
SOFTWARE DEFINED NETWORKING AND CLOUD –
ENABLING GREATER FLEXIBILITY FOR CABLE OPERATORS

 David Lively
 Cisco

 Abstract

 Software-defined networking (SDN)
promises tremendous flexibility for operators,
especially as their application environments
become more dynamic with cloud computing.
As more content is becoming available to
consumers via IP every day – from sources
both internal and external – managing traffic
flows for content and for the associated
bandwidth across both the regional network is
becoming more critical. Gaining real-time
access to network analytics allows the
network to optimize routing when connecting
clients to content. This paper focuses on the
content delivery use case, and discusses how
cloud computing and SDN can work
independently and together to deliver the
highest quality experience to their customers.

CLOUD AND SDN – DIFFERENT BUT
THE SAME

 Cloud computing has delivered
tremendous flexibility for application
developers. The general definition of “cloud”
is resources, abstracted from the physical
hardware, delivered elastically and on
demand. Because of this abstraction,
applications can be deployed and scaled
without the need to physically configure and
deploy new hardware. Initially, this
flexibility was primarily under the control of
the administrators, and presented to users
through portals to request services.
Traditional and legacy applications could
benefit from this newer, more flexible
deployment model, but the real breakthroughs
started to come when new applications were
developed to call APIs exposed by the cloud
platform directly. Subsequently, intelligence

was written into the application itself to call
APIs from the cloud platform to allocate
additional resources when the application
needed, and to turn them off when they were
no longer needed. The cloud model initially
applied mostly to compute, with the virtual
machine, but has since expanded to include
network and multiple different storage models
(object storage, volume storage, etc.), as well
as higher level services such as database
services and security. These services further
abstract the physical infrastructure beyond
compute and storage to services that the
application can directly use.

 This model of higher layer services
abstracted from the physical infrastructure
starts to more closely resemble software-
defined networking. Constructs have existed
in networking for some time to allow a single
physical router or switch to be segmented into
multiple virtual and logical routers or
switches – VLANs, VRFs, etc. SDN takes
this concept one step further by providing the
ability to define and request resources across a
larger scope of the network. As applications
became decoupled from the physical
infrastructure and were able to move, grow,

and contract as needed, the network
connectivity between them needed to move,
grow, and contract accordingly, and
automatically, with the application. A heavily
virtualized application world, coupled with
increasingly mobile users, means that we
don’t know when the network flows are going
to come in or where they’re going to come
from. Leveraging business intelligence to
help drive network behavior through SDN can
help the network deliver the flexibility and
adaptability to handle these new dynamic
flows.

GAINING THE MOST FROM SDN WITH

BETTER NETWORK INTELLIGENCE

 Consumer devices are accessing content
from the network from both fixed and mobile
locations. As fixed and wireless broadband
speeds increase, this increase in the number
and range of devices, along with the average
bandwidth of the content flows, is having a
dramatic affect on the network and its
available bandwidth. Software-defined
network can potentially help optimize flows
on the network, but only if the SDN controller
has access to information about the state of
the network. Traditionally, this data has been
collected by the network and stored for later
analysis, with access to information delayed
on the order of minutes, or even hours / days
depending on the analysis being done. While
access to historical data can be tremendously
beneficial for future network planning, the
ability to analyze the data in real time and
make decisions on that analysis can have a
dramatic affect on the performance of
bandwidth or delay-sensitive applications
such as video. For example, many operators
are using caching techniques with CDNs to
minimize the impact of the increasing content
streaming on their networks, but as more and
more users are accessing content from a
greater range of locations, network
intelligence can be used to further optimize
those requests.

POTENTIAL SDN USE CASE –
OPTIMIZED REQUEST ROUTING IN

DYNAMIC CDNS

 Routing content requests to the cache that
optimizes the end-user’s experience while at
the same time minimizing the impact on the
network requires consideration of multiple
factors from the physical layers of the
network up through to the application layer.
In addition to determining which caches have
available capacity for handling incoming
requests, the state of the network can be
utilized to optimize the experience.

