
Applying Web Principles to the Network 

 Brian Field, PhD 

 Comcast Cable Communications 

 

 Abstract 

 

     The web has been a tremendously 

successful application within the Internet 

ecosystem. There are many reasons for this 

success, but one key reason is likely a result 

of the use of open source technology. 

Specifically, the web is built on an open 

protocol (HTTP) running on an open source 

application (Apache) on an open source 

operating system (Linux) running on common, 

-off-the- shelf hardware.  This ecosystem is 

ideal for innovation—any application 

developer can test and introduce changes into 

any of these software domains as appropriate 

for their specific application.   The better 

changes get rolled into the ecosystem and 

become available for all downstream 

developers to use.   This pay-it-forward 

ecosystem is likely a primary reason for the 

success of web applications.      

 

     The web and the Internet run over a 

network (routing) infrastructure that has 

clearly provided the foundation for making 

the web and Internet successful. However, the 

network ecosystem is not as open as the web 

ecosystem and this could be stifling 

innovation in the network space. This paper 

explores how we can make the network 

ecosystem more open and provides insights 

into the value this openness provides to both 

the network operator and the application 

developer. 

 

INTRODUCTION 

 

     The web has been a tremendously 

successful application within the Internet 

ecosystem and there are many reasons for 

why. The roots of this success have their 

origins in the open source nature of its 

ecosystem. Specifically, the web is built on an 

open protocol (HTTP) running on an open 

source application (Apache) on an open 

source operating system (Linux) running on 

common, off-the-shelf hardware.  

 

     This ecosystem is ideal for innovation, as 

an application developer can test and 

introduce changes into any of these software 

domains as appropriate for their specific 

application. The better, more useful changes 

get rolled into the ecosystem and become 

available for all developers to use. This pay-

it-forward ecosystem is likely a primary 

reason for the success of web applications.      

 

Conway's Law 

 

     In late 1968, Melvin Conway proposed 

that “organizations which design systems ... 

are constrained to produce designs which are 

copies of the communication structures of 

these organizations” (1968).   

 

     One way to think about what Conway 

suggested is illustrated in the following 

analogy. Consider a company that consists of 

two divisions—one division that makes 

delicious peanut butter and the second 

division which makes delicious chocolate. If 

these two divisions do not have meaningful 

discussions or interactions, it is unlikely that 

they will collaborate and make a great 

confection known as “peanut butter cups”. 

 

     Current service provider organizations are 

often aligned where the network engineering 

teams work in one portion of the company 

and the application engineers work in a 

different organization. This separation not 

only exists on paper, but in where these 

organizations are located: on different floors, 

buildings, even cities. Applying Conway’s 

thinking, this logical and physical partitioning 

is a barrier to collaboration, cross pollination 

of ideas, and innovation.  



 

This paper suggests that there is great value to 

be had in the network space if these separate 

teams were to collaborate, leveraging the 

technologies that have made the web so 

successful and applying them to the network 

space. Specifically, in this paper we identify 

and apply three web component technologies 

to the network space and explore the resulting 

value in such an application. 

 

OPEN SOURCE AND THE WEB'S 

SUCCESS 

 

     As discussed earlier, one of the primary 

reasons for the web's success is its open 

ecosystem. This open environment allows the 

developer to make changes to accommodate 

specific application requirements at any of the 

three software layers of the web stack, shown 

in Figure 1. Good and great ideas often get 

rolled into the open source package and 

become available to the entire community. 

This is an incredibly powerful development 

environment as it allows innovation and 

agility at all layers within the ecosystem. 

 

 

Figure 1: Web stack 

 

Web Model Versus Router Model 

 

     Now, consider the router stack. The router 

stack consists of open protocols (BGP, ISIS, 

PIM, etc.), but these protocols are managed 

within the confines of a proprietary command 

line interface, running within a proprietary 

operating system, inside a proprietary chassis, 

running on proprietary hardware ASICs, as 

shown in Figure 2. 

