
 Abstract

 Providing a positive viewing experience is

critical for content owners relying on

advertising and subscription-based revenue

models to capitalize on the opportunity

present in online video. However, with more

viewers turning to online sources for

consumption, understanding the quality of

experience (QoE) and providing an optimal

QoE becomes more critical. In this paper, we

will discuss a possible online video

predictive model for improving QoE using

global intelligence extracted from analyzing

billions of streams in real time utilizing a big

data processing platform. While predictive

modeling has been used in conjunction with

big data to analyze historical and current

trends for countless other disciplines, its

application in digital media delivery has not

yet been explored. Our research shows that

on-line predictive modeling can provide

tremendous value to those looking to

monetize and enhance the viewer experience.

INTRODUCTION

 Online video streaming is one of the most

important applications on the Internet.

Today, more than 57% of Internet traffic is

video and the percentage is predicted to reach

69% in 2017 [1]. At the same time, users are

demanding better and higher quality video

(e.g. HD and Ultra-HD or 4K video)

[2][3][4]. Ensuring video Quality of

Experience (QoE) is becoming, and will

continue to be, a challenge for both video

content publishers and service providers.

 Existing protocols that enable Internet

video streaming assume two fixed end points

(e.g., a video server and a client streaming

the video) and varying resource availability

between, or at, the two end points. The key

mechanism to achieve better quality is to

rapidly adapt or react to congestion and/or

apply changes in resource availability along

the path or at the end points. One example of

this approach is the set of adaptive bitrate

algorithms that have been implemented in

many video players, often highly optimized

for specific streaming protocols. While these

adaptive solutions have served us well in the

past, they become sub-optimal as video

streaming services become more

sophisticated and new opportunities emerge.

Towards a Video Software-Defined Network

 Most scalable and reliable Internet video

streaming services have many control knobs

for adjusting video playback quality across

different layers in the network stack that call

for cross-layer optimizations. For example,

many video services are implemented using

multiple servers, typically distributed

geographically, e.g., Content Delivery

Networks (CDNs). For each video session, a

video player can select one of many possible

servers from which to start streaming. If the

duration of the video session is long, it is

possible to switch servers during the lifetime

of the session. The control plane is further

complicated by recent trends in content

providers utilizing multiple CDNs [5] and/or

CDN federations [6]. In addition to

streaming server selection, for an adaptive

bitrate video streaming protocol, the initial

bitrate needs to be selected and the player

needs to continuously adapt the bitrate during

the video playback. We argue that by

leveraging and extending the recently

proposed Software-Defined Networking

(SDN) approach [7][20], it may be feasible to

select the best Internet route on a per-video-

session basis. Furthermore, we will not be

surprised if other knobs, such as video

BIG DATA DIFFERENTIATORS: A QoE PREDICTIVE MODEL FOR VIDEO SDN

Hui Zhang

Conviva

encoding profiles [8], client or server initial

TCP window size [9], or even the transport

protocol itself, can be opened up for control.

The Case for a Data-Driven Predictive Model

 The new opportunities call for cross-layer

optimizations where the decisions involving

different control knobs need to be considered

together, instead of separately. This causes

the decision space to grow exponentially,

making it extremely difficult for a reactive

protocol to do the best possible job. Indeed, it

will take a long time for such a protocol to

converge to a good decision. Next, we briefly

discuss the challenges faced by existing

protocols.

 Typically, these protocols use static initial

configuration parameters that are often sub-

optimal. For example, adaptive streaming

protocols usually start with a statically

configured bitrate. If this bitrate is too low,

the protocol might not even be able to reach

the optimal rate by the time the video has

ended (e.g., for a 30s or 60s news clip).

Additionally, such pre-configured bitrate

may be sub-optimal during periods of

congestion or compromised bandwidth.

 Even after an initial decision is made,

when these protocols react, they don’t always

make the optimal decisions, which may

further impact user experience. For example,

in case of congestion, an adaptive bitrate

protocol may switch up to a bitrate that

cannot be sustained, and, as a result, the user

may experience re-buffering.

 In this paper, we make three arguments.

