

     The architectural goal of LWP is to use 

resources only when needed to deliver 

messages, releasing that capacity for other 

purposes in their absence.  Tests results show 

that LWP makes low-impact demands on 

network and CPU, moderating various  

undesirable characteristics of traditional short  

poll systems, and that it is well suited for 

strict latency, infrequent messaging contexts. 

  

     LWP also addresses the unused 

commitment problem (dedicated but idle 

capacity) of long poll systems in the strict-

infrequent context. This justifies a second 

look at LWP-based short polling as an 

alternative to long poll for use cases calling 

for that context. 

 

     In short, LWP accomplishes this by 

opening a TCP port only when the message is 

available. With this approach, data center 

provisioning is now primarily driven by 

messaging frequency rather than client size or 

latency requirements. The resources 

supporting an LWP system are increasingly 

available for other activity as messaging 

frequency decreases.  

 

      Conversely, with increase in messaging 

frequency, LWP performance degrades to 

more closely resemble traditional short poll. 

The increasingly leveraged capacity of long 

poll provides more favorable cost-benefit in 

this context. 

 

     As with many technology solutions, LWP 

brings trade-offs and considerations. The most 

suitable use is narrow: strict latency 

requirements with infrequent messaging. The 

prototyping done to-date has moved beyond 

proof-of-concept to demonstrate promising 

performance results, but LWP remains for 

now a research project with numerous open 

questions to be resolved. 

 

 

 

  



APPENDIX 

 

Class Diagram 

 

     For reference at the implementation level, 

an overview class diagram describing 

responsibilities and collaborations is given 

here.  

      

     The ContentListener is the component that 

opens a port permanently (8088 as tested), 

listening for both Client subscriptions and 

messages from the Publisher. The 

ContentListener is responsible for creating 

one TopicHost for each supported topic. 

      

  

     The TopicHost component opens a port 

(8091 as tested) for its assigned topic only 

when a message is available (and only for a 

brief period as specified in the TTL).  

TopicHost delegates to the MessageSender to 

handle incoming client requests for that 

message. 

  

     Since the ContentListener always listening, 

its port should be used for health checks 

instead of the TopicHost port, which is 

usually closed. 

 

     The port-per-message protocol has not to-

date been implemented; only port-per-topic is 

shown here. 

 

 

Figure 17: Class Diagram for netty Implementation of LWP 
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http://stackoverflow.com/questions/3173720/k

eeping-1000-tcp-connections-open-inspite-of-

very-few10-20-actual-communicatio 

 

     TCP setup involves a three-way 

handshake, with teardown requiring a four-

way exchange, adding latency to each 

connection. The size of each transfer is 

typically small enough to fit into one network 

packet. While network latency and impact on 

network stacks (CPU and kernel) comprise 

the majority of cost, bandwidth use is 

proportional to client population size. 

Estimates from others, as seen in some of the 

discussions referenced above, suggest varying 

levels of RAM cost per connection. 

 

[2] COMET 

 

http://en.wikipedia.org/wiki/Comet_(program

ming) 

 

[3] Long-poll and Streaming Considerations  

 

http://tools.ietf.org/html/draft-loreto-http-

bidirectional-07#section-2.2 

 

[4] WebSockets 

 

http://en.wikipedia.org/wiki/WebSocket 

http://www.websocket.org/ 

http://www.whatwg.org/specs/web-

apps/current-work/multipage/network.html 

 

[5] Options to Support “graceful-scalability”  

 

http://www.w3.org/Protocols/rfc2616/rfc2616

-sec8.html#sec8.1 

http://web.archive.org/web/20100813132504/

http://www.io.com/~maus/HttpKeepAlive.ht

ml 

http://users.cis.fiu.edu/~downeyt/cgs4854/tim

eout 

http://tools.ietf.org/id/draft-thomson-hybi-

http-timeout-01.html 

http://stackoverflow.com/questions/4139379/h

ttp-keep-alive-in-the-modern-age 

 

     Connection Keep-Alive is used by default 

in HTTP 1.1, but the customized clients and 

servers used here would require additional 

steps to configure it. Those steps were not 

done for the tests done here since the use case 

under test assumes infrequent messages. 

Given that assumption:  

 

 Applying Keep-Alive to SP would blur 

the distinction with LP and its unused 

capacity problem; 

 Applying Keep-Alive to LP would 

moderate reconnect cost, but was left 

undone since only the impact of persistent 

connections on RAM (vs. latency and 

CPU usage from setup and teardown) was 

measured for the LP implementation; and 

 Keep-Alive is irrelevant for LWP by 

virtue of that system’s overall strategy (no 

connections are made without messages) 

 

     HTTP Pipelining is an interesting option 

that can be revisited in follow-ups, but was 

omitted here to reduce the number of test 

permutations. 
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[6] TCP Reset Sequence 

 

http://blog.creativeitp.com/posts-and-

articles/networking/exploring-idle-

scanzombie-scan/ 

http://en.wikipedia.org/wiki/Transmission_Co

ntrol_Protocol 

 

     When a port is not open, as done with 

LWP by design, the attempted setup consists 

of a SYN from the source peer, followed 

immediately by RST from the destination 

peer. This terminates connection setup 

immediately. 

