
Big Data – Web Originated Technology meets Television

 Bhavan Gandhi and Sanjeev Mishra

 ARRIS

 Abstract

 The development of Big Data

technologies was a result of the need to harness

the ever-growing zettabytes of data created and

consumed on the Internet. Web content, social

networking, and user generated content in the

form of blogs, images, and videos are just a few

examples of the nature of unstructured data that

don’t fit into the traditional relational database

models (RDBMS). In a similar manner, the

television eco-system is evolving beyond just the

delivery of linear video content to the television.

Video experiences are evolving into more

complex systems that support delivery of linear

and on-demand content on multiple portable

devices, capable of local and network DVR, and

even supporting targeted content

recommendation and advertisement placement.

Harnessing Big Data technologies from the

Internet world and bringing it into the TV space

allows for deeper understanding of user

behavior and system performance. This paper

provides an overview of Big Data Technologies,

and it gives examples an architectural overview

of how these technologies can be used in an

operator’s eco-system.

INTRODUCTION – WHAT IS BIG DATA?

Web Originated

 Terms typically used to characterize Big Data

are volume, velocity, and variety [1, 2, 3].

Volume refers to the sheer amount of data that

currently exists and is being created

continuously. Velocity is the speed with which

this data can be processed and analyzed for a

meaningful use. Variety is simply the different

types of data that can be collected. From the

perspective of the Internet, zettabytes (2
70

 bytes)

of data are created and stored in the form of

images, documents, tweets, videos, maps, social

interactions, etc. This data has to be analyzed

and classified with speed so that end users can

find and retrieve relevant information to

accomplish their tasks. Much of this data is

either unstructured, or in cases where there is

inherent structure, the variety of the data leads to

the need to support multiple structures.

 The advent of the Internet and the volume of

data that needs to be managed, stored, and

analyzed led to the emergence of modern day

Big Data technologies. Yahoo and Google have

developed breakthrough technology on

processing Internet scale disparate data and

storing the processed results on distributed

commodity servers to enable high availability

and scalability. The Google File System (GFS)

[4] and Big Table [5] showcase early pioneering

work that was developed for storing data at

Google. This is the pre-cursor to some of the

mainstream, open source big data related

technologies that are being developed and

evolved by the open source community like

Apache. Apache HBase [6] and Apache Hadoop

Distributed File System (HDFS) [7] are open

source equivalents of Big Table and GFS

respectively.

 Given that companies like Google, Yahoo,

and Facebook are storing petabytes (2
50

 bytes) of

data, there is a need to access this vast repository

of data to process the information and derive

meaning quickly. MapReduce is a framework

that works on top of HDFS and HBase; it allows

for parallel access, incremental, and distributed

processing of huge amounts of data to derive

useful meaning that can be used by subsequent

services or applications. Hive and Pig are

higher-level languages that allow for

programming or scripting of MapReduce jobs.

Researchers at Facebook developed Hive to

allow SQL-like queries against their Big Data

sets [8, 9]. Pig was developed by Yahoo staff to

reduce the complexity of programming

MapReduce jobs.

Big Data for Television

 The television eco-system is migrating from

dedicated hardware / software solutions to more

flexible sets of services that allow customized

and interactive experiences for end-consumers.

The power of Big Data technologies from the

web world can be harnessed to create

measurable and customized experiences in the

television space. This is especially true of

experiences that are migrating from the single

primary screen, in-home, linear viewing

experiences to multi-screen, on-the-go, on-

demand content consumption experiences. There

are essentially three stakeholders that benefit

from Big Data and corresponding data science:

the operator, the content provider, and the end

consumer. The operator benefits by having

meaningful information for monitoring and

optimizing system performance for capacity

planning and measuring impact. The content

provider can use this information to optimize

and understand how their programming is being

used by the end-consumer. Finally, the end

consumers benefit from better interactive and

targeted experiences that are more meaningful

for them or their household.

 A well-instrumented TV eco-system mirrors

the web world in terms of volume, velocity, and

variety of data that is collected, albeit not at the

same scale. Volume of data is collected from

loosely coupled systems and modules that span

application, control, and delivery services. With

disparate services comes data variety. All

collected data has to be analyzed with velocity

to provide meaningful and useful information to

subsequent applications impacting user

interaction, or systems impacting operator

systems. The analyzed results can be provided

through application programming interfaces

(APIs), or through visualizations and operational

dashboards.

ANALYTICS SYSTEM ARCHITECTURE

 Analytics systems are comprised of three

major components: data collection, storage, and

analysis. A high level architecture of a general

analytics system is given in Figure 1.