 

Figure 2: Today's router stack 

 

     While the IETF has provided a forum for 

discussing the details of routing protocols, 

network operators are limited in their ability 

to individually experiment and innovate with 

new concepts due to this existing proprietary 

router environment. In fact it has been this 

restrictive ecosystem that has been a 

motivator for OpenFlow(see Openflow 

reference), where a set of APIs have been 

developed to manage this proprietary 

ecosystem. These APIs are considered by 

some to be “SDN” (software defined 

networking),  as shown in Figure 3. 

 

 

Figure 3: Is this SDN? 

 

     But is this really SDN? Or posed 

differently, is this all we should expect from 

SDN  or can it leveraged for more?   The 

service provider and MSO community may 

see greater benefits in the network space  if 

we can get the router model to really align 

with the open source model that has made the 

web environment so incredibly successful.  

HTTP

Apache

Linux

COTS hw

Web stack

HTTP

Apache

Linux

COTS hw

BGP, ISIS, 

PIM, etc.

Proprietary 

CLI

Proprietry 

OS/chassis

Proprietary 

ASICs

Web stack Router stack

HTTP

Apache

Linux

COTS hw

BGP, ISIS, 

PIM, etc.

Proprietary 

CLI

Proprietry 

OS/chassis

Proprietary 

ASICs

SDN APIs

Web stack Router stack



 

     To set the stage for this, a discussion is 

provided about the current service provider 

ecosystem and how the application 

technology is being deployed; this really 

becomes the foundation for an open 

environment and an innovative ecosystem in 

the routing domain. 

 

Virtualization in the MSO space 

 

     Many MSOs and Service Providers are in 

the process of augmenting their network 

infrastructure with data centers full of servers 

that provide a virtualization environment for 

applications. Over the last several years it has 

been common for the application developers 

to deploy their services on virtualization 

platforms rather than application-specific 

hardware platforms. Service providers, 

including MSOs like Comcast, have been 

deploying these data center based 

virtualization platforms to provide an Agile 

environment for the deployment of their own 

internally created and managed applications. 

These virtualization platforms have gone from 

a centralized deployment, where there are a 

small number of data centers nationwide, to a 

more regional deployment, where data centers 

are located in the regions they serve. One 

could envision that over time these 

virtualization platforms will reach yet further 

into an MSO’s footprint, including into many 

hub sites. 

 

Network Topology for Applications 

 

     In simple terms, a service provider or MSO 

network consists of three pieces: 1) the core 

network, made up of core routers, with a 

primary purpose of forwarding packets over 

very large bandwidth links; 2) the network 

edge, consisting of routers that provide 

application/edge features and physical 

aggregation; and 3) the applications 

themselves.   

 

The edge routing platform tends to have 

application-specific features and 

configurration to support constructs such as 

ACLs, DSCP policies, QoS settings, etc. As 

applications change their behavior and what 

they require from the network, they place new 

feature demands on the edge router software. 

As such, the code running on these edge 

platforms tends to need more frequent code 

updates. Since these edge platforms are 

proprietary systems built by vendors, vendors 

must be convinced to reengineer the software 

to support any new network feature that 

applications require. This often means getting 

the feature on the vendor's roadmap and 

waiting months or years for delivery. 

 

APPLYING WEB PRINCIPLES TO THE 

ROUTER ECOSYSTEM 

 

First Application: Router Platform Edge 

Virtualization 

 

     The edge router environment is one where 

virtualization and open source have a useful 

applicability. As discussed previously, edge 

router functionality is required to change 

rapidly based on application needs. Because 

of this, edge routers would be well served to 

run inside a virtual instance. Specifically, 

there would be great benefit in taking the 

existing edge router platform and partitioning 

it into two components: the software 

component that needs to evolve and change 

quickly, and the hardware component that 

performs aggregation and packet forwarding. 

The edge router software component could be 

moved into a VM in the virtualization server. 

Furthermore, router software could come 

from a router vendor or could be open source 

based. The open source router paradigm is 

particularly compelling in that it enables the 

service provider to innovate, be Agile, and 

create application-specific features in the 

routing code but on the service provider’s 

timeframe. Figure 4 details the evolution of 

the edge router into this new VM-based router 

paradigm. 



