
EVOLVING THE TELECOM STACK AND HOW WEBRTC PLAYS A ROLE

 Chris Wendt, Principal Architect, IP Communications and Services

 Comcast

 Abstract

 This paper provides an overview and

rationale for a vision of the future evolution of

telecommunications services and how real-

time communications can be provided as a

more flexible web oriented service. WebRTC,

a web browser focused framework for real-

time communications, provides standardized

client-side “hooks” which can be adapted for

mobile, set-top box and other popular

embedded clients. The larger question is how

these client technologies can be used as part

of a modern, web-friendly service framework.

We at Comcast Labs are proposing a

framework and perspective beyond traditional

telephony services, defining how real-time

communications can be customized and

integrated for the variety of service contexts

and devices we use in our personal and

professional lives. Examples include:

enhanced customer service, enhanced home

monitoring and device control, interactive

collaboration or shared experiences. This

paper will propose and discuss a framework

and architecture and provide the motivation

why WebRTC plays an important role, and

discuss why past attempts may not have been

as successful, and why based on technology

and network evolution, and device

capabilities, this time might be different.

INTRODUCTION

 The way humans communicate in just the

past five or so years has evolved at a lightning

pace. With the now nearly ubiquitous

availability of bandwidth and communications

over wired and wireless networks and the

exponential improvement in CPU and GPU

capabilities of devices, the world has changed

for how the human/computer interface has

evolved, how we interact with our devices,

how we buy and consume content and

applications. It's almost unthinkable how

quickly humans have adopted these new

paradigms without looking back. For these

reasons and others, our communications

habits have been similarly transformed to an

always-on multi-tasking, asynchronous

method of communications, easily switching

between e-mail, text, voice, video between

multiple people, often simultaneously

depending on our communication needs or

location or connectivity. Our

communications has also gotten much more

contextual, often adopting fine-grained

preferences for how we communicate with a

particular person in a particular social context.

There is no question traditional views of

communications services are quickly being

challenged because of this new world. These

new capabilities along with the evolution of

mobile and web applications and new

application frameworks and technologies like

HTML5 have opened the flood gates both for

application developers and end users.

What does that mean for the communications

service provider? What should a telephony

product look like in the next 5-10 years and

how does the communications architecture

evolve to support it? What role can/should

the service provider play in this new world of

expanding communications capabilities?

Dreaming of the Next Generation Network

 IP telecommunications has evolved to

become mainstream rapidly in just the past

10-15 years since it was adopted widely. The

PSTN or POTS network that VoIP has been

employed to carry, in many respects, looks

very much the same as how it looked over 30-

40 years ago. Other than the conversion from

SS7/TDM to IP protocols like SIP, the core

telephone service has not changed. There have

been many attempts in various industry and

standards bodies at extending and evolving

the telecommunications network by defining a

"next generation network". To a large extent,

these efforts have not pushed the ball forward.

The evolution of the Internet and

interconnected IP network has allowed for

delivery of voice and video in better,

converged, and more efficient and cost

effective ways. The building blocks for

adding new and web connected "telephony

features" has evolved as well. However, the

fundamental black phone and dial pad

interface, while important for basic

communications capabilities, has been

somewhat of a boat-anchor for the evolution

of how the products around communications

are defined.

 Voice telephony is still THE primary

service and still the basis of a multi-billion

dollar industry; who's to argue for changing

the formula?

WebRTC, What’s new?

 Enter WebRTC. By itself, some may

argue that WebRTC is purely an API to

access a camera/microphone, create a real-

time channel, and display media on a remote

client. What's new? There is a lot of push

back from the telephony industry saying,

WebRTC is just a new client in a crowded

space of VoIP protocols that have existed for

years. The potential for a revolution may be

subtle depending on the viewpoint, but

profound if put in the right context. When

you view the capabilities of WebRTC in the

context of a browser, all of the power and

complexity of VoIP all of the sudden becomes

a few lines of JavaScript code, a tiny

component in the mix of a lot of other

application and multimedia capabilities. It

looks to be a stark new reality for the

telephony product manager, but is it really a

much larger opportunity in disguise?

