
AN OVERVIEW OF HTTP ADAPTIVE STREAMING PROTOCOLS FOR  

TV EVERYWHRE DELIVERY 

 

Yuval Fisher 

RGB Networks 

 

Abstract 

 

In this paper we review the advantages of 

adaptive HTTP streaming and detail its 

usefulness in delivering content on both 

managed and unmanaged networks. We 

review the differences between these 

protocols and discuss their strengths and 

weaknesses. Additionally, we’ll give a 

detailed look at the packaging and delivery 

mechanisms for TV Everywhere in which we 

explain the implications for storage, CDN 

distribution, ad insertion and overall 

architecture.   

 

INTRODUCTION 

 

The traditional television viewing 

experience has clearly changed as viewing 

video online, on a tablet or smartphone, or on 

the living room TV thanks to 

Internet-delivered content is increasingly 

commonplace. With considerable speed, 

consumers have passed the early-adopter 

phase of TV Everywhere and today an ever 

increasing number expect any program to be 

immediately available on any viewing device 

and over any network connection.  What’s 

more, they expect this content to be of the 

same high quality they experience with 

traditional television services. Regardless of 

whether this explosion of multiscreen IP 

video is a threat or an opportunity for cable 

operators and other traditional video service 

providers (VSPs), it’s clear that it’s here to 

stay. 

 

Despite advancements in core and last 

mile bandwidth in the past few years, the 

bandwidth requirement of video traffic is 

prodigious. Combining this with the reality 

that the Internet as a whole is not a managed 

quality-of-service (QoS) environment, means 

new ways to transport video must be 

employed to ensure that the high quality of 

experience (QoE) consumers enjoy with their 

managed TV delivery networks is the same as 

what they experience across all their devices 

and network connections.  

 

To address the conundrum of ensuring 

optimal quality despite the bandwidth-hungry 

nature of video and the lack of QoS controls 

in unmanaged networks, Apple, Microsoft, 

Adobe and MPEG have developed adaptive 

delivery protocols. These have been broadly 

adopted by cable operators and other VSPs, 

including traditional players and new entrants. 

The result is that networks are now equipped 

with servers that can ‘package’ high-quality 

video content from live streams or file 

sources  for transport to devices that support 

these new delivery protocols.  

 

This paper reviews the four primary 

HTTP adaptive streaming technologies: 

Apple’s HTTP Live Streaming (HLS), 

Microsoft Silverlight Smooth Streaming 

(MSS), Adobe’s HTTP Dynamic Streaming 

(HDS) and MPEG’s Dynamic Adaptive 

Streaming over HTTP (DASH).  

 

The paper is divided into three key 

sections. The first is an overview of adaptive 

HTTP streaming which reviews delivery 

architectures, describes its strengths and 

weaknesses, and examines live and 

video-on-demand (VOD) delivery.  The 

second section looks at each technology, 

details how they work and notes how each 



                     

 

technology differs from the others. The third 

and final section looks at specific features and 

describes how they are implemented or 

deployed. In particular, this last section 

focuses on:    

 

 Delivery of multiple audio channels 

 Encryption and DRM 

 Closed captions / subtitling 

 Ability to insert ads 

 Custom VOD playlists 

 Trick modes (fast-forward/rewind, 

pause) 

 Fast channel change 

 Failover due to upstream issues 

 Stream latency 

 Ability to send other data to the client, 

including manifest compression 

 

ADAPTIVE BITRATE HTTP VIDEO 

DELIVERY 

 

     In Adaptive Bitrate (ABR) HTTP 

streaming, the source video – whether a live 

stream or a file – is encoded into discrete file 

segments known as ‘fragments’ or ‘chunks.’ 

The contents of these fragment files can 

include video data, audio data or such other 

data such as subtitles, program information or 

other metadata. These data may be 

multiplexed in the file fragment or can be 

separated into distinct fragment files. The 

fragments are hosted on an HTTP server from 

which they are served to clients. A sequence 

of fragments is called a ‘profile.’ The same 

content may be represented by different 

profiles that may differ in bitrate, resolution, 

codecs or codec profile/level.  

Clients play the stream by requesting 

fragments from the HTTP server. The client 

then plays the fragments contiguously as they 

are downloaded. If the audio, video or other 

data are stored in separate fragment 

sequences, all are downloaded to form the 

video playback.   

 

The video in each fragment file is 

typically encoded as H.264, though HEVC or 

other video codecs are possible. AAC is 

generally used to encode the audio data, but 

again, other formats are also used. Fragments 

typically represent 2 to 10 seconds of video. 

The stream is broken into fragments at video 

Group of Pictures (GOP) boundaries that 

begin with an IDR frame, which is a frame 

that can be independently decoded without 

dependencies on other frames. In this way, a 

client can play a fragment from the beginning 

without any dependence on previous or 

following fragments.  

 

As the name suggests, adaptive 

delivery enables a client to ‘adapt’ to varying 

network conditions by selecting video 

fragments from profiles that are better suited 

to the conditions at that moment. Computing 

the available network bandwidth is easily 

accomplished by the client, which compares 

the download time of a fragment with its size. 

Using a list of available profile bitrates (or 

resolutions or codecs), the client can 

determine if the bandwidth available is 

sufficient for it to download fragments from a 

higher bitrate/resolution profile or if it needs 

to change to a lower bitrate/resolution profile. 

This list of available profiles is called a 

‘manifest’ or ‘playlist.’ The client can quickly 

adapt to fluctuating bandwidth – or other 

network conditions – every few seconds as it 

continually performs bandwidth calculations 

at each fragment download. Local CPU load 

and the client’s ability to play back a specific 

codec or resolution are factors – in addition to 

available bandwidth – that may affect the 

client’s choice of profile.  For example, a 

manifest file may reference a broad collection 

of profiles with a wide selection of codecs 

and resolutions, but the client will know that 



                     

 

it can only play back certain profiles and 

therefore only request fragments from those 

profiles.  

 

This model enables delivery of both 

live and on-demand-based sources. A 

manifest file is provided to the client in both 

scenarios. The manifest lists the bitrates (and 

potentially other data) of the available stream 

profiles so the client can determine how to 

download the chunks; that is, the manifests 

tells the client what URL to use to fetch 

fragments from specific profiles. In the case 

of an on-demand file request, the manifest 

contains information on every fragment in the 

content. This is not possible when it comes to 

live streaming. DASH, HLS and HDS deliver 

‘rolling window’ manifest data that contains 

references to the last few available fragments, 

as shown in Figure 1. Continual updating of 

the client’s manifest is necessary to know 

about the most recently available chunks. For 

MSS, a rolling window-type manifest isn’t 

necessary because MSS delivers information 

in each fragment that lets the client access 

subsequent fragments. 