 
Figure 4: Virtualizing the edge router 

 

     In this model depicted in Figure 4, 

applications exist as VMs, but instead of 

having connections to the physical edge 

router, they have virtual Ethernet connections 

to this new edge router VM. This edge router 

VM has the set of features found in the non-

virtual edge router, but these features are 

executed within a VM as opposed to operating 

within a proprietary platform and system. 

 

Result of Virtualizing the Edge Router 

 

     Consider this new router VM paradigm, 

where we have moved the edge routing 

features into a router VM running in our 

virtualization platform. The resulting 

virtualized edge router stack looks nearly 

identical to the web stack depicted in 

Figure 5. The virtualized router stack runs as 

an open source VM on an open source 

operating system (Linux). This 

implementation should fundamentally 

improve the edge routing environment for the 

same reasons that the web environment 

benefited: this open source router VM 

ecosystem will provide platform innovation 

and agility in the router edge feature space. 

 

 
Figure 5: Web and open source router VM 

stack 

 

The State of Network Control Protocols 

 

     A second area of the network ecosystem 

that might benefit from web ideas and 

concepts is in the area of network control 

protocols, specifically BGP. This paper 

focuses on BGP Link State (Gredler, 2012). 

BGP Link State is a new address family 

defined in BGP that carries details about the 

underlying network topology. BGP Link State 

encodes the state of the Interior Gateway 

Protocol (IGP) and makes this information 

available to applications. It has been proposed 

that BGP Link State carry not just the network 

topology, but other topology information, 

including how VMs are connected into the 

routing infrastructure and the power topology 

(what PDUs are being used to power each 

power supply in each server and router). The 

VM and power topologies are real-time 

exposed via LLDP, meaning that BGP Link 

State will likely carry both IGP information 

and the contents of LLDP messages (Field, 

2013). 

 

     Current thinking in how to encode the IGP 

information into BGP is to follow the existing 

BGP paradigm: encode the IGP information 

into BGP using binary protocol constructs, 

application X

virtual machine

application Y

virtual machine

application Z

virtual machine

Agg and/or 

Core
router

VM

hy
pe
rvi
so
r

Edgeapp Core

fe
a

tu
re

s

aggregation

HTTP

Apache

Linux

COTS hw

BGP, ISIS, 

PIM, etc.

open source

Linux

COTS hw

Web stack Router VM 
stack



namely, a number of TLVs based on bit and 

byte structures.    

 

     The drivers for BGP’s binary encoding 

system are in part to make the protocol 

network and processing efficient, which was a 

valid engineering trade-off for the network 

ecosystem of the late '80s and early '90s when 

BGP was first being developed. However, that 

environment of T1 links and very limited 

router CPU processing is long behind us. 

Because BGP would be required to carry very 

different types of information for three 

different topologies,  more flexible encoding 

approaches should be considered, approaches 

that enable agility and innovation.    

 

Second Application: Network Control 

Protocols 

 

     When considering encoding in the web 

environment, much control and data content is 

encoded as JSON. While not as compact as 

BGP binary encoding, JSON encoding is well 

known and commonly used in the application 

space, while writing binary-based BGP 

encoding is relegated to handfuls of network 

engineers with BGP expertise. To take 

advantage of the benefits that come from wide 

adoption and expertise, JSON encoding 

should be seriously explored for new address 

families for BGP, such as Link State.   

 

     In addition, if encoding the BGP Link 

State content as JSON has benefits, then 

consider the possible benefits of refining the 

BGP data passing primitives (OPEN, 

UPDATE, NOTIFICATION, etc.) to leverage 

those that are commonly used in web-based 

technologies. Specifically, make the BGP 

protocol RESTful.  

 

In summary the second application of web 

principes to the network is that new BGP 

address families use JSON encoding and 

RESTful primitves. This basic step could be a 

key enabler to innovation and agility in the 

network control plane space and be key to 

empowering applications to make the most of  

the network. 

 

What Is the Right Network Topology? 

 

     In the past, much of the job of a network 

engineer was to understand where an 

application would physically plug into the 

network, how much bandwidth it might 

consume, and with what end-points this 

application would communicate. The network 

engineer would then consider different failure 

scenarios and, based on this, determine how 

much capacity was needed in each portion of 

the network. This task was relatively 

deterministic in the sense that a network 

engineer would know with a high level of 

certainty where an application would exist in 

the network. 