First, given the fundamental limitations of

reactive approaches, we argue for an

alternative predictive approach, which aims

to accurately predict the outcome of making

a particular choice, e.g., will a stream be able

to sustain a particular bitrate? In theory, a

perfect prediction would allow protocols to

use “optimal” configuration parameters and

make “optimal” decisions. For example, it

would be possible to exactly pick the largest

sustainable bitrate for a video stream at start

time.

 Second, in order to accurately predict the

outcome of a given choice, one may be

tempted to use an analytical approach to

model the environment, the streamer, the

network, or some combination thereof.

However, we believe this is infeasible due to

the huge complexity of the delivery

ecosystem, and this is also unnecessary. We

instead argue for a data-driven empirical

approach to leverage the information

available from other players, streams or

connections, i.e., use the performance

experienced by other “similar” sessions to

predict the performance for a given session.

For example, if sessions located at some

organization can sustain 2Mbps on average

when streaming from a CDN, then it’s likely

that a new session from the same

organization will be also able to stream at

2Mbps from the same CDN.

A Cloud-Based Big Data Solution: V-SDN

 To this end, we propose a global control

plane architecture – or Video SDN (V-SDN)

– that continuously collects data from various

sources, e.g., the quality of current and

historical video sessions, and uses this

information to maximize quality of other

sessions. There are several challenges to

implement such a system. First, we need an

Internet-scale solution. To provide some

perspective, we collect data from over 4

billion streams per month, and at each point

in time, we are collecting data from up to 2

million concurrent streams. When applying

to all Internet videos, that number becomes at

least one order of magnitude bigger. Second,

we need to process this information and

make decisions in real time, i.e., milliseconds

or sub-millisecond response time. Third, to

make the best decisions, we need on-line

prediction models to accurately model the

session performance as new data is

continuously collected.

 We present the design and early

experience with deploying such a control

plane architecture, called video Global

Optimization (GO). Conviva has built a

cloud-based data platform using a data hub

architecture [10], where data ingested from

different sources are stored in a distributed

file system, and different tools built on top of

the data provide batch processing, stream

processing, search, graph computation, ad-

hoc analytical querying, time-series

analytics, and statistical analytics

computation. The data platform is designed

to be distributed, horizontally scalable, and

highly available. With this data platform,

applications such as GO do not need to worry

about the distributed nature of the system and

are able to explore the data more freely. GO

uses the quality-related information (e.g.,

current bitrate, re-buffering rates, start time,

etc.) which is continuously collected from

each streaming video client. Next, GO

processes the quality information in real

time, and, based on this information,

provides hints to clients about the best bitrate

or server to start with or switch to. For ease

of deployment in today’s Internet ecosystem,

we make two simplifying assumptions. First,

for a given session, GO selects the server and

Internet path at the CDN granularity, instead

of server granularity. Second, GO currently

makes decisions at the start of a video

session, and not in the middle of the session.

These simplifying assumptions reduce both

the frequency and the number of decisions

GO needs to make. Despite these restrictions,

our experience with deploying GO to

optimize video streaming across several

video sites shows that it is a highly

advantageous step towards a fully featured

global control plane.

 In particular, due to the flexibility of our

data platform architecture, it would be easy

to extend GO to handle additional data

sources, to make new types of decisions

(e.g., select an encoding format), or to

implement different algorithms.

GO System Overview

 As shown in Figure 1, GO consists of two

main components: (i) a backend that collects

and processes the information about the

video quality across all clients, and (ii) a

client library that collects quality information

at each client and sends it back to the

backend. In particular, the client library

monitors the states of player and network

condition, summarizes them in the form of

quality samples, and sends these samples

back to the GO backend.

 The GO backend uses the streaming

capability of the data platform to process the

quality samples received from clients in real

time, and predict the quality outcomes of

future sessions for each possible decision.

The GO system makes two decisions for

each session: the initial or starting bitrate

(most videos today are encoded at multiple

resolutions), and the initial CDN to stream

the content from (many content providers

today are on or moving towards multi-CDN

setup). The initial CDN and bitrate are

chosen from a pre-determined set of options

and they can be changed at any point during

a session. Note that to play a video that is

encoded at n different bitrates and stored on

m CDNs, there are m × n options to chose

from.

GO Backend

Quality Samples

Storage

Quality

Predictor

Decision

Making

Video

Session

Video

Session

Video

Session
...