 

 
 

Figure 1. The content delivery chain for a live adaptive 
HTTP stream. The client downloads the ‘rolling window’ 

manifest files which references the latest available chunks. 
The client uses these references to download chunks for 

sequential play back. In the figure, the first manifest refers 
to chunks 3, 4 and 5, which are available in multiple 

bitrates. The playlist is updated as new chunks become 
available to reference the latest available chunks. 

 

The advantages of adaptive HTTP 

streaming include: 

 

 Being able to utilize generic HTTP 

caches, proxies and content delivery 

networks, as are used for web traffic; 

 Content delivery is dynamically 

adapted to the weakest link in the 

end-to-end delivery chain, including 

highly varying last mile conditions; 

 Playback control functions can be 

initiated using the lowest bitrate 

fragments and then transitioned to 

higher bitrates, enabling viewers to 

enjoy fast start-up and seek times; 

 The client can control bitrate switching 

taking into account CPU load, 

available bandwidth, resolution, codec 

and other local conditions; 

 Firewalls and NAT do not hinder 

HTTP delivery. 

 

There are also a few issues with adaptive 

HTTP streaming: 

 

 The end-to-end latency of live streams 

is increased as clients must buffer a 

few fragments to ensure that their input 

buffers aren’t starved; 

 HTTP is based on TCP and TCP 

recovers well when packet loss is low, 

meaning that video playback has no 

artifacts caused by missing data. 

However, TCP can completely fail 

when packet loss rises. Because of this 

clients usually experience good quality 

playback or the playback stops entirely 

– there is no middle ground. This is as 

opposed to quality that degrades 

proportionally to the amount of packet 

loss in the delivery network. Typically 

the Internet is sufficiently reliable that 



                     

 

the benefit of completely clean video at 

low packet drop rates outweighs the 

value of some poor quality video at 

high packet drop rates (e.g. with 

UDP-based streaming). 

 

 
 

Figure 2. The components of an HTTP streaming system. 

 
Components of Video Delivery 

 

The key components in an adaptive 

HTTP streaming data flow consist of an 

encoder or transcoder, a packager (sometimes 

called a ‘segmenter’ or a ‘fragmenter’) and a 

CDN. In this section we will discuss the 

features of these components (see Figure 2) as 

related to adaptive streaming.   

 
The Encoder/Transcoder 

 
The ingestion and preparation of content 

for segmentation is the responsibility of the 

transcoder – or encoder, if the input is not 

already encoded in another format. The 

following features require support by the 

transcoder: 

 

 The transcoder must de-interlace the 

input as the output video must be in 

progressive format.  

 The video must be encoded into H.264 

(or HEVC).  

 The output video must be scaled to 

resolutions suitable for the client 

devices. 

 The different output profiles must be 

IDR-aligned so that client playback of 

the chunks created from each profile is 

continuous and smooth. 

 Audio must be transcoded into the 

AAC codec most often used by DASH, 

HLS, HDS and MSS.  

 The same encoded audio stream 

generally must be streamed on all the 

output video profiles; to avoid clicking 

artifacts during client-side profile 

changes. 

 If SCTE-35 is used for ad insertion, it 

is recommended that the transcoder 

add IDR frames at the ad insertion 

points to prepare the video for ad 

insertion. Fragment boundaries can 

then be aligned with the ad insertion 

points so that ad insertion is 

accomplished by the substitution of 

fragments, as compared to traditional 

stream splicing.  

 An excellent fault tolerance 

mechanism allows two transcoders 

ingesting the same input to create 

identically IDR-aligned output. This 

allows the creation of a redundant 

backup of encoded content so that the 

secondary transcoder can seamlessly 

backup the primary transcoder should 

it fail for any reason.   

 

Because consumers’ QoE requires 

multiple different profiles for the client to 

choose from, it is best that the encoder be able 

to output a large number of different profiles 

for each input. Deployments may use 



                     

 

anywhere from 4 to 16 different output 

profiles for each input. Naturally, the more 

profiles there are means the operator can 

support more devices and deliver a better user 

experience. The table below shows a typical 

use case for the different output profiles: 

    Width  Height  Video Bitrate  

1920 1080 5 Mbps 

1280  720  3 Mbps  

960  540  1.5 Mbps  

864  486  1.25 Mbps 

640  360  1.0 Mbps 

640  360  750 kbps  

416  240  500 kbps 

320  180  350 kbps 

320  180  150 kbps 

 

The Packager 

 

As its name implies, the packager takes 

the transcoder’s output and packages the 

video for a specific delivery protocol. Ideally, 

a packager will have the following features 

and capabilities: 

 

 Encryption – the packager should be 

able to encrypt the outgoing chunks in 

a format compatible with the delivery 

protocol.  

 Integration with third party key 

management systems – the packager 

should be able to receive encryption 

keys from a third party key 

management server that is also used to 

manage and distribute the keys to the 

clients.  

 Live and on-demand ingest – the 

packager should be capable of 

ingesting both live streams and files, 

depending on whether the workflow is 

live or on-demand.  

 Multiple delivery methods – the 

packager should support multiple ways 

to deliver the chunks, either via HTTP 

pull or by pushing the chunks using a 

network share or HTTP PUT/POST. 

 

The CDN 

 
CDNs do not need to be specialized 

for HTTP streaming nor are any special 

streaming servers required. For live delivery, 

it is ideal to set the CDN to rapidly age out 

older chunks as there is no need to keep them 

around long. A minute is usually enough, but 

the actual duration is dependent upon on the 

duration of the chunks and latency in the 

client.  

 

Note that the number of chunks can be 

very large. For example, a day’s worth of 

2-second chunks delivered in 10 different 

profiles for 100 different channels creates 43 

million files! Clearly the CDN must also be 

capable of handling a large number of files.  

 

The Client 

 

Obviously HLS is available on all iOS 

devices, but its availability on Windows 

devices is only thanks to third party products 

that are not always complete or sufficiently 

robust. Android include HLS natively, though 

not all features are well supported, for 

example stream discontinuity indications. 

