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 Abstract 

 

     Caching technologies are used to improve 

quality of experience while controlling transit 

and transport costs.  Two common caching 

technologies are considered transparent 

caching (TC) and on-net content delivery 

network (CDN). We illustrate cache 

avoidance, analyze and model two common 

approaches - content hash indexes and policy 

based indexes - to minimize the impact. We 

show how the use of policy based indexes and 

applying advanced features of IP routing can 

be used to merge on-net CDNs and TC 

together into a single unified caching system 

with superior and quantifiable improvement 

in cache efficiency, while providing resilience 

and simplifying operations.  

 

INTRODUCTION  

 

    The content industry is being reshaped by 

exponential video traffic growth, rapid 

proliferation of connected devices and 

delivery formats, and surging consumer 

demand for video from many different online 

sources. To stay competitive, MSOs need 

solutions that can cost effectively deliver pay 

TV content and Internet traffic with high 

quality of experience while optimizing transit 

and peering costs. 

    The majority of the growing Internet traffic 

originates from outside of MSO’s networks 

and from Content Providers with whom they 

do not have business agreements to deliver 

content. Internet traffic is diverse by nature, 

and while video is the largest type by volume, 

software updates and Web traffic constitute 

substantial proportions.  

    MSOs are using caching technologies to 

improve quality of experience while 

controlling delivery costs for own video 

services and Internet traffic. They use 

transparent caching for unmanaged over-the-

top Internet content and on-net content 

delivery network for managed or premium 

content they own or distribute for partners.  

Currently both solutions operate 

independently from each other.   

    There are several fundamental challenges 

that MSOs are facing with unmanaged OTT 

content: cache avoidance, a technique used by 

content providers to prevent MSOs from 

caching their content, different traffic types 

that needs to be cached, and maintaining high 

network resilience where caching is deployed.  

In this paper, we illustrate and model the 

impact of cache avoidance on TC and 

introduce two common approaches - content 

hash indexes and policy based indexes - to 

minimize this impact. Using traffic data from 

field trials and through numeric modeling we 

compare the two approaches and show how 

the use of policy based indexes improves 

cache efficiency and reduces latency for any 

traffic type. We then discuss application of 

advanced features of IP routing to resiliently 

deploy TC into greenfield and existing on-net 

CDNs creating a single unified caching 

system with improved resilience and 

simplified operations. 

 

IMPROVING CACHE EFFICIENCY 

 

Cache Avoidance 

 

    Caching is intended to provide distributed 

and scalable content delivery from inside 

MSO networks, optimizing network savings 

while maintaining a consistently high QoE. 

Cache efficiency is typically measured in 

cache-hit rate, the ratio of Bytes delivered 

form cache storage    versus total Bytes 

delivered   . 
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HTTP cache control headers such as “Cache-

Control", "Etag", "Date", "Last-Modified" are 

commonly used to improve cache efficiency 

and are well defined by RFC 2616. However, 

some content providers do not make their 

content objects easy to cache by either 

obfuscating object URLs, using unique object 

URLs for the same objects, setting incorrect 

values for cache control headers such as 

“Cache-Control", "Etag", "Date", "Last-

Modified" or a combination of these methods, 

even if objects are cacheable by nature.  

While there may be valid reasons for using 

such approach, such as load balancing, often 

there are other considerations such as 

promoting deployment of content provider’s 

own caching inside MSOs networks. 

Regardless of the reason, this approach is 

known as cache avoidance, and there are two 

broad types of cache avoidance based on 

using semi-dynamic or fully dynamic URLs. 

    Semi-dynamic URLs are content URLs 

containing different object requests for the 

same content object.  Different hostnames 

may also be used, for example, for load-

balancing. A common feature of semi-

dynamic URLs is extensive use of dynamic 

query string parameters and random 

parameters attached to object URLs to make it 

unique, even if the object name is the same. 