Real-Time Application Architecture

 WebRTC provides a flexible API to wrap

real-time communications into new and

different applications in a standard way.

Interestingly, and often confusingly, WebRTC

makes no assumption about signaling

protocols or any definition around any

specific application or service. WebRTC, at

it's core, only concerns itself with the capture

and display of media and the mechanics of

setting up an IP channel to transmit the real-

time media data.

 To some, having no specified signaling or

application protocol leaves WebRTC so open

ended, it can be hard to wrap one's head

around building any common framework to

handle communications services, particularly

in a generic enough way that a service

provider can play any specific role. Put in a

new context, however, if we embrace the

limited scope of media session establishment,

the world of all communications related

applications, regardless of signaling protocol

or functionality becomes accessible and

adaptable. And isn't that really the better long

term approach anyway?

Application Models

 There are two classes of applications

WebRTC was designed to support. As

defined in [1], they are the triangular and

trapezoidal models. The triangular model,

shown in Figure 1, defines the case where

clients that want to establish a real-time

channel between each other, talk to a common

central server that coordinates passing IP

address contact information between each

client so they can establish a media channel

directly between them.

Figure 1: Triangle Application Model

 The trapezoidal model, shown in Figure 2,

defines the model where a client talks to a

server associated with his particular

application server, a remote client talks to her

server, and there is an agreed upon signaling

protocol and IP channel between the servers

that passes the IP address contact information.

Figure 2: Trapezoid Application Model

 This can be looked at as the federated

model. "A" has a communications application

with a particular signaling protocol, "B" has

another communications application with

another signaling protocol. So for a client of

server "A" to talk to a client of server "B",

there has to be a federation protocol that is

agreed upon, to make the end-to-end

communications work. There are explicitly 3

distinct legs of signaling in the trapezoid

model. Both the triangular and trapezoidal

models define virtually the entire universe of

models of real-time communications

applications.

 These application models are important to

help guide a general architecture that can

flexibly support both models depending on

the needs of the end application utilizing a

real-time communications service framework.

But these signaling models alone only go so

far in defining what is needed to make an end-

to-end service architecture real.

END-TO-END SERVICE ARCHITECTURE

Applications and services comprise

components that must be delivered, secured,

billed, managed, authenticated, and

authorized. These requirements are common

across services and can be abstracted into a

generic service architecture. One such service

architecture currently deployed in both cable

and mobile networks is the IP Multimedia

Subsystem (IMS), shown in Figure 3. The

3GPP defines the IMS specifications [2] for

mobile providers; CableLabs, in turn,

adopted and enhanced those specifications as

the core of its PacketCable 2.0 initiative [3].

IMS defines an industry standard way for

managing, billing, authentication, as well as

the protocols and components used from an

end-to-end perspective. IMS utilizes SIP and

DIAMETER and other IETF defined

protocols to deliver telephony services. SIP

and IMS were born out of a specific signaling

and service delivery model to support

telephony services and the application and

feature servers that can extend those services.

Figure 3: IMS High-Level Architecture

Web Application

Client A Client B
Media

SignalingSignaling

Web Application
A

Client Client
Media

Signaling
B

Signaling
A

Web Application
B

Federated
Signaling

HSS
Subscriber DB

RTP M
ed

ia

CSCF
SIP Routing

UE
SIP Clients

BSS
Service Provider

Backend

TAS
SIP Application

Server(s)

IBCF
PSTN/Peering

DIAMETER

SIP

SIP

SIP

SOAP

Comcast, as an example, has moved from

distributed soft switch architecture as defined

in PacketCable 1.0 and 1.5 [4] to the

IMS/PacketCable 2.0 architecture. We have

achieved many of the cost, operational,

reliability benefits of moving to the

centralized and highly scalable model that

IMS offers. This is a clear win from that

perspective.

 However, as web-based services became

more focused around building cross-platform

and cross-service applications, and as newer

web authentication and mobile applications

models evolved, even as recently as in the

past 1-2 years, there developed a clear need

for a better service framework layer.