Data Collection

 The key to any analytic system is collecting

data, which is federated across a number of

services within an eco-system. This requires

instrumenting network, client services and

applications, or equipment to generate and report

events, which are then sent to an event intake

mechanism. From an applications and a services

perspective, event reporting should be a

lightweight process where the complexities of

ingesting events are abstracted away from the

event collection probes.

 At ARRIS, we have implemented an event-

reporting library (in Java) that abstracts away the

event collection logistics from the instrumented

service. The instrumented service needs to

Figure 1 - High Level Analytics Architecture

define the events that are meaningful within its

context and “report” them either using an

abstracted library or directly to an event intake

mechanism. Keeping this lightweight for the

instrumented services, it is best to collect raw or

minimally processed events, hence placing much

of the compute burden on the analytics system.

 We are currently using Spring XD [10] as our

real-time event intake mechanism. It is an open

source project being developed under the Spring

framework umbrella. Spring XD, a distributed

event intake mechanism supporting HTTP, TCP,

and Syslog among others, allows for processing

of these events prior to storing and persisting.

We define one Spring XD stream per event type

or event source.

Storage & Persistence

 Once events are ingested, the question

becomes one of the database technologies that

the system should employ. The answer is quite

simply a function of system requirements and

the types of data that are being housed. The

choices are either relational database

management systems (RDBMS - SQL), or non-

relational (NoSQL).

 For storing and subsequently processing

events from a variety of sources, where there is

no obvious cohesive relational structure, a non-

relational database such as HBase or files stored

directly on HDFS indexed with Hive are

obvious choices. As previously mentioned, this

stems from Big Data technologies from the

Internet. This allows for storing raw or

minimally processed events for subsequent

domain specific analysis. The result of any

analysis or processing that is done on the data

can also be stored in the same DBMS

 The flexibility of Hadoop makes it a great

choice for systems collecting information from

loosely coupled, disparate sources, where

processing typically needs to be done across the

events to derive meaningful domain specific

insight.

Data Analysis & Processing

 Domain specific analysis needs to be done to

accomplish targeted goals of the system. This is

application dependent and determined by an

articulated set of key performance indicators.

For example, in the web domain, search and

retrieval end up being important tasks. More

complex tasks may include either content or

social recommendations. Similarly, in the TV

space, the data science applied determines the

efficacy of the solution.

 A Hadoop / HDFS system is designed to run

MapReduce jobs for pulling and processing

information. Higher-level languages that allow

MapReduce scripting are Pig, Hive, and

Scalding. Processing may be a simple statistical

processing, correlating, and tabulating

information across various individual services,

or it may require machine learning techniques to

do predictive analysis to profile human or

system behavior; predicting user behavior

facilitates end-user interaction, or predict system

behavior / trends to circumvent system

limitations.

 A typical data analysis system houses

sensitive user or subscriber information, which

has to be protected and secured. A policy-based

access control mechanism is imperative for

ensuring that subscriber-specific information is

exposed only to authorized external applications

or business intelligence tools

 Analysis and processing information have

three primary goals:

• Create visuals and dashboards to provide

business intelligence,

• Provide application-programing interfaces

for downstream usage to drive system

behavior or user enhancements, and

• Derive atomic and aggregate data sets on

which additional analysis and exploration

can be performed.

This is the data science or intelligence that rides

on top of the Big Data technologies to derive

business value.

ANALYTICS FOR DIGITAL AD INSERTION

 Dynamic ad insertion (DAI) is a prime

example of an application where Analytics plays

a differentiating role increasing operator

efficiency, measurement, and relevant ad

targeting. Following the principles and

architecture outlined previously, a data analytics

system for DAI is comprised of instrumenting

data sources for event collection, event intake,

persistence / storage, and analysis. The results

of the analysis are exposed via an application

interface or they are exposed to a business

intelligence tool for visualizing system

information through appropriate dashboards.

 Figure 2 is an architecture that is specifically

designed for a DAI system. In this example, we

are following an SCTE-130 based approach for

DAI targeting multi-screen devices based on

subscriber / user profiles [11].

 The sources of event information are:

• ADS – Ad Decision Service for capturing

ad placement request, response and

notification events

• ADM – Ad Decision Manager for content

delivery events. In the case of HLS, this

may include manifest related information

that is delivered to a client / application.

• CIS – Content Information Service for

processed content and ad metadata

• POIS – Placement Opportunity

Information Service for ad placement

location events.

• Clients – Where possible actual client /

application events are collected to get

actual content and ad consumption

information directly from the consumer

facing application.

 In addition to these operational events, bulk

data imports are needed to correlate collected

events with actual subscribers and programming.

For this, we collect Subscriber Management

System (SMS) information and guide

information (EPG).