MSS on a PC requires installation of a 

Silverlight runtime client. However, there are 

native Smooth Streaming clients for multiple 

devices, including iOS devices. HDS is native 

to Flash 10.1 and later releases and is also 

supported on some smart TVs and STBs. 

Adobe and Microsoft have announced that 

they will support DASH.  

 

Despite being supported by a number 

of clients on various platforms, DASH is not 

yet experiencing the widespread adoption that 



                     

 

the other protocols are. Though, it should be 

noted that some deployments of HbbTV 

utilize DASH. 

 

 

 
 

 
 

 
Figure 3. Integrated and remote segmentation of streams: 

When multiple formats are used, segmenting closer to the edge 
of the network (top) saves core bandwidth, as streams can be 
delivered once and packaged at the edge into multiple delivery 
formats. However, if the core network is susceptible to packet 

loss, segmenting at the core ensures that segments will always 
be delivered to the CDN (bottom). 

 

Workflow Architecture 

 

A flexible architecture in which the 

transcoder and packager can be separate is 

ideal. The key benefit of this approach is that 

the input video only needs to be transcoded 

once at the core, then delivered to the network 

edge where it’s packaged into multiple 

formats. Without this separation, all the final 

delivery formats must be delivered over the 

core network, unnecessarily increasing its 

bandwidth utilization. This is shown in Figure 

3.  

 

 
Additional Adaptive HTTP Streaming 

Technologies 

 

In addition to the “Big 4” there are several 

other adaptive streaming technologies, most 

notably:  

 

 EchoStar acquired Move Networks 

and has integrated Move’s technology 

into their home devices. Move played a 

major role in popularizing adaptive 

HTTP streaming and has multiple 

patents on the technology (though 

chunked streaming was used before 

Move popularized it).  

 3GPP's Adaptation HTTP Streaming 

(AHS) is part of 3GPPs rel 9 

specification (see [AHS]). And 3GPP 

rel 10 is working on a specification 

called DASH as well.   

 The Open TV Forum has developed its 

own HTTP Adaptive Streaming (HAS) 

specification (see [HAS]).  

 MPEG Dynamic Adaptive Streaming 

over HTTP (DASH) is based on 

3GPP’s AHS and the Open TV 

Forum’s HAS and is completed. It 

specifies use of either fMP4 or 

transport stream (TS) chunks and an 

XML manifest (called the media 

presentation description or MPD) that 

can behave similarly to both MSS or 

HLS. As a kind of combination of MSS 

and HLS, DASH allows for multiple 

scenarios, including separate or joined 

streaming of audio, video and data, as 

well as encryption. However, it makes 

clients complex to implement due to its 

generality, which is as much a 

drawback as an advantage. To address 

this issue, the DASH Industry Forum 

(see [DASHIF]) created the 

DASH-264 (and DASH-265) 



                     

 

specifications which make specific 

profile suggestions to create a more 

readily implementable and 

interoperable specification, focused on 

the Base Media File Format (BMFF) 

using H.264 (or H.265) and AAC 

audio. Questions about Intellectual 

Property rights may be slowing its 

adoption, but DASH-264/265 has the 

potential to become the format of 

choice in the future.  

 Though some DRM vendors still have 

their own variation of these schemes, 

none appear to have any significant 

traction.  

 

 
  

Figure 4. A comparison of HLS and MSS/HDS: The latter 
can create aggregate formats that can be distributed on a 
CDN for VOD, whereas for live video, all distribute chunks 
on the CDN. MSS allows audio and video to be aggregated 
and delivered separately, but HDS and HLS deliver these 

together. 

THE INTERNALS OF ADAPTIVE 

STREAMING  

 

Let’s now review some of the details of 

HLS, HDS, MSS and DASH. Each protocol 

has its own unique strengths and weaknesses, 

which will be reviewed in the following 

sections.  

 

Apple HTTP Live Streaming (HLS) 

 

Interestingly, Apple chose not to use 

the ISO MPEG file format (which is based on 

its own MOV file format) in its adaptive 

streaming technology, unlike Adobe and 

Microsoft. Instead, HLS takes an MPEG-2 

transport stream and segments it to a 

sequence of MPEG-2 TS files which 

encapsulate the audio and video. These 

segments are placed on any HTTP server 

along with the playlist files. The playlist (or 

index) manifest file is a text file (based on 

Winamp’s original m3u file format) with an 

m3u8 extension. Full details can be found in 

[HLS].  

 

HLS defines two types of playlist 

files: normal and variant. The normal playlist 

file lists URLs that point to chunks that 

should be played sequentially. The variant 

playlist files points to a collection of different 

normal playlist files, one for each output 

profile.  

 

Metadata is carried in the playlist files 

as comments – lines preceded by ‘#’. In the 

case of normal playlist files, this metadata 

includes a sequence number that associate 

chunks from different profiles, chunk duration 

information, a directive signaling whether 

chunks can be cached, the location of 

decryption keys, the type of stream and time 

information. In the case of a variant playlist 

the metadata includes the bitrate of the 

profile, its resolution, its codec and an ID that 

can associate different encodings of the same 

content.  

 

    Figure 5 and Figure 6 show a sample 

HLS variant playlist file and normal playlist 

file. For an HLS client to know the URLs of 

the most recently available chunks, it’s 

necessary for a playlist file corresponding to a 

live stream to be repeatedly downloaded. The 

playlist is downloaded every time a chunk is 

played, and thus, in order to minimize the 

number of these requests, Apple recommends 

a duration of 10 seconds, which is relatively 

long. However, the size of the playlist file is 



                     

 

small compared with any video content, and 

the client maintains an open TCP connection 

to the server, so that this network load is not 

significant. Shorter chunk durations can thus 

be used, so the client can more quickly adapt 

to bitrates. VOD playlists are distinguished 

from live playlists by the #EXT-X-PLAYLIST-TYPE 

and #EXT-X-ENDLIST tags. 

 
#EXTM3U 

#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=531475 

mystic_S1/mnf.m3u8 

#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=381481 

mystic_S2/mnf.m3u8 

#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=531461 

mystic_S3/mnf.m3u8 

#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=781452 

mystic_S4/mnf.m3u8 

#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=1031452 

mystic_S5/mnf.m3u8 

#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=1281452 

mystic_S6/mnf.m3u8 

#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=1531464 

mystic_S7/mnf.m3u8 

#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=3031464 

mystic_S8/mnf.m3u8 

 
Figure 5. An HLS variant playlist file showing eight output 

profiles with different bitrates. The URLs for the m3u8 files are 
relative, but could include the leading ‘http://…’. In this 

example, each profile’s playlist is in a separate path component 

of the URL. 