 Because IMS derives its application model

from the SIP family of standards and derives

its service delivery foundation from SIP based

deployment and management practices, there

is an implied model that is hard to morph to

support a general application framework. In

addition, its heritage as part of the 3GPP and

focus on a mobile vision of a single primary

device per customer presented challenges, as

will be discussed more in depth later.

Extending beyond the concept of a managed

device and managed primary singular identity

was challenging. Incorporating non-

telephony devices and services and even

bring-your-own-device models, which can be

supported for some cases, became

burdensome to support in a general way.

 These issues became the main motivation

for the work presented in this paper. We

propose a new telecom stack, one with the

flexibility to support both traditional and non-

traditional telephony servicesm and with a

focus on the fundamental establishment of

real-time communications channels through a

flexible, web API-centric model. Just as

WebRTC is designed without any specific

signaling protocol, we believe being non-

prescriptive to any specific service or

application architecture, device management

model or identity or set of identities is an

approach that provides maximum flexibility in

most contexts.

Identity

 Many service providers, like Comcast, are

not only telephony service providers, but also

a provider of many services such as Internet

and television and associated web services to

supplement these services. They generally

provide two main types of identities that can

be associated with a particular account holder

and user. These include an e-mail identity and

a telephone number. Most web applications

and services require an email address and

user-generated password for account

authentication, typically enforced by a

centralized, application independent single-

sign-on system (SSO). In the past few years,

it is becoming increasingly popular, and for

some services mandatory, required to use

OAuth style token-based authentication.

OAuth 2.0 [5], supports a common framework

for authentication of user ids from multiple

client environments, such as, mobile, browser,

embedded device to name a few. This allows

a single set of credentials to be managed by

end users to access all of their service

provider services on many different platforms

with a single set of credentials managed from

a central secure service.

 Additionally, it is increasingly common for

application and service providers to be

agnostic about supporting both identities

owned directly by the provider as well as

those originating from third parties. These

third-party identities, can be supported either

by direct association of a user defined

password to that third-party identity, or via

what's commonly referred to as a three-legged

authentication. Here, the application or

service provider trusts the authentication

token provided by what is usually an OAuth

supporting third party identity provider (IdP).

Popular examples include Google, Facebook,

Twitter Auth or more general industry

initiatives like OpenID. This idea, in the

context of WebRTC is detailed in [6], but this

framework is now very commonly used in

web applications in general.

 As is common for many service

frameworks born before these flexible identity

authentication frameworks became commonly

used, IMS and SIP generally assume an

identity model where a particular identity

type, a SIP URI or TEL URI, is used. Many

SIP networks employ a specific set of

credentials for SIP services, separate and

distinct from any web based login credentials.

 For authentication, IMS currently specifies

either a SIM mechanism for the mobile

terminal world, where a physical card with an

embedded certificate/public identity is

provisioned for an account, or in the case of

many fixed line service devices like Cable E-

DVA's and enterprise PBXs, SIP Digest based

username/password authentication is used.

The identity or telephone number, known in

IMS as the public identity, is associated with

the device authentication credentials, known

as a private identity, are both stored in the

subscriber database, HSS.

 From many perspectives, having multiple

credentials associated with a user is both

difficult to manage, inconvenient for the end

user and can be a security risk.

Service/Device/Identity Abstraction

 How do we provide the flexibility needed

by the web and provide a service that can be

managed in a reasonable way? The web

model fundamentally a distributed, abstracted

model for services, applications, devices, and

identity. A service provider wants a common

way to offer services to other services,

applications, devices and using an identity of

the users choice. The question is how do we

move the telecom stack to adopt these

principles in a way that is consistent with this

level of abstraction.

Our proposed solution conceptually started as

an extension of the routing model that is core

to IMS and SIP services and incorporated a

similar user/device based model and

architecture with a web services style

abstraction. While this work started before

WebRTC was born, it quickly became quite

intentional to adopt many of the ideas from

the WebRTC and general web framework.

These concepts include:

 Identity - support the ability for end

applications to use any identity model,

either self managed, third party managed,

or service provider managed.