Semi-dynamic URLs make traditional on-net 

CDN caching un-efficient because multiple 

URLs point to the same content. An example 

of a semi-dynamic URL from NetflixTM is 

presented below: 

 

http://31.55.163.113/737473630.ismv/range/3

4270098-

34927096?c=gb&n=25127&v=3&e=1391197

153&t=2EWCIyTIS201F4kw3AAyYWfUhb8

&d=silverlight&p=5.rjKPKTOOlAKs2xPbIC

Bh007uSde_EIHN1XbhqYSxeAs&random=9

76648079     (2) 

 

    The URL includes ‘random’ query string 

parameter making content request unique 

among different users requesting the same 

video object. In other approaches object 

name,  ‘737473630.ismv‘ in our example, 

may be unique for the same video objects, and 

the video object may be only identifiable by 

static query string parameters inside semi-

dynamic URL. 

    Fully dynamic URLs completely randomize 

object name and remove query string 

parameters, a combination of which may 

uniquely identify video object, form object 

URLs. For example, two URLs below 

requested the same object: 

 

http://www846.megavideo.com/files/d008f8c

759a4f4b3f07ccef7ea7588a4/  

http://www763.megavideo.com/files/f66f936f

7fc39f1bb9524f49c5f54184/   (3) 

  

Caching Policy and Content Hash Indexes 

 

     In order to improve TC     two main 

approaches have been developed: content 

policy index (content policies) and content 

hash index (content hashing).  Content policy 

is a set of TC instructions how to group 

similar hostnames and identify the same 

content objects being delivered from each 

hostname using different semi-dynamic 

URLs. Essentially the policy defines parts of a 

URL that can be omitted and parts that shall 

be used for unique content identification - 

cache index. Content policy relies on presence 

of unique static parts or parameters inside 

each URL identifying content object. For 

example, a policy to cache semi-dynamic 

URLs (2) is illustrated below: 

 

[policy-netflix]  

match url regex http://([0-9]{1,3}\.){3}[0-

9]{1,3}/(?<chunk>\d+\.ismv)\?c=\w+&n=\d+

&v=\d+&e=\d+&t=(?<t>[\w|-

]+)&d=(?<device>\w+)&p=5\.(?<p>[\w|-]+) 

cache_index = netflix-$e-$chunk-$device (4) 

 

     The policy effectively defines that TC can 

use a combination of chunk name, device 

name and ‘e’ parameter to uniquely identify 

content, omitting the remaining of the URL. 

Content policy can identify content objects 



without waiting for any response from the 

Origin server, and therefore content delivery 

can start faster improve time to first byte    , 

a time between sending request and receiving 

the first byte of response. Content policies can 

efficiently cache objects identified by semi-

dynamic URLs.  

     Alternative approach uses content hash 

indexes. Content hash is a hash computed 

form the first Bytes of object, and used to 

uniquely identify the complete object. In order 

to compute the hash, TC passes original 

object URL to the Origin, waits for the object 

delivery to start, computes hash of the first 

Bytes, and checks whether the hash matches 

hashes for content objects already stored in 

the in the cache. If the match is found, TC 

takes over object delivery and disconnects the 

Origin. Typically the size of data to compute 

hash is measured in the number of IP packets, 

for example, often 10 IP packets are used to 

identify video objects. Multiple hashing 

algorithms can be utilized, for example, MD5 

(RFC1321) or SHA-1 (RFC3174) is often 

used.  

     Content hash indexes can efficiently cache 

content identified by both semi-dynamic and 

fully-dynamic URL. However, the proportion 

of fully dynamic URLs in the total traffic 

volume observed in a field trial is negligible, 

as discussed below, and they are considered 

instead an alternative to content policies when 

caching content identified by semi-dynamic 

URLs, rather then a supplement.  Content 

hash indexes cannot improve     because TC 

has to wait for the Origin’s response, and are 

less efficient in caching smaller object where 

a larger proportion of the object needs to be 

used for hash computation and therefore 

received from the Origin. We will compare 

efficiency of both approaches in the next 

section using object distribution inside traffic 

volume obtained from field trial. 

 

Cache Efficiency 

 

     We will use two characteristics when 

analyzing cache efficiency:     (1) and     –  

is the number of bytes required to compute 

hash index and    is defined in (1). 

     (  
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     Figure 1 illustrates percentage of video 

traffic excluded form caching if content hash 

indexes are used for          Bytes, (10 

IP packet, 1500 B each), 2s Smooth streaming 

and 10 sec HLS segments.   