Only the HLS protocol does not 

require chunks to start with IDR frames. It 

can download chunks from two profiles and 

switch the decoder between profiles on an 

IDR frame that occurs in the middle of a 

chunk. The downside to this is the 

requirement for extra bandwidth as two 

chunks corresponding to the same portion of 

video are downloaded simultaneously.  

 

HLS Considerations 

 

The advantages of HLS include: 

 It is a simple protocol and is easily 

modified. The playlists can be easily 

accessed and their text format makes 

modification for applications such a 

re-broadcast or ad insertion simple.  

 The use of TS files means that there is 

a rich ecosystem for testing and 

verifying file conformance.  

 TS files can carry SCTE 35 cues, ID3 

tags (see [HLSID3]) or other such 

metadata.  

 Monetizing HLS is more easily 

accomplished as it’s native to popular 

iOS devices, the users of which are 

accustomed to paying for apps and 

other services.  

 
#EXTM3U 

#EXT-X-KEY:METHOD=NONE 

#EXT-X-TARGETDURATION:10 

#EXT-X-MEDIA-SEQUENCE:494 

 

#EXT-X-KEY:METHOD=NONE 

#EXTINF:10,505.ts 

505.ts 

#EXTINF:10,506.ts 

506.ts 

#EXTINF:10,507.ts 

507.ts 

 
Figure 6. An HLS playlist file from a live stream showing 

the three latest available TS chunks. The 
#EXT-X-MEDIA-SEQUENCE:494 is used by the client to keep 

track of where it is in the linear playback. The fragment 
name carries no streaming-specific information. The 

#EXT-X-TARGETDURATION:10 tag is the expected duration 
(10 seconds) of the chunks, though durations can vary. 

The #EXT-X-KEY:METHOD=NONE tag shows that no 
encryption was used in this sequence. The #EXTINF:10 tags 

show the duration of each segment. As in the variant 
playlist file, the URLs are relative to the base URL used to 

fetch the playlist. 

The disadvantages of HLS include: 

 HLS is not supported natively on 

Windows OS platforms.  

 Apple’s aggregate format stores all the 

fragments in one TS file and uses 

byte-range URL requests to pull out 

the fragment data. Unfortunately 

CDNs are sometimes unable to cache 

based on such requests, which limits 

the usefulness of this aggregation 

format. Without an aggregation 

format, HLS must store each fragment 

as a separate file, so that many files 

must be created. For example, a day’s 

worth of programming for a single 

channel requires almost 70,000 files, 



                     

 

assuming eight profiles with 10-second 

chunk duration. Clearly the managing 

of such a large collection of files is not 

convenient. 

 HLS is an ecosystem in which different 

iOS clients have different capabilities, 

and this limits the value of the later 

improvements to HLS.  This because 

HLS has evolved from requiring 

fragments that mux audio and video to 

allowing separate fragments (as well as 

other developing features).    

 

Microsoft’s Silverlight Smooth Streaming 

(MSS) 

 

Silverlight Smooth Streaming delivers 

streams as a sequence of ISO MPEG-4 files 

(see [MSS] and [MP4]). Usually these are 

pushed by an encoder to a Microsoft IIS 

server (using HTTP POST), which aggregates 

them for each profile into an ‘ismv’ file for 

video and an ‘isma’ file for audio. The IIS 

server also creates an XML manifest file that 

contains information about the bitrates and 

resolutions of the available profiles (see 

Figure 7). When the request for the manifest 

comes from a Microsoft IIS server, it has a 

specific format:  

 
http://{serverName}/{PublishingPointPath}/{Pub

lishingPointName}.isml/manifest 

 

The PublishingPointPath and PublishingPoint 

Name are derived from the IIS configuration.  

 

In MSS, the manifest files contain 

information that allows the client to create a 

RESTful URL request based on timing 

information in the stream, which differs from 

HLS in which URLs are given explicitly in 

the playlist. For live streaming, the client 

computes the URLs for the chunks in each 

profile directly, rather than repeatedly 

downloading a manifest. The segments are 

extracted from the ismv and isma files and 

served as ‘fragmented’ ISO MPEG-4 (fMP4) 

files. MSS (optionally) separates the audio 

and video into separate chunks and combines 

them in the player.  

 
<SmoothStreamingMedia MajorVersion="2" 

MinorVersion="0" TimeScale="10000000" Duration="0" 

LookAheadFragmentCount="2" IsLive="TRUE" 

DVRWindowLength="300000000"> 

<StreamIndex Type="video" QualityLevels="3" 

TimeScale="10000000" Name="video" Chunks="14" 

Url="QualityLevels({bitrate})/Fragments(vide

o={start time})" MaxWidth="1280" 

MaxHeight="720" DisplayWidth="1280" 

DisplayHeight="720"> 

<QualityLevel Index="0" Bitrate="350000" 

CodecPrivateData="00000001274D401F9A6282833F

3E022000007D20001D4C12800000000128EE3880" 

MaxWidth="320" MaxHeight="180" FourCC="H264" 

NALUnitLengthField="4"/> 

<QualityLevel Index="1" Bitrate="500000" 

CodecPrivateData="00000001274D401F9A628343F6

022000007D20001D4C12800000000128EE3880" 

MaxWidth="416" MaxHeight="240" FourCC="H264" 

NALUnitLengthField="4"/> 

<QualityLevel Index="2" Bitrate="750000" 

CodecPrivateData="00000001274D401F9A6281405F

F2E022000007D20001D4C1280000000128EE3880" 

MaxWidth="640" MaxHeight="360" FourCC="H264" 

NALUnitLengthField="4"/> 

<c t="2489409751000"/> 

<c t="2489431105667"/> 

<c t="2489452460333"/> 

<c t="2489473815000"/> 

<c t="2489495169667"/> 

<c t="2489516524333"/> 

<c t="2489537879000"/> 

<c t="2489559233667"/> 

<c t="2489580588333" d="21354667"/> 

</StreamIndex> 

<StreamIndex Type="audio" QualityLevels="2" 

TimeScale="10000000" Language="eng" 

Name="audio_eng" Chunks="14" 

Url="QualityLevels({bitrate})/Fragments(audi

o_eng={start time})"> 

<QualityLevel Index="0" Bitrate="31466" 

CodecPrivateData="1190" SamplingRate="48000" 

Channels="2" BitsPerSample="16" 