  

[7] TCP Setup/Teardown Sequences 

 

http://blog.creativeitp.com/posts-and-

articles/networking/exploring-idle-

scanzombie-scan/ 

http://en.wikipedia.org/wiki/Transmission_Co

ntrol_Protocol 

 

     TCP setup resulting in a connection 

consists of three exchanges: the client sends a 

SYN to start the dialog, the server responds 

with a SYN, ACK, and finally the client sends 

an ACK. From that point the connection is in 

the ESTABLISHED state. Teardown uses 

four exchanges, with FIN from terminating 

peer, ACK and FIN from the remote peer, 

followed by an ACK from the terminating 

peer. 

 

 

 

  

Figure 19: TCP Connection Setup Sequence 

Figure 20: TCP Teardown Sequence 

Figure 18: TCP Connection RST Sequence 
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[8] netty 

 

http://netty.io/ 

http://en.wikipedia.org/wiki/Netty_(software) 

 

[9] Port Capacity on Linux 

 

http://www.ncftp.com/ncftpd/doc/misc/ephem

eral_ports.html 

http://www.nateware.com/linux-network-

tuning-for-2013.html 

 

     Linux systems are configured to allow 

ports with numbers ranging from 32768 to 

61000 by default, whether ephemeral 

(outbound from clients) or assigned to 

applications (inbound to servers), as managed 

using sysctl with 

net.ipv4.ip_local_port_range. This 

range can be increased up to 65535, and 

possibly as low as 1024 depending on ports 

reserved for system services. 

 

[10] TIME-WAIT 

 

http://www.ncftp.com/ncftpd/doc/misc/ephem

eral_ports.html 

http://www.lognormal.com/blog/2012/09/27/li

nux-tcpip-tuning/ 

http://www.nateware.com/linux-network-

tuning-for-2013.html 

http://www.hjp.at/doc/rfc/rfc3102.html#sec_6

.1 

http://www.isi.edu/touch/pubs/infocomm99/in

focomm99-web/ 

http://www.serverframework.com/asynchrono

usevents/2011/01/time-wait-and-its-design-

implications-for-protocols-and-scalable-

servers.html 

 

     The duration of TIME-WAIT (typically 

between 60-240 seconds by default) prevents 

the same client (source IP) from connecting to 

the same service (destination IP-port) using 

the same ephemeral port (source port). IP 

stacks will typically allocate different 

ephemeral ports for the next connection 

request from that client, but as the ephemeral 

port range decreases and the client polling 

frequency increases, it becomes more possible 

to run out of ephemeral ports and to be unable 

to establish a connection.  

 

     TIME-WAIT on Linux systems can be 

managed using sysctl with the parameter 

net.ipv4.tcp_fin_timeout. On the 

system under test in experiments done here, 

the TIME-WAIT timeout was 60 seconds. 

 

[11] Causes of TCP Resets 

 

http://stackoverflow.com/questions/251243/w

hat-causes-a-tcp-ip-reset-rst-flag-to-be-sent 

http://myaccount.flukenetworks.com/fnet/en-

us/supportAndDownloads/KB/IT+Networkin

g/protocol+expert/What_are_TCP_RST_Pack

ets_-_Protocol_Expert 

http://blogs.technet.com/b/networking/archive

/2009/08/12/where-do-resets-come-from-no-

the-stork-does-not-bring-them.aspx 

 

[12] Java Heap and Garbage Collection 

 

http://javabook.compuware.com/content/mem

ory/analyzing-java-memory.aspx 

 

[13] Socket and Connection Capacity on 

Linux  

 

http://www.cyberciti.biz/faq/linux-increase-

the-maximum-number-of-open-files 

http://www.lognormal.com/blog/2012/09/27/li

nux-tcpip-tuning/ 

http://www.nateware.com/linux-network-

tuning-for-2013.html 

 

     On Linux systems, maximum sockets and 

connections can be configured. The relevant 

parameters for connections are under 

net.netfilter and include the current 

count nf_conntrack_count and the 

maximum nf_conntrack_max, as 

managed by sysctl. The maximum number 

of connections configured for the system 

under test in these experiments is about 64K. 
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As these limits increase, kernel memory usage 

also increases. Sockets are also limited by 

number of maximum open file handles, as 

managed with fs.file-max.  

 

     While the server could have accepted 64K 

connections, the number of (outbound) 

sockets for the load generator in these 

experiments was limited by its ephemeral port 

range of 28K (as per the default range of 

32768 to 61000). This can be revisited in 

subsequent testing to generate more client 

threads, but more useful effort would go 

towards establishing multiple source IP 

addresses instead. 

 

 

 