 

Figure 1. Video traffic excluded from 

caching. 

 

     As illustrated on Figure 1 more traffic is 

excluded from caching for lower video 

bitrates, decreasing cache efficiency for 

networks with such traffic profile, for 

example, serving large number of mobile 

clients.  

     While Figure 1 illustrates theoretical 

impact of content hashing on HTTP Adaptive 

streaming, to consider practical impact on all 

Internet traffic requires introduction of object 

distribution. For simplicity of practical 

simulations we split object sizes into bands, 

and define object distribution as  

     
    

∑    
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 (7), 

where      is a percentage of objects inside  i-
th band in relation to total number of objects, 

     is a percentage of traffic inside i-th band 

in relation to total traffic volume    - number 

of objects inside i-th band,    -size of all 

objects inside i-th band and  - the number of 
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bands. Figure 2 illustrates observed object 

distribution for a large NAR ISP. 

 

 

 

Figure 2. Object distribution for Internet 

(port:80) traffic. 

 

Figure 3. Increase in cacheable traffic. 

 

     On the next step let’s consider     gains - 

      for object distribution presented in 

Figure 2. Figure 3 illustrates gains in the 

percentage of cacheable traffic for content  
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policies for each of object bands, and 

aggregated gain    across all bands factoring 

into account relative contribution of traffic 

inside each band into total the volume 

(illustrated on Figure 2).  

     When calculating aggregated gain we 

applied unified object distribution inside each 

band for simplicity.  

      {
           ̅̅ ̅̅

(     ̅̅ ̅̅⁄ )            ̅̅ ̅̅
   (8), 

where    ̅̅ ̅̅  is the average object size for i-th 

band,    is introduced in (5)    

(
 

   
)∑                  (9), 

where      is introduced in (7) and       is 

introduced in (8). 

     As illustrated by Figure 3 overall increase 

in cacheable traffic for object distribution in 

Figure 2 is 13%. The increase depends on 

object distribution and will be larger for 

bigger proportion of smaller objects. 

Figures 2 and 3 show two interesting trends. 

First, in terms of object numbers, the majority 

of objects are small, therefore any caching 

solution that can deliver small objects with 

better     and lesser latency would improve 

QoE. Policy based indexes reduce     for 

over 80% of traffic objects more then content 

hashing. Second, in terms of traffic volume, 

larger objects dominate traffic and make main 

contribution to     , however, the proportion 

of smaller objects (e.g. below 100 kB) is non-

negligible. 

     So far, we considered the gains in 

cacheable traffic by using policy indexes 

instead of content hash indexes. Let’s 

consider impact of using content hashing on 

cache hit rate    .     is a linear function of 

  , and if portion of the traffic is excluded 

from caching,    and     will linearly 

decrease as illustrated on Figure 4. The rate of 

decrease will be higher for larger potentially 

achievable cache    , therefore content hash 

indexes impact most the better performing 

caching systems. 

            (  
     

   ⁄ ) (10), 

where         cache hit rate when policy 

indexes are used,      percentage of traffic 

excluded from caching. 

     Content policies offer noticeable  

 

Figure 4. Cache hit rate  

 

decrease.improvement both in increased 

volume of cacheable traffic and in cache-hit 

rates. The improvement is dependent on the 

traffic profile inside ISP’s network. Traffic 

profile from a large NAR ISP yield 13% 

improvement in cacheable traffic and derived 

6% gains in cache hit rate. Another important 

characteristic, often overlooked when 

analyzing transparent cache efficiency, is 

caching of small objects and improved    . 

Content policies enable to improve     for 

80% of more objects, which otherwise would 

have slipped through caching using content 

hash indexes. While an argument can be made 

that content hashing can cache objects 

identifiable by fully dynamic URL, we have 

not observed traffic with fully dynamic URL 

among top 10 sites contributing over 80% of 

traffic volume in the field trial, therefore on 

their own content hashing is a weaker 

alternative to content policies. 

