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 Abstract 

 

 The development of Big Data 

technologies was a result of the need to harness 

the ever-growing zettabytes of data created and 

consumed on the Internet. Web content, social 

networking, and user generated content in the 

form of blogs, images, and videos are just a few 

examples of the nature of unstructured data that 

don’t fit into the traditional relational database 

models (RDBMS). In a similar manner, the 

television eco-system is evolving beyond just the 

delivery of linear video content to the television. 

Video experiences are evolving into more 

complex systems that support delivery of linear 

and on-demand content on multiple portable 

devices, capable of local and network DVR, and 

even supporting targeted content 

recommendation and advertisement placement.  

Harnessing Big Data technologies from the 

Internet world and bringing it into the TV space 

allows for deeper understanding of user 

behavior and system performance. This paper 

provides an overview of Big Data Technologies, 

and it gives examples an architectural overview 

of how these technologies can be used in an 

operator’s eco-system. 

 

INTRODUCTION – WHAT IS BIG DATA? 

 

Web Originated 

 

     Terms typically used to characterize Big Data 

are volume, velocity, and variety [1, 2, 3].  

Volume refers to the sheer amount of data that 

currently exists and is being created 

continuously.  Velocity is the speed with which 

this data can be processed and analyzed for a 

meaningful use. Variety is simply the different 

types of data that can be collected.  From the 

perspective of the Internet, zettabytes (2
70

 bytes) 

of data are created and stored in the form of 

images, documents, tweets, videos, maps, social 

interactions, etc.  This data has to be analyzed 

and classified with speed so that end users can 

find and retrieve relevant information to 

accomplish their tasks.  Much of this data is 

either unstructured, or in cases where there is 

inherent structure, the variety of the data leads to 

the need to support multiple structures. 

 

     The advent of the Internet and the volume of 

data that needs to be managed, stored, and 

analyzed led to the emergence of modern day 

Big Data technologies.  Yahoo and Google have 

developed breakthrough technology on 

processing Internet scale disparate data and 

storing the processed results on distributed 

commodity servers to enable high availability 

and scalability.  The Google File System (GFS) 

[4] and Big Table [5] showcase early pioneering 

work that was developed for storing data at 

Google.  This is the pre-cursor to some of the 

mainstream, open source big data related 

technologies that are being developed and 

evolved by the open source community like 

Apache.  Apache HBase [6] and Apache Hadoop 

Distributed File System (HDFS) [7] are open 

source equivalents of Big Table and GFS 

respectively. 

 

     Given that companies like Google, Yahoo, 

and Facebook are storing petabytes (2
50

 bytes) of 

data, there is a need to access this vast repository 

of data to process the information and derive 

meaning quickly.  MapReduce is a framework 

that works on top of HDFS and HBase; it allows 

for parallel access, incremental, and distributed 

processing of huge amounts of data to derive 

useful meaning that can be used by subsequent 

services or applications.  Hive and Pig are 

higher-level languages that allow for 

programming or scripting of MapReduce jobs. 

Researchers at Facebook developed Hive to 

allow SQL-like queries against their Big Data 

sets [8, 9].  Pig was developed by Yahoo staff to 



 

 

reduce the complexity of programming 

MapReduce jobs. 

 

Big Data for Television 

 

     The television eco-system is migrating from 

dedicated hardware / software solutions to more 

flexible sets of services that allow customized 

and interactive experiences for end-consumers. 

The power of Big Data technologies from the 

web world can be harnessed to create 

measurable and customized experiences in the 

television space.  This is especially true of 

experiences that are migrating from the single 

primary screen, in-home, linear viewing 

experiences to multi-screen, on-the-go, on-

demand content consumption experiences. There 

are essentially three stakeholders that benefit 

from Big Data and corresponding data science: 

the operator, the content provider, and the end 

consumer. The operator benefits by having 

meaningful information for monitoring and 

optimizing system performance for capacity 

planning and measuring impact.  The content 

provider can use this information to optimize 

and understand how their programming is being 

used by the end-consumer.  Finally, the end 

consumers benefit from better interactive and 

targeted experiences that are more meaningful 

for them or their household. 