...

Query

(Attributes, {D1, ..., Dn})

Best

decision D*

Q(Di)

Quality sample

collection

Client Client Client

...

Bitrates

...

Bitrates

CDN1 CDNn

Figure 1: Go System overview

 To pick one of these options, GO predicts

the quality metric for each option, and then

picks the one that corresponds to the highest

quality. In particular, GO uses real-time,

quality-related information from every client

currently streaming video to predict the

quality of another user, and uses this

prediction to select the initial bitrate and

CDN for a new user.

Quality Samples

 As explained above, the client library

collects various pieces of quality

information, summarizes this information

into quality samples, and sends these samples

to the GO backend. More precisely, a quality

sample contains a set of quality

measurements and attributes. Based on the

quality measurements, GO computes a set of

quality metrics. In this paper, we focus on

four industry-standard video quality metrics

that have been shown to impact user’s

engagement [11][5]:

1. Buffering ratio: The percentage of time a

session spends in buffering state, i.e., waiting

for the player’s buffer to replenish with

enough data to continue the playback.

 2. Join time: The time it takes to start

playing the video from the time the user

clicks the “play” button.

 3. Average bitrate: Many of today’s video

players support adaptive bitrate switching to

effectively react to changes in the bandwidth

availability. The average bitrate of a session

is simply the time-weighted average of the

bitrates used in a given session.

4. Video start failures: Some sessions fail to

start playing due to various reasons,

including content unavailability, or CDN

server overload.

 In addition, a quality sample contains a

Table 1: Number of unique values for various session attributes

Name Description Number of Unique Values

ASN The Autonomous System (AS)

Number that the client IP

belongs to

15K from multiple countries

Video asset The video asset being streamed 80K

Content provider

(site)

The video site providing the

content

279

Initial CDN The CDN that the video session

starts with

19 including ISP, commercial, in-

house

Initial bitrate The bitrate that the video session

starts with

15K video assets with multiple starting

bitrates

Connection type Type of last-mile connectivity 7 including WWAN, DSL, fiber-to-

home

large number of client and video session

attributes. Table 1 summarizes some

information about these attributes. Results

are derived from quality samples from over

800 million sessions or views (both

successful and failed) over a one-month

period.

CHALLENGES

 Before we delve into solutions, we first

discuss some of the challenges to building

such a video quality prediction system. First,

we describe the scalability challenges and

then we discuss the algorithmic challenges in

managing prediction errors.

Internet-Level Scalability

 A global intelligence system needs to be

scalable in order to make a large number of

real-time decisions. This is especially true

given the combinatorial nature of the session

features, i.e., the number of feature

combinations increases exponentially with

number of base features. At the same time,

the decisions need to be made in an

extremely low (sub millisecond) constant

time so that the decision making process

doesn’t adversely affect the video session.

Managing Prediction Error

 Any prediction has error. The natural

question is: where do errors come from and

how do we manage them? We roughly

follow the decomposition of prediction error

developed in [12], specializing it to our

setting. In quality prediction, there are four

sources of prediction error:

1) Estimation error caused by limited data:

All things being equal, more data will give a

more accurate prediction because predictions

are less impacted by random fluctuations in

the available data. Given a large number of

attributes and the combinatorial nature of the

attributes (the number of partitions grow

exponentially with more attributes),

estimation error can be a serious problem in

practice.

2) Bias due to missing or unused

information: The bias occurs when one does

not observe (or use) an attribute that is

important for prediction. Bias is not

alleviated by gathering data from more

sessions, but by gathering more attributes

from each session. There is a fundamental

tradeoff between estimation error and bias

that we need to address: more features reduce

bias but also reduce the number of samples

within each feature set and potentially

increase estimation error if not designed

carefully. On the other hand, the common

approach to handle estimation error is to

increase number of samples by aggregation,

thus increasing bias.

3) Unavailability of recent data: In a practical

system, there are delays in measuring,

sending and processing quality samples. If

conditions change rapidly, there may be no

quality samples sufficiently close to the

session under prediction. This is an extreme

example of estimation error. In this case it

may be necessary to model the evolution of

the video ecosystem over time in order to

extrapolate to the current time. Figure 4

shows per-minute quality variability. It

shows that even with sufficient data, the

mean value of quality samples belonging to

sessions in the same partition could vary

significantly. This clearly indicates that any

practical algorithm has to be running in real

time (on the order of one minute or less).