     Content policies can be configured to 

initially contact Origin, similar to content 

hashing, if, for example, preferred for 

operational reasons. However, content 
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policies allow initial contact with the Origin 

to be made without initiating content delivery 

by using ‘If-Modified-Since’ HTTP header, 

preserving cache efficiency. While another 

argument can be made about management of 

content policies, we observed that content 

policies are relatively static, and none of them 

needed updates after initial tuning likely due 

to fairly static format of content URLs used 

by Content Providers. Moreover, policy 

updates could be fully automated. Therefore 

both arguments do not disprove superior 

cache efficiency of content policies, or 

introduce noticeable barriers against applying 

content policies. 

 

RESILIENT DEPLOYMENTS 

 

Application of Policy Based Routing 

 

    Traditional deployment of transparent 

caching relies on using policy based routing 

(PBR) to divert all or HTTP (port:80) traffic 

to the cache. This approach places the cache 

on data path, and therefore resilience is one of 

the main considerations for MSOs. Load-

balancers and N+1 or N+N redundancy are 

typically used for resilience, although at extra 

costs and complexity. We will consider 

alternative approaches using advanced 

functions already available in IP routing. The 

approaches rely on the ability of IP routing to 

reroute traffic from failed caches using 

conditional redirects, or ability to duplicate 

traffic, letting the Origin deliver objects 

instead of a failed cache. The approaches do 

not require any modifications to the cache, for 

example, adding additional protocols or 

signaling. 

     First approach is based on using 

conditional redirects applied to policy based 

routing.  Figure 5 illustrates this approach 

together with logical modifications of a 

routing plain. 

 

 
Figure 5. Resilience based on PBR with 

conditional redirects. 

 

     Let’s consider logical modification to the 

routing plain for resilient handling of 

subscriber traffic first. A redirect policy is 

added to route traffic to the Destination IP of 

the cache if Test Condition is passed. Test 

Condition verifies cache availability, and 

most of the routers can test ICMP ping, HTTP 

GET or SNMP messages. Second, ip-filter1 is 

created incorporating redirect policy and 

filtering traffic passing Match Condition 1, for 

example, match condition ‘protocol:TCP, 

destination port:80’  would effectively 

diverting to the cache only HTTP traffic that 

it can potentially cache. Removing other 

traffic types from the cache frees cache’s 

resources for caching instead of analyzing and 

returning without caching other traffic types. 

Next, the ip-filter 1 needs to be applied to the 

router port handling traffic from subscribers.  

     Resilient handling of return traffic from the 

Internet requires similar logical steps (Figure 

5) with main differences that Match Condition 

2 = protocol:TCP, source port:80 selects 

HTTP traffic based on source port and the 

new filter needs to be applied to the router 

port handling return traffic from the Internet. 

     In case of transparent cache failure, the 

traffic is routed to the upper caching layers or 

to the Origin; therefore they would deliver 

more content until failed cache is restored. 

Field simulations in a large NAR ISP network 

showed that conditional redirects applied to 

policy based routing did not cause any 

noticeable network outage following 
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simulated cache failure, and from the user 

experience, there were no disruptions to 

unicast streaming services from Amazon and 

YouTube, no disruption in constant ping, or in 

ability to surf Web. Therefore, policy based 

routing with conditional redirects offered a 

robust and cost efficient deployment for 

transparent caching without need to introduce 

extra network functions, for example, load-

balancers or N+1/N+N redundancy.  

 

Application of Traffic Mirroring 
 

     Let us consider alternative approach to 

achieving resilience where conditional 

redirects are not available. The approach is 

based on feature of IP routing to duplicate 

traffic, or ‘port mirroring’, and requires the 

cache to intercept delivery for the content 

objects it decides to serve. The ‘port mirror’ 

approach is illustrated on Figure 6. 

 

 
Figure 6. Resilience based on traffic 

mirroring. 

 

     Logical modifications of a routing plain for 

‘port mirror’ based resilience requires creation 

of a mirror destination point connected to TC, 

a filter forwarding (Action=forward) HTTP 

traffic to and from the Internet, for example 

where ‘Match Condition 1 = protocol:TCP, 

destination port:80’  and ‘Match Condition 2 

= protocol:TCP, source port:80’, a service 

applying the filter to the ingress and egress  

Internet traffic,  and defining filtered traffic as 

a source for previously defined mirror 

destination point. 