 

     This paradigm does not necessarily apply 

in an environment where applications can 

easily be spun up in any corner of the 

virtualized cloud network. The days of 

engineering a “custom” network design are 

behind us. Instead, in the network space 

engineers and developers need to move to an 

“instrumentation over engineering” mentality. 

The general premise in this approach is that 

no matter how much engineering analysis 

goes into understanding application traffic 

patterns as it relates to the physical netwotk 

topology, the network topology will be 

inefficient as applications change their 

requirements, operation, and move around the 

cloud infrastructure. Therefore, a prudent path 

to take is to enable much more detailed 

instrumentation of the network—specifically, 

provide a much more granular and measured 

understanding of what each virtualized 

application is talking to. In a virtualized 

application environment, one might suggest 

that a network topology is not inefficient 

when it runs out of capacity in a portion of the 

network, but rather that the placement of  the 

application VMs might be less than optimal 

on the existing network topology. 

 



The shift in thinking proposed here is very 

much is inline with what the web 

development community has exceled at—

namely analytics. 

 

Analytics 

 

     In the web space, analytics are a key part 

of understanding how well an application is 

operating and understanding who is using the 

application. This is done by performing a 

detailed analysis on the application’s logs. In 

general, each transaction is logged and 

processed, and relevant information extracted. 

From this information, the application 

developers and operation teams can refine the 

application accordingly. 

 

     In the network space, these analytics are 

performed by mechanisms such as NetFlow. 

NetFlow provides detailed information about 

high-level traffic patterns. However, nearly all 

NetFlow information is sampled, meaning 

only a very small subset of all packets are 

actually recorded and processed. Given the 

performance concerns with attempting to 

gather too much NetFlow data (and hence 

overwhelming the routers), sampling one 

packet per several thousand forwarded is 

common. In the web space, it would be nearly 

unheard of to log only one transaction out of 

several thousand performed. 

 

     Given this, per packet analysis is the third 

application of web principles to the network 

proposed here.    

 

Third Application: Network Analytics 

 

     Recall that the first application of web 

principles to the network was to drive an open 

source router instance that can run in a VM. 

This VM then becomes the interconnect point 

for virtualization applications. This paper 

proposes that one of the first features 

embedded into this router VM software is per 

packet network analytics.   

 

     Specifically, the per packet analytics 

should track the distance each packet is 

traversing in the network. This might be 

grouped into distances such as: 

 Traffic that is local to this server 

 Traffic that is local to this site 

 Traffic that is local to the metro area 

 Traffic that is local to the service 

provider 

 Internet traffic 

This proposed grouping is depicted in 

Figure 6. 

 

 
Figure 6: Per packet network analytics 

 

     At a minimum, the number of packets and 

bytes being sent to and from each of these 

logical domains over narrow time horizons 

would be tracked. In addition the address 

family (IPv4 or IPv6), the size of the packets, 

and possibly other aspects that will help 

service providers understand the bandwidth-

distance usage of this application could be 

tracked. Why is knowing this information 

useful? Because rather than attempting to re-

architect the network when there is 

insufficient network capacity—an activity that 

likely takes weeks and months to complete—

service providers may be able to better 

leverage the existing network resources by re-

shuffling the location of the application VMs. 

By having this per packet level bandwidth-

distance usage information over narrow time 

windows for each application VM, the service 

provider can derive a very detailed 

understanding of the impact that moving an 

traffic&to&VMs&on
this&server

traffic&local&to&
this&site

traffic&local&to&
this&metro&area

traffic&local&to&
Comcast

Internet

In
cr

easin
g C

ost



application VM will have on the existing 

network location and to the VM’s new 

network location.   

 

 

PROGRAM THE NETWORK OR THE 

PACKET? 

 

     The focus on this paper has been applying 

web principles to the network and 

correspondingly making the network eco-

system more open, agile. and a platform for 

innovation.  Much of the work in the SDN 

space has been related to "programming the 

network"; namely, installing network state 

data from entities outside of the classic router 

control plane. This clearly enables innovation 

between the application and network domain, 

where the application is able to install specific 

state data into the network.  However, when 

considering router and forwarding technology 

and evolution, putting additional state data in 

the router forwarding plane consumes ASIC 

memory and depending on the amount of state 

data injected, could place limiting factors on 

cost effective ways for the router ecosystem to 

evolve.    