Determining the optimal cache to source
content from

 When choosing which cache to route a
content request to, the network and
application must consider more than just the
“closest” cache from a network or hop count
perspective. When multiple caches are
available over disparate paths, the closest
cache may be sub-optimal from a network
standpoint for delivering the video. Latency
and jitter can play a large role in the end
user’s viewing experience, causing buffering
issues, etc. Available bandwidth is another
consideration. A network link with low
latency and a shorter routing path, metrics
normally considered by dynamic routing
protocols, might still provide an
unsatisfactory viewing experience for the end
user, especially for single bitrate streams that
are not able to adjust to congestion conditions.

Latency-Optimized Cache Choice

 Additionally, if the initial cache request is
known or assumed to be part of a longer
duration flow, that can also be taken into
account when routing requests to the optimal
cache. The SDN controller could ask the
routers to add timestamp information to
packets and start building a database of
latency information between different nodes,
and along different paths between the same
two nodes. Once the operator has obtained
quantitative analytics, such as latency, from
the network, they now have the ability to
define policies that leverage that business-
level intelligence to choose the optimal
location for routing content requests, and
ultimately to program the network itself in
response.

SDN Options for Content Requests

 In addition to using network intelligence to
determine the optimal cache to route requests
to, we also have the option with SDN to
specify and optimize the routing of specific
flows to be different from what typical routing
protocols would specify. We will discuss two
potential approaches for using SDN
technologies in this CDN use case. The first
involves “forcing” the content flow to take a
different path to the cache than would be
chosen by the network using standard routing
metrics. The second approach focuses on
optimizing the primary path for the content
flow by affecting the routing or handling of
other traffic on the primary path. These two
scenarios can also apply outside of CDN use
cases, and can be used for any scenario where
multiple paths exist to deliver content, and
where the path that is most optimal from a
routing protocol perspective is not the most
optimal for the viewing experience.

Modifying the path for a Specific Content
Flow

 There are many conventional methods that
network engineers use today to modify the

path of particular flows through the network
based on specific policies. Engineers can
influence next-hop behavior for packets, can
use traffic engineering to define specific paths
through the network, can used QoS marking
to specify specific output queues for traffic,
etc. However, all of these methods typically
require pre-configuring specific features on
the devices in the network and won’t scale to
handle large numbers of per-flow requests on
demand. SDN provides us with a way to
programmatically have the network move the
flow to a different path through the network,
and then remove those routes or override
metrics once the flow is done.

 In this use case, we are going to assume
that the primary path to the cache has become
congested, or is undesirable for other reasons,
and a secondary path exists that meets the
required policies exists. These policies could
be network-oriented (such as bandwidth
requirements, delay requirements, etc.), or
could even be business-oriented policies.
Perhaps some links and routes are being
leased from other carriers or have more
expensive peering costs, so even financial
decisions can be used to influence traffic
patterns.

Latency-Optimized Path Choice

 Thus, for a specific flow or class of flows,
we want to have the routers send the traffic
via an alternate path. We do not want to alter
the path for any of the other traffic, so we
can’t change the general routing metrics for
the links overall for all traffic. The first step
is to identify a particular flow, or class of
flows, and there are multiple mechanisms that
exist today to do this. In the most trivial
scenario, a flow could simply be identified by
source and destination IP address. In practice
in cable networks, many end-points are
behind NAT devices such as home routers,
and many end points may look like a single IP
end point. In this case, the operator can get
more granular and identify a flow by source
and destination IP, plus flow type as inferred
by the source and destination TCP / UDP
ports. These are both readily doable using
information in the packet header itself, and
routers can generally make routing decisions
in hardware using information from the
standard header. You can also get even more
granular and use deep packet inspection
techniques to identify a particular flow.