PacketSize="4" AudioTag="255" FourCC="AACL"/> 

<QualityLevel Index="1" Bitrate="31469" 

CodecPrivateData="1190" SamplingRate="48000" 

Channels="2" BitsPerSample="16" 

PacketSize="4" AudioTag="255" FourCC="AACL"/> 

<c t="2489408295778"/> 

<c t="2489429629111"/> 

<c t="2489450962444"/> 

<c t="2489472295778"/> 

<c t="2489493629111"/> 

<c t="2489514962444"/> 

<c t="2489536295778"/> 

<c t="2489557629111"/> 

<c t="2489578962444" d="21333334"/> 

</StreamIndex> 

</SmoothStreamingMedia> 

 

Figure 7. A sample MSS manifest file. The elements with 
‘t=”248…”’ specify the time stamps of chunks that the server  
has and is ready to deliver. These are converted to Fragment 

timestamps in the URL requesting an fMP4 chunk. The 
returned chunk holds time stamps of the next chunk or two 
(in its UUID box), so that the client can continue fetching 

chunks without requesting a new manifest. 

The URLs below show typical requests 



                     

 

for video and audio. The QualityLevel 

indicates the profile and the video= and 

audio-eng= indicate the specific chunk 

requested. The Fragments portion of the 

request is given using a time stamp (in 

hundred nanosecond units) that the IIS server 

uses to extract the correct chunk from the 

aggregate MP4 audio and/or video files.  

 
http://sourcehost/local/2/mysticSmooth.isml/Qu

alityLevels(350000)/Fragments(video=2489452460333) 

http://sourcehost/local/2/mysticSmooth.isml/Qu

alityLevels(31466)/Fragments(audio-eng=2489450962444) 

 

In the VOD case, the manifest files 

contain timing and sequence information for 

all the chunks in the content. The player uses 

this information to create the URL requests 

for the audio and video chunks.  

 

It is important to recognize that the use 

of IIS as the source of the manifest and fMP4 

files doesn’t prohibit using standard HTTP 

servers in the CDN. The CDN can still cache 

and deliver the manifest and chunks as it 

would any other files. More information 

about MSS can be found at Microsoft (see 

[SSTO]) and various excellent blogs of the 

developers of the technology (see 

[SSBLOG]).  

 

MSS Considerations 

 

The advantages of MSS include: 

 IIS creates an aggregate format for the 

stream, so that a small number of files 

can hold all the information for the 

complete smooth stream.   

 IIS has useful analysis and logging 

tools, as well as the ability to deliver 

more MSS and HLS content directly 

from the IIS server. 

 Rapid adaptation during HTTP stream 

playback is achieved when the 

recommended use of a small chunk 

size is followed. The delivery of 

different audio tracks requires only a 

manifest file change due to video and 

audio files being segregated.   

 The aggregate file format supports 

multiple data tracks that can be used to 

store metadata about ad insertion, 

subtitling, etc.  

The disadvantages of MSS include: 

 The network is data flow is slightly 

more complex and an extra point of 

failure is added due to need to place an 

IIS server in the flow.  

 On PCs, MSS requires installation of a 

separate Silverlight plug-in. 

 
<manifest> 

<id>USP</id> 

<startTime>2006-07-24T07:15:00+01:00</startT

ime> 

<duration>0</duration> 

<mimeType>video/mp4</mimeType> 

<streamType>live</streamType> 

<deliveryType>streaming</deliveryType> 

<bootstrapInfo profile="named" 

url="mysticHDS.bootstrap"/> 

<media 

url="mysticHDS-audio_eng=31492-video=3000000

-" bitrate="3031" width="1280" height="720"/> 

<media 

url="mysticHDS-audio_eng=31492-video=1500000

-" bitrate="1531" width="960" height="540"/> 

<media 

url="mysticHDS-audio_eng=31492-video=1250000

-" bitrate="1281" width="864" height="486"/> 

<media 

url="mysticHDS-audio_eng=31492-video=1000000

-" bitrate="1031" width="640" height="360"/> 

<media 

url="mysticHDS-audio_eng=31492-video=750000-

" bitrate="781" width="640" height="360"/> 

<media 

url="mysticHDS-audio_eng=31492-video=500000-

" bitrate="531" width="416" height="240"/> 

<media 

url="mysticHDS-audio_eng=31469-video=350000-

" bitrate="381" width="320" height="180"/> 

</manifest> 

 

Figure 8. A sample HDS manifest file. 

Adobe HTTP Dynamic Streaming (HDS) 

 

Adobe HDS uses elements of both HLS 

and MSS as it was defined after them (see 

[HDS]). In HDS, an XML manifest file (of 

file type f4m) contains information about the 

available profiles (see Figure 8 and [F4M]). 

Like HLS, the HDS client repeatedly 

 



                     

 

downloads data that allows it to know the 

URLs of the available chunks -- in HDS this 

is called the bootstrap information. This 

bootstrap information isn’t human-readable as 

it is in a binary format. As in MSS, segments 

are encoded as fragmented MP4 files 

containing audio and video information in a 

single file. HDS chunk requests have the 

form: 

 
http://server_and_path/QualityModifierSeg’segm

ent_number’–Frag’fragment_number’ 

 

where the segment and fragment number 

together define a specific chunk. As in MSS,  

an aggregate (f4f) file format is used to store 

all the chunks and extract them when 

requested.  

 

HDS Considerations 

 

The advantages of HDS include: 

 The Flash client is available on 

multiple devices and is installed on 

almost every PC worldwide.  

 HDS is a part of Flash and can make 

use of Flash’s environment and readily 

available developer base. 

The disadvantages of HDS are: 

 HDS is relatively new and could suffer 

more from stability issues than its more 

mature counterparts.  

 Deploying a stable ecosystem is 

difficult due to Adobe’s Flash rapidly 

changing access roadmap. 

 The ecosystem of partners offering 

compatible solutions is limited due to 

the binary format of the bootstrap file. 

Dynamic Adaptive HTTP Streaming 

(DASH) 

 
     DASH is the most feature complete 

and complex of all the protocols, as it 

incorporates many features similar to 

those in HLS and MSS. It can make use of 

both TS fragments and fMP4 fragments, 

and it supports both repeated manifest 

downloads or URLs derivable from a 

template. Like MSS and HDS, the DASH 

manifest, or MPD, uses an XML format. 

Figure 9 shows a sample DASH MPD.  