 

     An alternative mechanism, called segment 

routing has been proposed that provides a 

more flexible way to steer traffic through the 

network and application space (see segment 

routing reference). Rather than put state into 

the network to define a forwarding path for an 

application, the state instead is inserted into 

the packet's header (via an IPv6 extension 

header) by the application or network router 

for the desired set of application packets. In 

the segment routing model changing the path 

that an application's packets takes through the 

network is done simply by changing the 

information in the packet extension header, 

rather than reprogramming state across a 

number of router devices.  Having an open 

source router edge has the potential to 

accelerate the deployment of segment routing 

technology within a service provider or MSO 

network.     

 

VIRTUALIZATION IS THE ENABLER 

 

     The technology that is enabling the 

approach outlined in this paper is 

virtualization. This approach takes the 

virtualization paradigm developed and used 

extensively by applications and leverage it in 

the networking space.    

 

     Specifically, a proposal to take the edge 

routing functionality out of the legacy edge 

router and put it into a VM has been 

discussed. As part of this migration, the open 

source ecosystem will be driven to develop 

production-ready instances of routing code. 

This open source paradigm then enables 

innovation and agility in the routing space 

much like is done in the application space 

today. Service providers are no longer tied to 

the development cycles of the existing router 

vendors and a service provider can innovate 

on their own technology and timeframes. 

 

     The second evolutionary step proposed 

moving network protocols from their binary 

format to a format that is more readily 

extended and where existing tools and 

software paradigms exist to easily process and 

develop against. Specifically, we suggest that 

network protocols, such as BGP Link State, 

encode information in JSON format and use 

RESTful primitives. 

 

     The third step we propose is to leverage 

the analytics and Big Data paradigms 

successfully used in the web space. We 

specifically propose moving from the 

“sampled” Netflow paradigm to one where we 

track per packet bandwidth-distance 

information. This information then becomes 

the data that is used as to determine how 

“inefficient” the application VM’s current 

placement is, and then using this information, 

VMs can be reshuffled to make better use of 

the physical network resources. 

 

Is this SDN? 



 

    Is the proposed evolution of the network 

space, as driven by applying web concepts to 

the network that outlined here SDN? Yes, it is 

SDN—or minimally it addresses a portion of 

the SDN problem space.  Specifically, the 

thinking outlined in this paper enables both 

innovation and agility in the network space by 

both network operators and application 

developers, and these are key features in 

many SDN paradigms. 

 

SUMMARY 

 

     In this paper, a number of characteristics 

that have made the web a success are 

considered, including an open source 

paradigm that enables innovation, recasting 

network protocols to operate using the 

encoding and primitive mechanisms that are 

widely used for web applications, and to 

embrace a paradigm of instrumentation over 

detailed network engineering via network 

analytics. 

 

References 

 

Conway, Melvin E., "How Do Committees 

Invent", Datamation Magazine, April, 1968. 

 

Field, Brian, "Exposing network, VM edge 

and power topology via LLDP and BGP-

LinkState – and possible implications", 

NANOG, June 2013, 

http://www.nanog.org/sites/default/files/tues.g

eneral.field_.topology.32.pdf 

 

Gredler, H., et al, "North-Bound Distribution 

of Link-State and TE Information using BGP,  

July 15, 2002, http://tools.ietf.org/html/draft-

gredler-idr-ls-distribution-02 

 

Openflow reference: 

https://www.opennetworking.org/ 

 

Segment-routing-reference 

 

https://datatracker.ietf.org/wg/spring/ 

http://www.nanog.org/sites/default/files/tues.general.field_.topology.32.pdf
http://www.nanog.org/sites/default/files/tues.general.field_.topology.32.pdf
http://tools.ietf.org/html/draft-gredler-idr-ls-distribution-02
http://tools.ietf.org/html/draft-gredler-idr-ls-distribution-02
https://www.opennetworking.org/