 Once you’ve identified a particular flow,
you need to process packets in that flow
according to the technique being used to
modify the routing of the packets. This could
be done by encapsulating the packets with
new header information and placing them into
a specific tunnel across the network using
GRE or MPLS. They could also be “tagged”
with a new service header or identifier in the
packet header that is specific to the service.
Minimally they could simply be assigned to a
policy that governs their next-hop routing
interface.

 One method to leverage the programmatic
capabilities of SDN would be to use the
controller to dynamically program ACLs into
the routers, which would be used to map
packets to the appropriate policy. An external
SDN controller would have the broader view
of the overall network, including where the
caches are located, and what various network

metrics such as latency, delay, bandwidth, etc.
look like on each segment. When a request
for content is made, the controller can
determine the optimal route to the selected
cache.

 Another method would be to use the
service header described above and have
routers assign packets to a particular path
based on the service header. These “service
paths” through the network can be
programmed into the routers from the SDN
controller. Since the service paths only need
to exist for the duration of the flow, they can
be added and removed as needed by the SDN
controller.

Optimizing the Primary Path by Dealing with
Other Traffic

 Similarly to moving a single flow or class
of flows to an alternate path, it’s possible to
optimize the “favored” path for a flow by
using SDN to modify the forwarding and QoS
behavior for other types of traffic. The
simplest method is to simply mark the priority
flows such that they are processed by higher
priority queues on a device. However, in
some serious congestion scenarios it may not
be desirable to simply drop lower priority
traffic, but instead re-route that traffic over a
secondary path. In this case you could use the
same technique described above for a single
content flow, but use it instead to classify
“other” traffic that is less bandwidth and delay
sensitive (or a lower priority for any number
of other reasons) and to modify the routing
metrics or path selection for that overall class
of flows. In this way, the overall traffic on
the link goes down, providing a better
experience for flows that need to stay on the
link.

Other Factors – Path to Origin Server

 In a caching scenario, it’s not always the
path from the user to the cache that needs to
be optimized, but the path from the cache to

the content origin server. In the case that high
amounts of new content suddenly need to be
cached (such as a new viral video or other
event), the paths from the origin servers to the
caches may become the bottlenecks for
performance. A cache (cache ‘A’) that looked
ideal when evaluating the network
performance and load between the cache and
the user may no longer be optimal if all of the
content needs to be source from the origin
server, and the path between the origin server
and cache ‘A’ is highly congested. In this
case, cache ‘B’ might be a better cache if the
path from it to the origin server is better able
to handle the load, and if the path from cache
‘B’ to the end user can support the required
policies.

Latency-Optimized Cache Choice
Considering Path to Origin Server

SDN for Modifying Flows in CDNs

 As discussed at the beginning of this
section, many approaches already exist today
for both classifying packets, and modifying
the routing of those packets through the
network on a per-flow basis. The various
approaches use existing routing protocols,
policies, tunneling technologies, etc.
However, most, if not all, of these approaches
would be impossible to do dynamically, on a
per-flow basis (as requests are made) without
having both access to real time network
analytics to make the decision as well as
programmatic interfaces to the routers to

apply the changes. SDN provides us with a
way to have a controller with a broader view
of the network, including non-network
analytics such as business policies that can
access devices in the network through
programmatic interfaces to modify packet
routing behavior.

LEVERAGING CLOUD COMPUTING FOR

DYNAMIC APPLICATIONS

 While networks are being enhanced to take
more advantage of the dynamic capabilities of
programmatic interfaces with the network,
and enhanced analytics, the applications
themselves are becoming more dynamic and
programmed to take advantage of this
additional flexibility in the network. By
working together, applications can take
advantage not only of the cloud computing
capabilities of spinning up additional
application instances on demand, but also of
the intelligence available in the network to
spin up resources in the best location when
multiple are available.