  

     A well-instrumented TV eco-system mirrors 

the web world in terms of volume, velocity, and 

variety of data that is collected, albeit not at the 

same scale. Volume of data is collected from 

loosely coupled systems and modules that span 

application, control, and delivery services.  With 

disparate services comes data variety.  All 

collected data has to be analyzed with velocity 

to provide meaningful and useful information to 

subsequent applications impacting user 

interaction, or systems impacting operator 

systems. The analyzed results can be provided 

through application programming interfaces 

(APIs), or through visualizations and operational 

dashboards. 

 

ANALYTICS SYSTEM ARCHITECTURE 

 

     Analytics systems are comprised of three 

major components: data collection, storage, and 

analysis. A high level architecture of a general 

analytics system is given in Figure 1. 

 

Data Collection 

 

     The key to any analytic system is collecting 

data, which is federated across a number of 

services within an eco-system.  This requires 

instrumenting network, client services and 

applications, or equipment to generate and report 

events, which are then sent to an event intake 

mechanism.  From an applications and a services 

perspective, event reporting should be a 

lightweight process where the complexities of 

ingesting events are abstracted away from the 

event collection probes. 

      

     At ARRIS, we have implemented an event-

reporting library (in Java) that abstracts away the 

event collection logistics from the instrumented 

service.  The instrumented service needs to 

Figure 1 - High Level Analytics Architecture 



 

 

define the events that are meaningful within its 

context and “report” them either using an 

abstracted library or directly to an event intake 

mechanism.  Keeping this lightweight for the 

instrumented services, it is best to collect raw or 

minimally processed events, hence placing much 

of the compute burden on the analytics system. 

  

     We are currently using Spring XD [10] as our 

real-time event intake mechanism.  It is an open 

source project being developed under the Spring 

framework umbrella. Spring XD, a distributed 

event intake mechanism supporting HTTP, TCP, 

and Syslog among others, allows for processing 

of these events prior to storing and persisting.  

We define one Spring XD stream per event type 

or event source. 

 

Storage & Persistence 

 

     Once events are ingested, the question 

becomes one of the database technologies that 

the system should employ.  The answer is quite 

simply a function of system requirements and 

the types of data that are being housed.  The 

choices are either relational database 

management systems (RDBMS - SQL), or non-

relational (NoSQL). 

 

 For storing and subsequently processing 

events from a variety of sources, where there is 

no obvious cohesive relational structure, a non-

relational database such as HBase or files stored 

directly on HDFS indexed with Hive are 

obvious choices.  As previously mentioned, this 

stems from Big Data technologies from the 

Internet.  This allows for storing raw or 

minimally processed events for subsequent 

domain specific analysis.  The result of any 

analysis or processing that is done on the data 

can also be stored in the same DBMS 

  

     The flexibility of Hadoop makes it a great 

choice for systems collecting information from 

loosely coupled, disparate sources, where 

processing typically needs to be done across the 

events to derive meaningful domain specific 

insight. 

 

 

Data Analysis & Processing 

 

     Domain specific analysis needs to be done to 

accomplish targeted goals of the system.  This is 

application dependent and determined by an 

articulated set of key performance indicators.  

For example, in the web domain, search and 

retrieval end up being important tasks.  More 

complex tasks may include either content or 

social recommendations.  Similarly, in the TV 

space, the data science applied determines the 

efficacy of the solution. 

 

     A Hadoop / HDFS system is designed to run 

MapReduce jobs for pulling and processing 

information.  Higher-level languages that allow 

MapReduce scripting are Pig, Hive, and 

Scalding.  Processing may be a simple statistical 

processing, correlating, and tabulating 

information across various individual services, 

or it may require machine learning techniques to 

do predictive analysis to profile human or 

system behavior; predicting user behavior 

facilitates end-user interaction, or predict system 

behavior / trends to circumvent system 

limitations. 

 

     A typical data analysis system houses 

sensitive user or subscriber information, which 

has to be protected and secured.  A policy-based 

access control mechanism is imperative for 

ensuring that subscriber-specific information is 

exposed only to authorized external applications 

or business intelligence tools 

 

     Analysis and processing information have 

three primary goals: 

• Create visuals and dashboards to provide 

business intelligence, 

•  Provide application-programing interfaces 

for downstream usage to drive system 

behavior or user enhancements, and 

•   Derive atomic and aggregate data sets on 

which additional analysis and exploration 

can be performed. 



 

 

This is the data science or intelligence that rides 

on top of the Big Data technologies to derive 

business value. 