<?xml version="1.0" encoding="utf-8"?> 

<MPD 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns="urn:mpeg:DASH:schema:MPD:2011" 

xsi:schemaLocation="urn:mpeg:DASH:schema:MPD:2011" 

type="static" 

mediaPresentationDuration="PT12M34.041388S" 

minBufferTime="PT10S" 

profiles="urn:mpeg:dash:profile:isoff-live:2011"> 

<Period> 

<AdaptationSet mimeType="audio/mp4" 

 segmentAlignment="0" lang="eng"> 

 <SegmentTemplate timescale="10000000" 

media="audio_eng=$Bandwidth$-$Time$.dash" 

     initialisation=" audio_eng=$Bandwidth$.dash"> 

 <SegmentTimeline> 

   <S t="667333" d="39473889" /> 

   <S t="40141222" d="40170555" /> 

   ... 

   <S t="7527647777" d="12766111" /> 

  </SegmentTimeline> 

 </SegmentTemplate> 

<Representation id="audio_eng=96000" bandwidth="96000" 

codecs="mp4a.40.2" audioSamplingRate="44100" /> 

</AdaptationSet> 

  <AdaptationSet mimeType="video/mp4" 

segmentAlignment="true" startWithSAP="1" 

lang="eng"> 

   <SegmentTemplate timescale="10000000" 

      media="video=$Bandwidth$-$Time$.dash" 

      initialisation="video=$Bandwidth$.dash"> 

   <SegmentTimeline> 

      <S t="0" d="40040000" r="187" /> 

      <S t="7527520000" d="11678333" /> 

   </SegmentTimeline> 

  </SegmentTemplate> 

<Representation id="video=299000" bandwidth="299000" 

codecs="avc1.42C00D" width="320" height="180" /> 

<Representation id="video=480000" bandwidth="480000" 

codecs="avc1.4D401F" width="512" height="288" /> 

<Representation id="video=4300000" bandwidth="4300000" 

codecs="avc1.640028" width="1280" height="720" /> 

</AdaptationSet> 

</Period> 

</MPD> 

 

Figure 9. A sample DASH MPD. 

DASH Considerations 
 
   The advantages of DASH include: 

 It is based on an open standard.  

 The DASH-264 specification has 

strong industry support which bodes 

well for solid interoperability. 



                     

 

The disadvantages of DASH include: 

 It’s all-encompassing, so different 

DASH implementations will most 

likely be incompatible unless they 

focus on exactly the same specification 

profiles.  

 The Intellectual Property (IP) rights 

associated with DASH are not 

completely clear. Normally, the 

holders of essential patents have (for 

the most part) participated in the 

MPEG process for other standards – 

leading to so-called reasonable and 

non-discriminatory (RAND) licensing 

terms for the IP associated with the 

specification. In the case of DASH, the 

picture is more murky. 

 

COMPARING FEATURES  

 

Let’s now compare the usability of 

DASH, HLS, HDS and MSS usability in 

several common usage scenarios.  

 

Delivering Multiple Audio Channels 

 

HLS is now equal to MSS in its ability 

to deliver audio and video separately and 

easily, which is thanks to the release of iOS5 

which added the ability to deliver audio 

separately. Delivering audio separately is, of 

course, important in locales where multiple 

languages are used and only one is to be 

consumed. HDS is still primarily used with 

audio and video muxed together in the 

fragments. DASH can flexibly separate video 

and audio.  

 

Encryption and DRM 

 

HLS supports encryption of each TS 

file, meaning that all of the data contained in 

the TS file is encrypted and cannot be 

extracted without the decryption keys. All 

metadata related to the stream (e.g. the 

location of the decryption keys) must be 

included in the playlist file. While functioning 

well, HLS does not specify a mechanism for 

authenticating clients to receive the 

decryption keys. This is considered a 

deployment issue. Several vendors offer 

HLS-type encryption, generally with their 

own twist which makes the final deployment 

incompatible with other implementations.  

 

Microsoft’s PlayReady is used by 

MSS to provide a complete framework for 

encrypting content, managing keys and 

delivering them to clients.  Because 

PlayReady only encrypts the payload of the 

fragment file, the chunk can carry other 

metadata. Microsoft makes PlayReady code 

available to multiple vendors that productize 

it, and so a number of vendors offer 

PlayReady capability (in a relatively 

undifferentiated way).  

 

HDS uses Adobe’s Access, which has 

an interesting twist that simplifies interaction 

between the key management server and the 

scrambler that does the encryption. Typically, 

keys must be exchanged between these two 

components, and this exchange interface is 

not standardized. Each pair of DRM and 

scrambler vendors must implement this 

pair-wise proprietary API. With Adobe 

Access however, key exchanges are not 

necessary as the decryption keys are sent 

along with the content and are encrypted 

themselves. Access to those keys is granted at 

run time, but no interaction between the key 

management system and scrambler is needed.  

 

DASH allows DRM systems to share 

keys, encryption algorithm and other 

parameters via its support for the so-called 

common encryption format. This enables the 

same content to be managed by different 



                     

 

clients and DRM systems which implement 

key distribution and other rights management. 

This represents a major achievement in the 

breaking up the traditional DRM vendor 

model, which locks-in users by making 

content playable only by clients associated 

with a specific vendor’s encryption.  

 

Closed Captions / Subtitling 

 

As of iOS 4.3, HLS can decode and 

display closed captions (using ATSC Digital 

Television Standard Part 4 – MPEG-2 Video 

System Characteristics - A/53, Part 4:2007, 

see [ATCA]) included in the TS chunks. For 

DVB teletext, packagers must convert the 

subtitle data into ATSC format or wait for 

clients to support teletext data. HLS also 

supports WebVTT, which holds subtitles in a 

separate file.  

 

MSS supports data tracks that hold 

Time Text Markup Language (TTML), a way 

to specify a separate data stream with subtitle, 

timing and placement information (see 

[TTML]). For MSS, packagers need to extract 

subtitle information from their input and 

convert it into a TTML track. Microsoft’s 

implementation of MSS client currently offers 

support for W3C TTML, but not for SMPTE 

TTML (see [SMPTE-TT]), which adds 

support for bitmapped subtitles, commonly 

used in Europe.   

 

HDS supports data tracks that hold 

subtitles as DFXP file data or as TTML. In a 

manner similar to MSS, HDS clients can 

selectively download this data.  

 

Though the DASH specification 

supports various forms of subtitling, client 

support is inconsistent.  