Caching Example – Using Cloud for the
Spikes

 Referring back to the CDN example
discussed in the CDN section, one of the first
things that the CDN could check is whether or
not a cache has enough capacity to support
servicing incoming content requests. Caches
are typically designed and engineered to
handle typical loads on the network plus a
predicted amount of burst capacity, based on
analyzing historical data such as number of
consumers in a given area, type consumer
viewing behavior, busy hour requests, etc.
While this will handle the vast majority of
requests for content, there exist both seasonal
“expected” dramatic increases in content
viewing (such as around major sporting
events like the Super Bowl or the World Cup)
as well as dramatic unexpected spikes in
viewing for things like suddenly viral videos.

 If the network operator has built enough
caching capacity to handle these short term,
dramatically spiked increases in capacity,
much of the caching capacity would sit idle
and wasted the rest of the time. Since many
of the caching servers are now able to be run
as virtual machines on standard x86 hardware,
cloud computing technologies can be used to
“spin up” additional caches for both expected
and unexpected events, and can then be
brought back down to allow the compute
resources to be used for other applications that
see spikes in demand at different times, or
whose usage is not as time-critical as video
delivery. This capacity can also be brought
up at locations where there is excess
bandwidth to handle the additional load being
placed upon the network. Operators can both
maximize the number of content requests that
can be handled by caches, and also minimize
the impact on the network by locating those
caches in the most strategic locations from a
network perspective.

 As additional caching capacity is brought
online, it can dynamically be added to
controller that is assigning content requests to
caches. Additionally, the additional capacity
is made known to the SDN controller(s)
which can then take those caches into account
(as well as their locations in the network)
when determining how to deal with new
flows.

 Geographic location can also be used as a
part of the decision process. For example, if
there is an unexpected spike in content
requests during prime time television viewing
on the east coast of the United States due to a
promotion, additional capacity could be
proactively brought online in the central and
west coast regions to handle the anticipated
increased demand. Additionally, content
requests could be sent to the new and existing
caches to allow them to start caching content
ahead of anticipated demand. If the demand
did not materialize as expected, the additional
caches that were started up can be shut down,

with their compute resources being returned
the available pool, and existing caches will
simply age out the content as other requests
come in.

LEVERAGING CLOUD COMPUTING
APPLICATION DESIGN PRINICPALS IN
NETWORKING

 Cloud computing capabilities are helping
to bring about complementary capabilities in
networking. Cloud computing is further
enhanced when it starts taking advantage of
the new APIs available from the network, and
using network location and state information
in its decision-making process on when and
where to spin up new capacity for
applications. Additionally, the software
architecture design principals being used by
new applications being developed specifically
for the cloud can provide additional hints on
how to look at network design for the cloud.
Several design principals are emerging,
including:

 Fault-tolerant design that is adaptive
and programmable through APIs

 Dynamic instantiation of new services
and capabilities for the application

 Scaling out (adding additional nodes
for a distributed function) vs. scaling
up (adding compute or storage
capacity to individual nodes)

 Heavy focus on automation
The new application design principals are
both influencing network designs (including
SDN) as well as being designed to take
advantage of the more programmable nature
and design of today’s networks.

Fault-Tolerant Designs

 Cloud applications are being architected
such that the application will continue to run
even in the event of physical infrastructure
failures. Failures of servers or server
components, networking gear, and even
physical data centers won’t bring down well-

designed cloud applications. The applications
are designed using multiple loosely coupled
components that are distributed across
multiple different availability zones.
Typically each component can be loaded
dynamically as needed, and scaled up or down
as needed. All of this is starting to translate to
network design, as networks need to be able
to accommodate application communication
across multiple servers, racks, and entire data
centers. When loads shift due to outages,
networks need to be able to quickly
accommodate new flows, and to rapidly apply
changes in network policy.

Dynamic Instantiation of New Services

 Many applications need to leverage
network-based load balancing to help scale
individual application components and
distribute loads across availability zones. As
the application scales out, additional load
balancers need to be dynamically instantiated
and added into the architecture to handle the
new node addresses. As load drops, load
balancers can be taken offline, with their
resources freed up for different applications or
services.