 Device - allow for the ability to support

multiple devices, either simultaneously,

independently, and dynamically without

any dependency on provisioning or

management interface

 Application - support either the triangular

or trapezoidal application models with or

without the dependency on service

provider routing services (i.e.

SIP/PSTN/RCS/federated routing models)

 The model was defined as a single API to

support both internal and external

applications, with a primary focus on the

ability to setup of real-time media channels.

The resulting core service became very

concise and clear, a media session

establishment API, with hooks to specific

traditional routing services and additionally

some value added media functions as well

(e.g. mixing, transcoding, etc.). This API

additionally, depending on calling identity

and domain, can be used to establish sessions

between end clients directly, over PSTN, over

SIP peering, or other federated models that

may appear in the future.

 In the future, this framework can be

extended to new models of real-time

communications services that don't exist

today.

PROPOSED ARCHITECTURE

 The service framework we propose in this

paper began as an extended SIP framework,

supporting mobile applications as an extention

to primary-line IMS services. Shortly after

WebRTC was first proposed in W3C and

IETF the framework was quickly adapted and

extended to incorporate a fully HTTP based

flow utilizing technologies such as

Websockets and OAuth to provide a flexible

solution that can exist entirely in the HTTP

world and as part of a hybrid HTTP/SIP

model. It has developed both from the needs

of our product evolution and new product

requirements including the grander motivation

to address all the issues stated earlier as a first

class design criteria.

 The high level architecture is shown in the

figure. There are a few major architecture

components, many existing and common

network elements not specific to this

architecture and some new components

developed specifically to support general real-

time communications and media session

establishment aligned with WebRTC and

rtcweb protocols.

 The existing infrastructure utilized

includes:

 IMS/SIP infrastructure - the main SIP

based PSTN and federated service routing

component, extendable to other SIP

services including RCS and VoLTE

interworking and other future

interconnected federated services

 Notification Services - a common

platform for events and notifications,

supporting Comcast managed devices

such as set-top boxes as well as federated

notifications including iOS and Android

notification services

Figure 4: Proposed RTC Service Architecture

Web Browser
(JavaScript/

WebRTC)

Service Provider
OAuth Server

A
P

I
P

ro
x
y,

 A
p

p
lic

a
ti
o

n
 a

n
d

U

s
e
r

A
u
th

e
n

ti
c
a
ti
o

n

WebSocket
Server

Notification Bus

Mobile
Notification

Mobile/
Embedded

Client
(Native/rtcweb)

OAuth

WSS HTTP

REST

Media Server

IMS/CSCF

SIP Endpoints

SRTP

Call Event
and Call Control

App Server

SIP

RTP

SIP Call Events

IFC/SIP

STUN/TURN

HTTPS

HTTP
Notification

RTC Call
Events

Call Control API

Front End Web
Application HTTP

Service Provider
BSS

Entitlement

RTCG Session
Manager

RTCG - SIP
Gateway

RTP

SRTP

 API proxy and security layer - a common

API proxy layer that incorporates

application and user level authentication

and typical API exposure and security

functions

 SSO/OAuth Server - a common

authentication service supporting OAuth

token authentication for user IDs

 The additional components that will be

discussed in more detail include:

 WebRTC clients - including JavaScript

based, browser and browser-like clients as

well as native mobile SDK based clients

supporting rtcweb protocols.

 Real-time Communications Gateway

(RTCG) - includes a session manager,

user manager, and SIP signaling and

media gateway component to provide

interworking with IMS/SIP and RTP

media streams and codecs supported in the

federated networks

 Application and WebSocket Server -

represents the multitude of applications

that can utilize RTCG services and

provide a signaling path that is either

application specific or conforms to a

reference signaling model

 Call Event and Call Control - this

component allows the bridging of

incoming calls from federated networks to

and from the RTCG

WebRTC clients

 WebRTC is part of the W3C specifications

and what some refer to as the HTML5 set of

browser capabilities. It defines a set of

Javascript APIs, including primarily

getUserMedia and peerConnection. These

APIs define both how to access the camera

and microphone of the underlying OS

platform as well as the establishment of a

particular RTP based media channel between

two peers. The API is defined in the W3C

specifications, and the specific protocols are

defined in IETF under the rtcweb working

group.