 The events and bulk data are ingested via an

Figure 2 - Analytics Architecture for DAI

event intake module, which has the ability to do

some filtering and processing of incoming data

before storing it into our Persistence / Storage

service. The collected information is processed

using a variety of statistical techniques to derive

user / usage profiles, and to collect historical

information about DAI system usage. The user

profiles are exposed via an SIS compliant

interface so ADS systems can do appropriate ad

targeting based on this user information.

Historical performance and measurement

information for content and ad delivery is

visualized through appropriate dashboards for

Business Intelligence.

 In a typical DAI analytics system, the value is

in:

• Classifying system behavior and usage.

This has operational benefits for

understanding how the system is being

used. This is useful for operators, content

providers, and advertisers.

• Characterizing subscribers so that

appropriate insight is provided when

targeting specific ads for better

effectiveness.

• Understanding network and system

limitations by analyzing and getting

insight into trends of system usage and

comparing them to current capacity has

system is able to support. This has

implications on scalability, storage, and

bandwidth management.

DEPLOYMENT MODELS

 The architecture supports various deployment

models, either dedicated hardware-based or

cloud (public or private). To enable cloud

deployment, the services are developed to be

hardware agnostic and can be scaled up or down

as needed. Except in certain cases such as

database interactions, the communication

between different services is restricted to REST

or SOAP (with preferably JSON, or XML,

encoding) for simplicity. As new nodes can be

added or removed, services are addressed by a

proxy service.

 The architecture is analogous to any Internet-

scale web application: a distributed n-tier

system. Unlike a standard web application that

handles millions of requests/response from

users, the DAI application handles millions of

events from different components of the TV eco-

system, which we denote as event sources. So as

not to add additional burden on the event

sources, we ensure that events are consumed

asynchronously, and any additional filtering or

Figure 3 - Analytics Deployment Model

processing burden lies on the event consumers.

 Special attention is given to high availability

and fault tolerance throughout the system and

especially at event consumer and

storage/persistence layers. The Spring XD layer

is deployed behind a software load balancer that

allows us to deploy replica of each Spring XD

container – one container per event type. Similar

approach is taken at storage layer. Moreover, the

Hadoop infrastructure (HDFS/HBase etc.) is

already equipped with high availability and fault

tolerance. Figure 3 depicts a typical deployment

model.

ACKNOWLEDGEMENTS

 This paper represents work that is being done

by the Applied Research Center in ARRIS’

Network & Cloud business.

CONCLUSION

 Big Data technologies were developed

primarily to target specific needs of the Internet.

However, as our TV delivery systems grow

more complex and as the technologies evolve to

be more web-like, there is direct applicability

and flexibility in using these technologies for

television systems. A dynamic digital ad

insertion system is just one example that can

employ Big Data with appropriate analysis to

provide more meaningful user interaction and

targeting, operator measurement, and drive

network efficiencies.

REFERENCES

1. Arthur, L. (2013, August 15). What is big

data?. Retrieved from

http://www.forbes.com/sites/lisaarthur/2013/

08/15/what-is-big-data/

2. Couts, A. (2012, September 25). Breaking

down 'big data' and Internet in the age of

variety, volume, and velocity. Retrieved

from

http://www.digitaltrends.com/web/state-of-

the-web-big-data/

3. Laney, D. (2001). 3D data management:

Controlling data volume, velocity, and

variety. In Application Delivery Strategies.

Stamford, CT: META Group, Inc.

4. Ghemawat, S., Gobioff, H., & Leung, S.

(2003, October). The Google file system.

ACM - SOSP '03, Bolton Landing, NY.

5. Chang, F., Ghemawat, S., Hsieh, W.,

Wallach, D. A., Burrows, M., Chandra, T.,

Fikes, A., & Gruber, R. E. (2006,

November). Bigtable: A distributed storage

system for structured data. OSDI'06: Seventh

symposium on operating system design and

implementation, Seattle, WA.

6. Apace hbase. (2014, March 17). Retrieved

from http://hbase.apache.org

7. Apache hadoop. (2014, March 14).

Retrieved from http://hadoop.apache.org

8. Thusoo, A., Sarma, S. S., Jain, N., Shao, Z.,

Chakka, P., Anthony, S., Wyckoff, P., &

Murthy, R. (2009, August). Hive - a

warehousing solution over a map-reduce

framework. ACM - VLDB '09, Lyon,

France.

9. Apache Hadoop, Hive, and Pig on Google

compute engine. (n.d.). Retrieved from

https://cloud.google.com/developers/articles/

apache-hadoop-hive-and-pig-on-google-

compute-engine

10. Spring xd. (2014). Retrieved from

http://projects.spring.io/spring-xd/

11. American National Standard, Society of

Cable & Telecommunications Engineers

(2011). Digital program insertion –

advertising systems interfaces: Part 1 –

advertising systems overview (ANSI/SCTE

130-1 2011)