 

Of the many things the formats have in 

common, it’s worth noting that none support 

DVB image subtitles particularly well. HLS 

can support these using ID3 signaling and 

proprietary Javascript wrapped around the 

client. The other formats can also “support” 

this using proprietary clients as well.  

 
Targeted Ad insertion 

 

HLS is the simplest protocol for 

chunk-substitution-based ad insertion. With 

HLS, the playlist file can be modified to 

deliver different ad chunks to different clients 

(see Figure 10). The EXT-X-DISCONTINUITY tag 

can tell the decoder to reset (e.g. because 

subsequent chunks may have different PID 

values), and only the sequence ID must be 

managed carefully, so that the IDs line up 

when returning to the main program. HDS 

also supports the repeated downloading of 

bootstrap data used to specify chunks, and 

this can be modified to create references to ad 

chunks.  However, because the bootstrap 

data format is binary, and the URLs are 

RESTful with references to chunk indexes, 

the process is complex.  

 

 

 

 
 

Figure 10. HLS ad insertion in which changes to the playlist file 
delivered to each client cause each client to make different 
URL requests for ads and thus receive targeted ad content. 

Chunk-based ad insertion for live 

streams is more complicated with MSS. 

Because fragments contain timing 

information used to request the next fragment, 

all ad fragments must have identical timing to 

the main content chunks. Regardless, a proxy 



                     

 

can redirect RESTful URL fragment requests 

and serve different fragments to different 

clients.  

 

MSS and HDS can both deliver 

control events in separate data tracks. These 

can trigger client behaviors using the 

Silverlight and Flash environments, including 

ad insertion behavior. However, this is 

beyond the scope of this paper, which is 

focused on ‘in stream’ insertion. 

 
 

A particularly nice feature in DASH allows it 

to switch from template-based URLs to 

repeated download of the manifest. The 

advantage is that the network program can be 

delivered using templated URLs which stop 

and switch to downloaded manifests for the 

targeted ads.  

 

nDVR Mezzanine Format 

 

HLS is clearly the winner when it 

comes to the stream-to-file capture of 

adaptive bitrate formats. It captures and 

recombines fragments much more easily than 

possible with MSS or HDS. DASH can do the 

same, in its TS file profile, but not so readily 

in DASH-264.  

 

Trick Modes (Fast-forward / Rewind) 

  
None of the protocols implement 

VOD trick modes, such as fast-forward or 

rewind, well at all. HLS, DASH and HDS 

offer support for fast-forward and rewind in 

the protocols, but actual client 

implementations are non-existent. MSS 

defines zoetrope images that can be 

embedded in a separate track. These can be 

used to show still images from the video 

sequence and allow viewers to seek a specific 

location in the video.  

 

 

Custom VOD Playlists 

 

Being able to take content from 

multiple different assets and stitch them 

together to form one asset is particularly 

convenient. This is readily done in HLS and 

DASH, where the playlist can contain URLs 

that reference chunks from different 

encodings and locations. Unfortunately for 

MSS and HDS, constructing such playlists is 

basically impossible because of the RESTful 

URL name spaces and the references to 

chunks via time stamp or sequence number.  

 

Fast Channel Change 

 

Adaptive HTTP streaming can 

download low bitrate fragments initially, 

making channel ‘tune in’ times fast. The 

duration of the fragment directly affects how 

fast the channel adapts to a higher bandwidth 

(and higher quality video). This is an 

advantage for DASH, MSS and HDS, which 

are tuned to work with smaller fragments, and 

which tend to work a bit better than HLS.  

 

Failover Due to Upstream Issues 

 

To counter situations in which content 

is not available, HLS manifests can list 

failover URLs. The mechanism used in the 

variant playlist file to specify different 

profiles can specify failover servers, since the 

client (starting with iOS 3.1 and later) will 

attempt to change to the next profile when a 

profile chunk request returns an HTTP 404 

‘file not found’ code. This is a convenient, 

distributed redundancy mode.  

 

MSS utilizes a fully programmable 

run-time client. Similarly, HDS works within 

the Flash run-time environment. This means 

that the same failover capabilities can be built 

into the client. Despite this, neither protocol 

has a built-in mechanism supporting a generic 

failover capability.   



                     

 

Each protocol will failover to a 

different profile if chunks/playlists in a given 

profile are not available. Potentially, this 

could enable any of the protocols to be used 

in a “striping” scenario in which alternate 

profiles come from different encoders (as 

long as the encoders output IDR aligned 

streams), so that an encoder failure causes the 

client to adapt to a different, available profile.  

 

Stream Latency 

 

Adaptive HTTP clients buffer a 

number of segments. Typically one segment 

is currently playing, one is cached and a third 

is being downloaded. This is done to ensure 

that the end-to-end latency is minimally about 

three segment durations long. With HLS 

recommended to run with 10-second chunks 

(though this isn’t necessary), this latency can 

be quite long.  

 

MSS is the sole protocol with a low 

latency mode in which sub-chunks are 

delivered to the client as soon as they are 

available. The client doesn’t need to wait for 

a whole chunk’s worth of stream to be 

available at the packager before requesting it, 

reducing its overall end-to-end latency.  

 

 

 

Sending Other Data to the Client (Including 

Manifest Compression) 

 

HLS, DASH and HDS use playlist and 

manifest files to send metadata to their 

clients. MSS and HDS allow data tracks 

which can trigger client events and contain 

almost any kind of data. HLS allows a 

separate ID3 data track to be muxed into the 

TS chunks. This can be used to trigger 

client-side events.  

 

MSS and HLS also allow manifest files to 

be compressed using gzip (as well as internal 

run-length-type compression constructs) for 

faster delivery.  

 

CONCLUSION 
 

A snapshot of how these four formats 

compare is shown in the table below.  

 

 
 

Though DASH appears strong, in reality 

its dearth of widely adopted and feature-rich 

clients makes it look better on paper than 

reality – notwithstanding the use of DASH by 

Netflix. Quite understandably, HLS benefits 

greatly from the ubiquity of iPads and 

iPhones, and it is the protocol most 

commonly used by video service providers. 

Smooth Streaming benefits from the success 

of the Xbox and the strong brand awareness 

around Microsoft’s PlayReady DRM, which 

content owners are comfortable with. 

Regionally, it has slightly stronger support in 

Europe, versus the Americas. HDS benefits 

from the ubiquity of Flash on PCs and 

laptops, though this does make it the most 

susceptible to declining usage trends. 