 Newer video applications being delivered
from the cloud can also take advantage of the
dynamic instantiation of services. For
example, when a user requests a particular
piece of content, that content may need to
pass through a just-in-time transcoding or
encryption application. As these applications
are developed to be loaded dynamically in a
cloud computing platform, a base amount of
capacity can be kept online, with additional
capacity being brought online in “standby”
mode as loads increase. Understanding of
network analytics is important for network-
based services such as these that require
significant bandwidth, and can greatly benefit
from intelligent placement or routing due to
the bandwidth demands.

Scaling Out vs. Scaling up

 The historical approach to handle capacity
growth, called vertical scale or scaling up,
involves turning up an application on bigger
and faster hardware to handle a larger load.
Modern cloud applications are being
developed to handle increased loads by
scaling out - adding additional instances of the
application on additional, smaller compute
nodes as load increases and balancing
between them. Networks are now often being
designed in similar fashion, with smaller
fault-domains per switch pair, and scaling
through the addition of more switch-pairs. In
this fashion, network capacity can be added as
compute and storage capacity is added
without increasing the risk of a single failure
taking out mission critical applications.

Heavy Focus on Automation

 Finally, applications would not be able to
scale dynamically without a heavy focus on
automating every step of the process.
Manually adding or removing capacity, or
bringing up new services for the application
can take significant time, and has significantly
more potential for errors to be introduced into
the process through manual data entry. This
applies to all aspects of the application and its
deployment, from the compute to the storage
to the network connectivity, network services,
and ultimately application configuration itself.
The other half of the automation focus is
monitoring. Without the ability to accurately
monitor and measure application and network
loads, it would be impossible to know when to
scale up or down capacity. Programmatic
APIs make both monitoring and automation
possible. Application designers, as well as
network designers, set the business policies
and rules up front, and then let the automation
systems take care of things from there.

CLOUD AND SDN – WORKING
TOGETHER FOR GREATER CONTROL

AND FLEXIBILITY

 Advances in cloud compute brought about
significant improvements in both the speed
and flexibility of application deployment by
abstracting the resources used by the
application from the physical infrastructure
providing those resources. This abstraction
helped bring about the ability to dynamically
bring up and down resources as needed,
without the need to configure physical
hardware. As developers learned how to use
this flexibility, software architectures started
evolving to take advantage of the new
capabilities. This new generation of
applications and architecture thinking helped
bring out similar changes in network
applications and design. The introduction of
programmatic interfaces on network devices
enables software to define network behavior,
utilizing business intelligence and policies in
lieu of just network metrics. In some cases
the intelligence resides within the application
itself, and the application is able to program
and control the network directly. In other
cases the intelligence resides within a
specialized SDN controller that acts as an
abstraction between the application and the
network.

 However, before you can take full
advantage of the network abstractions and
programmatic capabilities available with
SDN, you need to start with monitoring and
visibility of the network – analytics. Once
you have a view of what the historic and real-
time state of the network is, and you
understand the business rules required by the
application, you can use the SDN controller to
enact custom routing on the network.

 It starts with setting policy in the
controller, which communicates the policy
down to the network devices who enforce it
by applying new forwarding rules,
encapsulating packets into tunnels, etc. As

the application developers start to understand
the network analytics and abstractions
available, they can use business rules to
define policies in the controller and let the
controller define network routing based on
those policies.

 While SDN adds flexibility, the use cases
we have talked about in this paper are more
about using SDN to manage the exceptions
rather than replacing standard network
protocols and router control planes altogether.
The network is already highly adept at routing
and moving packets based on network state.
But when applications need higher-level
business intelligence to make a better decision
for the application, SDN can be used to
program the exceptions that need specific or
different handling. Exception-based SDN use
cases allow the network to continue to do
what it does best, and allow the SDN
controller (and ultimately the application) to
define behavior for specific flows, such as
content flows within CDNs.