4) Noise: Outcomes may be affected by non-

deterministic inputs that could not reasonably

be observed or predicted by any system. For

example, performance may be affected by

exponential back-off at the data link layer, by

the congestion generated by cross traffic at

the network layer, or by a randomized

algorithm somewhere in the networking

stack. Though prediction error induced by

such factors technically falls under the

category of bias, it is more useful to think of

it as noise. Noise implies that some degree of

prediction error is inevitable.

ALGORITHM

 In this section, we present a practical

algorithm that addresses the challenges

presented in previous section.

 The tradeoff between estimation error and

bias naturally leads us to consider a class of

algorithms that compute average quality

outcomes for partitions of sessions under

different feature sets, and then dynamically

chooses the feature set that seems to work

well for a given session. We propose the

following basic structure for the algorithm.

The algorithm chooses a set of features

offline based on analysis. Then the algorithm

starts collecting quality metrics for all the

feature sets. Based on the quality metrics

collected, each feature set will be given a

weight so that the weights reflect statistical

properties of the feature set and are thus

updated when new quality samples are

collected. Finally, when receiving a new

session, we estimate the performance for

each available decision using a weighted

sum. Intuitively, the algorithm works as

follows: for a given session, we look at the

quality metrics of all the sessions that match

this session exactly. If we have enough data

and the metrics are statistically stable, the

decision will be mostly based on that.

Otherwise, we will have to remove a feature

and look for quality metrics with similar

sessions, etc.

 The next question then becomes how to

design a weighting scheme to balance

between estimation error and bias to

minimize overall prediction error.

 George et al [13] considered this problem

and proposed an algorithm called WIMSE

(short for Weighted Inverse Mean Squared

Error). As the name suggests, the weights wi

are chosen to be the inverse of an estimate of

the mean squared error (MSE). Inverse-MSE

weighting has the following desirable

property: If the mean quality pi of each group

is statistically independent and the mean

squared error is estimated exactly, then the

resulting prediction is an optimal estimator in

the sense that it has the minimal overall

prediction error among all samples drawn

from the same distribution [13]. While in

practice neither condition is met, George et al

have found that WIMSE can nevertheless

work well in most cases.

 The basic algorithm still faces other

practical challenges. However, due to space

limitation in this paper, we concentrate on

only the major challenges the algorithm

faces.

DEPLOYMENT

 We leverage recent advances in data

systems to build our data platform, around

Hadoop [14] and the Berkeley Data

Analytics Stack (BDAS) ecosystems [16].

From a high-level design, we use HDFS as

our primary storage layer and Spark as our

primary computation engine. We also use

other tools to provide both HA (high

availability) and data processing abstraction

such as batching (Spark [15]), streaming

(Streaming Spark [15]), search (Solr [17]),

analytical querying (Shark [18]), statistical

analytics (R [19]), etc.

 We implemented the GO system on top of

our data platform using the streaming

capability of the platform to train the model

and produce decision tables every minute.

The decision tables are then sent to a number

of decision makers distributed across

multiple locations. Finally, when a query

comes into a decision maker, it runs the

algorithm using the decision table and

responds within milliseconds.

 The GO system is currently deployed with

multiple premium content publishers.

However, there are several practical

difficulties of evaluating the performance of

GO in production deployment environments.

First, most publishers do not want to perform

A/B testing when they understand that the

performance of some of the streams may not

be optimal when they are grouped by the

non-optimized version of the algorithm.

Second, with all publishers, there are usually

additional business considerations beyond

the goal of optimizing the QoE of the video

streams. For example, when using multiple

CDNs, a publisher could get a lower price

from a particular CDN if it would allocate

more than a certain percentage of its total

traffic to the CDN. This CDN allocation

policy would put additional constraints on

the GO optimization algorithm. Consider a

scenario where a publisher has three CDNs

X, Y, and Z, and has a minimum committed

usage percentage on X and Y. This would

mean that even if CDN Z was the best

performing CDN based on the prediction

algorithm, beyond certain percentage of

traffic, no additional streams would be

allocated to it.