 We focus on two classes of clients, but

aren't necessarily limited to these. The first is

a JavaScript based client using the W3C

defined WebRTC APIs that either supports a

traditional third party browser application, or

a more integrated device that provides a

browser enabled environment in order to

support "embedded" HTML5 applications. A

JavaScript reference SDK is provided to

support a particular signaling protocol based

on websockets and incorporates the specifics

around authentication of user and/or

application. The other client model is a native

approach, where an SDK native to the device

is provided with either C or Java based APIs

similar to the W3C APIs. These specific

clients are typically in scope of most

WebRTC based services today, but as stated,

is not limited to these device or application

models.

Real-time Communications Gateway

 The RTCG is the network component

handling basic registrar and media routing

logic. It exposes a RESTful HTTP based API

for establishing media sessions. It acts as a

dynamic registrar and routing proxy and is for

the most part agnostic to identity with

optional configurable routing rules based on

specific identity and domain. We very

explicitly wanted a model that was

dynamically able to support any unique

identity in the context of a particular unique

application id. Additionally, it was important

to support this with minimal provisioning or

configuration, if at all.

 The main federation interface supported is

SIP. This can be extended to other gateways

supporting protocols or even federating to

other RTCG supporting service provider

networks. In the case of SIP and IMS, a

media session initiation is translated into a

SIP INVITE to the IMS SIP network, via Mw

interface to CSCF. The SIP REGISTER

method is specifically not supported. In the

terminating case, an INVITE toward RTCG

SIP Gateway is translated into a media session

on the RTCG. Otherwise, both signaling and

media are handled very similar to traditional

signaling and media gateway components. In

the case of SIP to WebRTC, media is likely

converted between RTP and SRTP/DTLS and

if transcoding is necessary, it can be

incorporated. ICE and TURN procedures are

followed for WebRTC clients and the

exchange of credentials for TURN is handled

in the API.

 Another important change to note in the

architecture is around the use of notifications

as the primary mechanism to signal the

initiation of a potential session. In the

traditional SIP architecture, there is an explicit

REGISTER method that provides a persistent

connection to a SIP registrar that allows an

INVITE to be sent to the associated contact

address. We have moved away from this idea

for a number of reasons:

 The number of potential registered devices

is growing exponentially multiplied by the

potentially exponentially growing number

of applications

 Because of different network topologies

and NAT and firewalls, holding persistent

connections to devices can be a challenge

 Because many mobile devices are

powered by batteries and persistent

connections to networks can be very

expensive in terms of power, it is an often

discouraged practice

 Most important, the modern application

interaction model has changed, web pages

are not persistent, mobile applications can

be persistent, but we interact with them in

short sessions and based on notifications,

rather than having an application always

in the forground

 That said, the dedicated telephone device

model can be supported with a persistent

registration model if needed, but we see this

model less and less relevant as time

progresses.

Application and WebSocket Server

 One of the key design criteria for the

proposed architecture is the separation of

application and routing. The application

interface should be a convenient API that

hides the details of routing and session

management from the application layer. The

architecture shouldn't impose any assumptions

or constraints around the application

developer; there should be clear separation

between application and RTCG. There also

isn't any assumption around application

environment. Any modern HTTP supporting

server side development environment can be

supported.

 The minimum requirement is the

application developer only needs an

application key to authorize access to the

RTCG APIs. Some applications that may

require authenticated access to service

provider services. For Comcast, as an

example, this might include PSTN calling

from the Comcast customer TN or access to

specific paid services that require Comcast

user credentials in the form of an OAuth

token provided by Comcast SSO system. In

this case, the application specific credentials

along with the Comcast user token can be

passed in the HTTP requests to RTCG and an

entitlement check is performed in the RTCG

to validate the association with the account

specific authorized services. Another

example application might need the access to

a media stream from a managed secure device

such as an in-home security camera. The

three-legged auth model can also potentially

be employed to support both end-user directed

auth and revoking of a third-party application

to access to these types of media stream

services.