 

ANALYTICS FOR DIGITAL AD INSERTION 

 

 Dynamic ad insertion (DAI) is a prime 

example of an application where Analytics plays 

a differentiating role increasing operator 

efficiency, measurement, and relevant ad 

targeting.  Following the principles and 

architecture outlined previously, a data analytics 

system for DAI is comprised of instrumenting 

data sources for event collection, event intake, 

persistence / storage, and analysis.  The results 

of the analysis are exposed via an application 

interface or they are exposed to a business 

intelligence tool for visualizing system 

information through appropriate dashboards. 

  

     Figure 2 is an architecture that is specifically 

designed for a DAI system.  In this example, we 

are following an SCTE-130 based approach for 

DAI targeting multi-screen devices based on 

subscriber / user profiles [11]. 

 

     The sources of event information are: 

• ADS – Ad Decision Service for capturing 

ad placement request, response and 

notification events 

• ADM – Ad Decision Manager for content 

delivery events. In the case of HLS, this 

may include manifest related information 

that is delivered to a client / application. 

• CIS – Content Information Service for 

processed content and ad metadata 

• POIS – Placement Opportunity 

Information Service for ad placement 

location events. 

• Clients – Where possible actual client / 

application events are collected to get 

actual content and ad consumption 

information directly from the consumer 

facing application. 

 

     In addition to these operational events, bulk 

data imports are needed to correlate collected 

events with actual subscribers and programming.  

For this, we collect Subscriber Management 

System (SMS) information and guide 

information (EPG). 

 

     The events and bulk data are ingested via an 

Figure 2 - Analytics Architecture for DAI 



 

 

event intake module, which has the ability to do 

some filtering and processing of incoming data 

before storing it into our Persistence / Storage 

service.  The collected information is processed 

using a variety of statistical techniques to derive 

user / usage profiles, and to collect historical 

information about DAI system usage. The user 

profiles are exposed via an SIS compliant 

interface so ADS systems can do appropriate ad 

targeting based on this user information.  

Historical performance and measurement 

information for content and ad delivery is 

visualized through appropriate dashboards for 

Business Intelligence. 

  

    In a typical DAI analytics system, the value is 

in: 

• Classifying system behavior and usage. 

This has operational benefits for 

understanding how the system is being 

used. This is useful for operators, content 

providers, and advertisers. 

• Characterizing subscribers so that 

appropriate insight is provided when 

targeting specific ads for better 

effectiveness. 

• Understanding network and system 

limitations by analyzing and getting 

insight into trends of system usage and 

comparing them to current capacity has 

system is able to support. This has 

implications on scalability, storage, and 

bandwidth management. 

 

DEPLOYMENT MODELS 

  

     The architecture supports various deployment 

models, either dedicated hardware-based or 

cloud (public or private).  To enable cloud 

deployment, the services are developed to be 

hardware agnostic and can be scaled up or down 

as needed. Except in certain cases such as 

database interactions, the communication 

between different services is restricted to REST 

or SOAP (with preferably JSON, or XML, 

encoding) for simplicity. As new nodes can be 

added or removed, services are addressed by a 

proxy service. 

  

     The architecture is analogous to any Internet-

scale web application: a distributed n-tier 

system. Unlike a standard web application that 

handles millions of requests/response from 

users, the DAI application handles millions of 

events from different components of the TV eco-

system, which we denote as event sources. So as 

not to add additional burden on the event 

sources, we ensure that events are consumed 

asynchronously, and any additional filtering or 

Figure 3  - Analytics Deployment Model 



 

 

processing burden lies on the event consumers.  

  

     Special attention is given to high availability 

and fault tolerance throughout the system and 

especially at event consumer and 

storage/persistence layers. The Spring XD layer 

is deployed behind a software load balancer that 

allows us to deploy replica of each Spring XD 

container – one container per event type. Similar 

approach is taken at storage layer. Moreover, the 

Hadoop infrastructure (HDFS/HBase etc.) is 

already equipped with high availability and fault 

tolerance. Figure 3 depicts a typical deployment 

model. 
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CONCLUSION 

  

     Big Data technologies were developed 

primarily to target specific needs of the Internet.  

However, as our TV delivery systems grow 

more complex and as the technologies evolve to 

be more web-like, there is direct applicability 

and flexibility in using these technologies for 

television systems.  A dynamic digital ad 

insertion system is just one example that can 

employ Big Data with appropriate analysis to 

provide more meaningful user interaction and 

targeting, operator measurement, and drive 

network efficiencies. 
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