     With ‘port mirror’ approach both TC and 

Content Origin can see object requests, and 

TC needs to take over delivery for objects it 

has in the cache. Figure 7 illustrates flow 

diagram how TC can intercept delivery of 

content objects. 

     As shown on Fig. 7, initial request is sent 

to both Origin and TC, and there is a race 

between the Origin and the cache when 

replying to the request. The cache needs to 

win the race for successful delivery, which 

can be achieved by inserting HTTP 302 

Redirect, message spoofing the Origin and 

instructing  

the client to reconnect directly to the cache (or 

it’s peer), and followed by instructions to the 

client to close current TCP connection to the 

Origin, e.g. by sending TCP FIN.  

 

Figure 7. Flow for TC intercept of object 

delivery.  

 

     A cache failure in ‘port mirror’ approach 

would not affect requests delivered to the 

Origin because the cache is no longer on the 

path and resilience is achieved natively. 

Recovery mechanism for clients with in-

progress object or video delivery during the 

cache failure is the same as in PBR approach, 

the client needs to re-establish TCP 

connection and re-request object being 

requested but not received when the cache 

failed, therefore practical testing of the user 

experience obtained for PBR mode equally 

apply. Similarly to PBR mode, in case of 

transparent cache failure, the traffic is routed 

to the upper caching layers or to the Origin.  
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     However, port mirror approach has 

drawbacks. First, some client may either not 

support HTTP 302 or being prevented by 

local security setting from following 302 off 

domain for the initial object requests. Second, 

the race condition means that if there is small 

latency between the client and the Origin the 

cache may not win all races reducing     and 

overall    .  Impact of      on     follows 

the same linear function as for applying 

content hashing and as illustrated on Figure 4. 

The main difference is that in this case traffic 

would be excluded form caching due to lost 

races with the Origin rather then due to the 

need to hash first bytes of each object. 

 

Unified Caching 

 

     The PBR with conditional redirect or port 

mirror based resilience enable MSOs to build 

robust distributed unified caching architecture 

where transparent caches are deployed close 

to network edges caching both OTT and CDN 

content, while CDN appliances are deployed 

closer to the network core. Both architectures 

provide caching resilience without relying on 

lab-balancers allowing upper-layer CDN or 

the Origin serve content requests instead of 

failed transparent caches. 

 

 
Fig. 8 Resilient unified caching. 

 

     Center the captions under each illustration 

and make the text large enough so that 

captions are easy to read.   

 

CONCLUSIONS 

 

     We considered two fundamental 

challenges for MSOs when caching 

unmanaged OTT content: cache avoidance 

and maintaining network resilience, and 

introduced two approached to deal with cache 

avoidance: content policy indexes and content 

hash indexes. Content policies show 

improvement in volume of cacheable traffic 

and in cache-hit rates and are a stronger 

alternative to content hashing. The 

improvement is dependent on traffic profile in 

an ISP network. For traffic profile observed in 

one of the NAR ISPs policy indexes yield 

13% improvement in cacheable traffic and 6% 

gains in cache hit rate. Other parameters 

affecting QoE, for example, caching of small 

objects and time to first byte are also 

discussed. Content policies enable to improve 

T_FB for 80% more of objects compared to 

content hash indexes for the traffic profile 

from the same ISP. That traffic would 

otherwise would have slipped through 

caching, and although 80% of objects do not 

translate in equal volume of cacheable traffic 

in Byte terms, it contributes to QoE 

improvement. 

Further we introduced two approaches to 

maintaining network resilience without need 

for deploying extra functions in networks like 

load-balancers. The approaches used 

advanced features readily available from 

network routing of underlying networks: PBR 

with conditional redirect and port mirror. Both 

approaches enable MSOs to build robust 

distributed unified caching architecture where 

transparent caches are deployed in distributed 

network locations. However, port mirror 

approach is restricted to client that can 

support HTTP 302 redirect or are allowed to 

follow off domain redirects, and the race 

condition may reduce P_CT and overall 

R_CH if the latency in the network is small.  
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In conclusion, using PBR with conditional 

redirect and policy based indexes enables 

MSO to benefit from a more robust unified 

caching solution for premium and OTT 

content resulting in improved cache efficiency 

and resilience, reduced latency and simplified 

operations. 
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