Buffering Ratio and Average Bitrate: In

Figure 2, we show the percentage of

improvement of GO over the baseline

(randomized decisions) with two

performance metrics: buffering ratio and

average bitrate. In particular, for buffering

ratio, we show the percentage of reduction of

buffering ratio for all sessions served by the

GO algorithm in each day as compared to all

sessions served by the baseline algorithm on

the same day; for average bitrate, we show

the percentage of increase of average bitrate

over the entire session duration for all

sessions served by the GO algorithm in each

day as compared to all sessions served by the

baseline on the same day. We present the

comparison over a continuous time period of

10 days. There are several points worth

noting. First, both metrics are improved

simultaneously with GO as compared to the

baseline. In contrast, with normal adaptive

bitrate protocols without special

optimization, the improvement of one metric

usually results in the deterioration of the

other. For example, the reduction of the

buffering ratio usually comes together with

the reduction of the average bitrate also.

With GO, both metrics are improved

simultaneously. Second, the performance

improvement varies daily. The most likely

explanation is that it is due to the CDN

performance variation. To understand this

better, we compare the performance of all

sessions under GO and the performance of all

sessions on each of the three CDNs under the

baseline algorithm. This is shown in Figures

3 and 4 respectively with buffering ratio and

Figure 2: Performance improvement over time

compared to baseline algorithm

Figure 3: Buffering ratio for different CDNs at

different points in time, illustrates CDN

performance variability

Figure 4: Average bitrate for different CDNs

at different points in time, demonstrates very

much the same phenomenon as Figure 2

1.4

1.6

1.8

"Dec 23" "Jan 9"

B
u

ff
e
ri
n

g
 r

a
ti
o

 (
%

)

Random(CDN1) Random(CDN2)

Random (CDN3) Global (GO)

average bitrate as performance metrics

respectively. For each figure, we show the

comparison in two separate days. Some

additional points to note: first, the

performances of sessions for different CDNs

under the baseline do vary, with respect to

both buffering ratio and average bitrate.

Second, the sessions under GO perform

better than the sessions for even the best of

the three CDNs. This suggests that GO is not

only looking for the best CDN on average,

but also differentiates CDN performance in

finer granular partition across time and space.

In addition, if one compares the relative

performance for each individual CDN, the

ranking varies between the two days. In

particular, with respect to the buffering ratio,

CDN3 is the best on Dec 23, but CDN1 is the

best on Jan 9; with respect to the average

bitrate, CDN3 is the best on both days.

 Interaction with the adaptive bitrate

protocol: Since GO in this deployment only

selects the bitrate and CDN at the beginning

of each session and the HLS protocol

controls the bitrate adaptation for the

duration of the session, we would like to

understand how the initial selection decisions

by GO impacts the future adaptation

decisions made by HLS. The number of

bitrate switches per session made is a good

indicator of how closely GO is able to select

the ideal bitrate for a session. A good initial

selection would result in a lower number of

bitrate switches in the future. Figure 5 shows

the comparison between GO, a static

selection policy (traditional initial bitrate

selection algorithm) and an algorithm that

selects the starting bitrate at random. As

shown in the figure, GO outperforms either

case. Also note that static selection is as bad

as picking a bitrate at random!

DISCUSSION

 While our results look promising, the

magnitude of the improvements may appear

underwhelming. However, we believe that

this is not due to the lack of potential of the

approach, but it merely comes down to the

inherent limitations that are typical to any

first instantiation of a radical approach. In the

remainder of this section, we consider some

of these limitations which, when removed,

will result in much higher improvements.

 Mid-stream selection: Currently, GO

makes decisions at the sessions’ start times.

For a long session this may not be optimal,

as, for example, the quality of the selected

CDN may degrade during the session’s

lifetime. We are adding the ability to make

the decisions during the mid-stream, as well.

Note that in this case, the prediction is

equally important, as switching to a new

CDN is not guaranteed to increase the

quality, especially if the quality degradation

is due to the last mile or due to the client

inability to render at a high bitrate.