 Additionally, there is a provided reference

client SDK, application server and websocket

server to support a particular signaling model

that can be used by application developers

that don't want to build their own signaling.

Call Event and Call Control

 Because of the notification-based

mechanism that is imposed by the

architecture, for incoming or terminating calls

to a federated network like IMS, there needs

to be a mechanism to send a common set of

call events and provide an interface for third-

party call control. The importance of

notifications was discussed above, but the

mechanism to report incoming INVITEs and

other call state details allow the end WebRTC

client to interact with the call in the federated

network. The call control interface provides

the mechanism for when the client wants to

pull or push a call to/from the federated

network in the same style third party call

control works in SIP today.

CONCLUSION AND NEXT STEPS

 Much of this work was part of an

architectural evolution born out of the

necessity of supporting a more web-oriented

approach to communications. From the

beginning, we intentionally kept our view

very broad, from the basic ability to support

OTT telephone soft clients to the ability and

flexibility to support the potential universe of

non-traditional real-time communications

applications. The guidance of the

fundamental principles of WebRTC combined

with a fundamentally web-centric approach to

integration into the service provider common

services sets the stage for a truly new

approach to the integration of real-time media

services.

 To the casual observer, media streaming

over the Internet seems like a solved problem.

It is common to see HD resolution video

streamed over IP with generally high quality

and latency. Of course, the important

distinction of telephony types of real-time

communications is that minimizing end-to-

end delay is an important requirement. With

stored or buffered live streaming timing

constraints are very much relaxed, often in the

order of seconds or 10s of seconds. Delays in

the order of low hundreds of milliseconds or

lower are critical to delivering a quality

experience. Even today, this continues to be a

sometimes difficult challenge over varying

network conditions and topologies. Though

aggregate network speeds have improved

immensely, there are still existing bottlenecks

that have plagued real-time communications

over IP networks from early on. There are

many efforts in the IETF, as an example, to

specifically tackle these issues and look at

minimizing congestion over and above

traditional congestion control techniques and

priority packet marking techniques. As a

service provider, building a standard

framework that enables a more predictable

experience for its subscribers across all of the

applications they use can be an interesting

benefit to employing standard APIs for media

stream management. There have been various

attempts at this in the past, but perhaps

WebRTC and the proposed architectural

framework can be the technology to rally

around to deliver it in a consistent way.

Extending the Framework

 For those familiar with WebRTC, one

perhaps glaring omission from this proposal is

regarding non-media related real-time streams

such as the WebRTC data-channel or even

websocket channels. It doesn't take much

imagination to recognize that a very similar

framework can be employed to support

certain real-time data classes of applications

including gaming, messaging, machine-to-

machine or Internet-of-things types of use

cases.

 We would like to get industry and

community feedback around this proposed

framework. Not unlike IMS, we believe there

is a large opportunity to evolve real-time

communications as a consistent framework

for either application integration or federation

of services, even beyond PSTN type services.

With a specific focus on a flexible web based

API for media session establishment alone

without any application signaling

assumptions, this framework is much better

positioned to evolve the telecom network to a

new generation of applications and services.

ACKNOWLEDGEMENTS

I would personally like to acknowledge and

thank Bryan Paluch for his collaboration and

work in taking this from early concept to

implementation and his valuable contributions

to refine and extend this proposal to the state

it is today. I’d like to thank, Erami Botchway,

John Hart, and Bryan Paluch for their

valuable comments and review. I'd also like

to thank our product and business teams that

had the vision to see the potential in being a

bit disruptive to forge new ground and test the

waters of new opportunities in next generation

communications.

REFERENCES

[1] draft-ietf-rtcweb-overview

[2] 3GPP TS 23.228 IP Multimedia

Subsystem Stage 2

[3] CableLabs PacketCable Architecture

Framework PKT-TR-ARCH-FRM

[4] CableLabs PacketCable 1.5 Architecture

Framework Technical Report PKT-TR-

ARCH1.5

[5] draft-ietf-oauth-v2

[6] draft-ietf-rtcweb-security-arch