However, HDS benefits from Adobe Access’s 

respected DRM, and Adobe’s commitment to 

focus on DRM and clients across multiple 

platforms. The conclusion is that at this time, 

no single format is poised to strongly 

dominate (and no format shows signs of 

near-term death). An operator’s final decision 

must be based on the client devices served, 

DRM requirements inherited from content 

owners, and lastly the underlying services 



                     

 

delivered to customers. For services that 

include ad insertion, nDVR and linear TV to 

iPads, for example, the choice is easy. For 

other combinations, the decisions are more 

subtle.  

 
 

REFERENCES 

  

[HLS] HTTP Live Streaming, R. Pantos, 

http://tools.ietf.org/html/draft-pantos-http-live

-streaming-06 
 

[HLS1] HTTP Live Streaming, 

http://developer.apple.com/library/ios/#document

ation/NetworkingInternet/Conceptual/HTTPLiveS

treaming/_index.html 

 

[MP4] International Organization for 

Standardization (2003). "MPEG-4 Part 14: MP4 

file format; ISO/IEC 14496-14:2003" 

 

[SSBLOG] http://blog.johndeutscher.com/, 

http://blogs.iis.net/samzhang/ , 

http://alexzambelli.com/blog/, 

http://blogs.iis.net/jboch/ 

 

[SSTO] Smooth Streaming Technical Overview, 

http://learn.iis.net/page.aspx/626/smooth-streamin

g-technical-overview/ 

 

[ATCA] ATSC Digital Television Standard Part 4 

– MPEG-2 Video System Characteristics (A/53, 

Part 4:2007), 

http://www.atsc.org/cms/standards/a53/a_53-Part-

4-2009.pdf 

 

[TTML] Timed Text Markup Language, W3C 

Recommendation 18 November 2010, 

http://www.w3.org/TR/ttaf1-dfxp/ 

 

[SMPTE-TT] SMPTE Time Text format, 

https://www.smpte.org/sites/default/files/st2052-1

-2010.pdf 

 

[MSS] IIS Smooth Streaming Transport Protocol, 

http://www.iis.net/community/files/media/smooth

specs/%5BMS-SMTH%5D.pdf 

 

[F4M] Flash Media Manifest File Format 

Specification, 

http://osmf.org/dev/osmf/specpdfs/FlashMediaMa

nifestFileFormatSpecification.pdf 

 

[HDS] HTTP Dynamic Streaming on the Adobe 

Flash Platform, 

http://www.adobe.com/products/httpdynamicstrea

ming/pdfs/httpdynamicstreaming_wp_ue.pdf 

 

[AHS] 3GPP TS 26.234: "Transparent end-to-end 

packet switched streaming service (PSS); 

Protocols and codecs". 

 

[HAS] OIPF Release 2 Specification - HTTP 

Adaptive Streaming 

http://www.openiptvforum.org/docs/Release2/OIP

F-T1-R2-Specification-Volume-2a-HTTP-Adapti

ve-Streaming-V2_0-2010-09-07.pdf 

 

[HLSID3] Timed Metadata for HTTP Live 

Streaming,  

http://developer.apple.com/library/ios/#docu

mentation/AudioVideo/Conceptual/HTTP_Li

ve_Streaming_Metadata_Spec/Introduction/In

troduction.html 
 

[DVB-BITMAPS] Digital Video Broadcasting 

(DVB); Subtitling systems, ETSI EN 300 743 

V1.3.1 (2006-11), 

http://www.etsi.org/deliver/etsi_en/300700_30079

9/300743/01.03.01_60/en_300743v010301p.pdf 

 

[DASHIF] DASH Industry Forum, 

http://dashif.org/ 

 

 

http://tools.ietf.org/html/draft-pantos-http-live-streaming-06
http://tools.ietf.org/html/draft-pantos-http-live-streaming-06
http://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/HTTPLiveStreaming/_index.html
http://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/HTTPLiveStreaming/_index.html
http://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/HTTPLiveStreaming/_index.html
http://blog.johndeutscher.com/
http://blogs.iis.net/samzhang/
http://alexzambelli.com/blog/
http://blogs.iis.net/jboch/
http://learn.iis.net/page.aspx/626/smooth-streaming-technical-overview/
http://learn.iis.net/page.aspx/626/smooth-streaming-technical-overview/
http://www.atsc.org/cms/standards/a53/a_53-Part-4-2009.pdf
http://www.atsc.org/cms/standards/a53/a_53-Part-4-2009.pdf
http://www.w3.org/TR/ttaf1-dfxp/
http://www.iis.net/community/files/media/smoothspecs/%5BMS-SMTH%5D.pdf
http://www.iis.net/community/files/media/smoothspecs/%5BMS-SMTH%5D.pdf
http://osmf.org/dev/osmf/specpdfs/FlashMediaManifestFileFormatSpecification.pdf
http://osmf.org/dev/osmf/specpdfs/FlashMediaManifestFileFormatSpecification.pdf
http://www.adobe.com/products/httpdynamicstreaming/pdfs/httpdynamicstreaming_wp_ue.pdf
http://www.adobe.com/products/httpdynamicstreaming/pdfs/httpdynamicstreaming_wp_ue.pdf
http://www.openiptvforum.org/docs/Release2/OIPF-T1-R2-Specification-Volume-2a-HTTP-Adaptive-Streaming-V2_0-2010-09-07.pdf
http://www.openiptvforum.org/docs/Release2/OIPF-T1-R2-Specification-Volume-2a-HTTP-Adaptive-Streaming-V2_0-2010-09-07.pdf
http://www.openiptvforum.org/docs/Release2/OIPF-T1-R2-Specification-Volume-2a-HTTP-Adaptive-Streaming-V2_0-2010-09-07.pdf
http://developer.apple.com/library/ios/#documentation/AudioVideo/Conceptual/HTTP_Live_Streaming_Metadata_Spec/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/AudioVideo/Conceptual/HTTP_Live_Streaming_Metadata_Spec/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/AudioVideo/Conceptual/HTTP_Live_Streaming_Metadata_Spec/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/AudioVideo/Conceptual/HTTP_Live_Streaming_Metadata_Spec/Introduction/Introduction.html
http://www.etsi.org/deliver/etsi_en/300700_300799/300743/01.03.01_60/en_300743v010301p.pdf
http://www.etsi.org/deliver/etsi_en/300700_300799/300743/01.03.01_60/en_300743v010301p.pdf
http://dashif.org/