 Leveraging network and CDN

information: GO makes decisions based on

client side information only. While clients

provide the most accurate information

regarding the quality experienced by users

and at the final viewing stage, this

information may not always be optimal when

making decisions. The decision process can

be considerably improved if GO were to

2000

2200

2400

2600

2800

"Dec 23" "Jan 9" A
v
g

.
b

it
ra

te
 (

K
b
p

s
)

Random(CDN1) Random(CDN2)

Random (CDN3) Global (GO)

Figure 5: Average number of switches per

session for GO initial bitrate selection, static

initial selection (1200Kbps) and random

selection

leverage information from other entities in

the distribution ecosystem, including CDN

servers, caches, switches and routers. Using

such information, GO could significantly

improve the prediction accuracy. For

example, GO could learn much faster that a

CDN server is overloaded by getting load

information directly from that server than

inferring this information from clients that

experience quality issues when connected to

that server.

 Finer grain selection: Currently, GO

selects the resource at the CDN granularity.

This means that GO does not do much if the

CDN redirects the client based on its location

(e.g., IP address) to a set of congested

servers. However, if the client were able to

specify the servers to stream from, GO could

avoid the overloaded servers and

dramatically increase the quality. We believe

that we will soon have the ability to perform

such fine grain selection, as CDNs are

incentivized to expose such information to

clients. Indeed, a CDN operator will prefer

that a quality-impacted client move to other

servers in the same CDN rather than migrate

to a different CDN. Furthermore, an ISP

CDN that also runs its own software on set-

top boxes or other user devices would be in

the perfect position to run a GO-like

algorithm that makes decisions at server

granularity.

CONCLUSION

 As the Internet infrastructure becomes

more complex, the potential number of

congestion and failure points will only

increase. In this paper, we have shown that

despite this increasing complexity, a

predictive model for QoE, leveraging an

Internet scale control plane architecture

(GO), gives online video providers the ability

to deliver an optimal viewing experience for

their content. With new SDN technologies

being developed and deployed to expand the

capabilities of devices within the video

ecosystem, we believe that a GO-like

solution will be able to make even more

granular optimizations and better control the

delivery environment. Content publishers

and service providers are in an excellent

position to utilize a V-SDN architecture,

such as GO, to ensure the integrity of their

business as the industry moves to an Internet

TV model.

REFERENCE

[1] Cisco Visual Networking Index: Forecast

and Methodology, 2012–2017

[2] http://gigaom.com/2014/01/06/netflix-4k-

ultra-hd-3d/

[3] http://mashable.com/2014/01/03/youtube-

4k-ces/

[4] http://vimeo.com/tag:4k

[5] A Case for a Coordinated Internet Video

Control Plane. Xi Liu, Florin Dobrian, Henry

Milner, Junchen Jiang, Vyas Sekar, Ion

Stoica, Hui Zhang, Proceedings of ACM

Sigcomm, 2012

[6] Content Delivery Network (CDN)

Federations, How SPs Can Win the Battle for

Content-Hungry Consumers, Cisco

Whitepaper

[7] The Road to SDN, Nick Feamster,

Jennifer Rexford, Ellen Zegura, ACM

Queue, December 30, 2013

[8] Dynamic Video Transcoding in Mobile

Environments, Bo Shen, Wai-Tian Tan, and

Frederic Huve, IEEE Multimedia, 2008

[9] Increasing TCP's Initial Window, IETF

RFC 6928

[10] Big Data Requires a Big, New

Architecture, Dan Woods, Forbes

[11] Understanding the Impact of Video

Quality on User Engagement, Florin

Dobrian, Asad Awan, Dilip Joseph, Aditya

Ganjam, Jibin Zhan, Vyas Sekar, Ion Stoica,

Hui Zhang, Proceedings of ACM Sigcomm,

2011

[12] A unified bias-variance decomposition,

Pedro Domingos, Proceedings of ICML 2000

[13] Value Function Approximation using

Multiple Aggregation for Multiattribute

Resource Management, Abraham George,

Warren B. Powell, Sanjeev R. Kulkarni,

JMLR 2008

[14] http://hadoop.apache.org/

[15] http://spark.apache.org/

[16] https://amplab.cs.berkeley.edu/software/

[17] https://lucene.apache.org/solr/

[18] http://shark.cs.berkeley.edu/

[19] http://www.r-project.org/

[20] http://www.opendaylight.org/

