
QoE: As Easy As PIE
Rong Pan, Preethi Natarajan, Chiara Piglione, Mythili S. Prabhu, Alon Bernstein

Advanced Architecture & Research Group,
Cisco Systems Inc., San Jose, CA 95134, U.S.A.

Abstract—Bufferbloat is a phenomenon where excess
buffers in the network, such as in cable modems or wireless
APs, cause high latency and jitter. As more and more
interactive applications (e.g. voice over IP and real time
video conferencing) run in the Internet, high latency and
jitter degrade application performance and impact users’
Quality of Experience (QoE). There is a pressing need
to design intelligent queue management schemes that can
control latency and jitter; and hence provide desirable
quality of service to users.

We present here a lightweight design, PIE (Proportional
Integral controller Enhanced), that can effectively control
the average queueing latency to a reference value. The
design does not require per-packet extra processing, so it
incurs very small overhead and is simple to implement
in both hardware and software. In addition, the design
parameters are self-tuning, and hence PIE is robust and
optimized for various network scenarios. We apply the
algorithm in DOCSIS 3.0 environment. Simulation results
show that PIE can ensure low latency and achieve high
link utilization under various congestion situations.

Index Terms—bufferbloat, Active Queue Management
(AQM), Quality of Service (QoS), Quality of Experience
(QoE), Explicit Congestion Notification (ECN)

I. INTRODUCTION

The explosion of smart phones, tablets and video
traffic in the Internet brings about a unique set of
challenges for congestion control. To avoid packet
drops, many service providers or data center op-
erators require vendors to put in as much buffer
as possible. With rapid decrease in memory chip
prices, these requests are easily accommodated to
keep customers happy. However, the above solution
of large buffers fails to take into account the nature
of TCP, the dominant transport protocol running
in the Internet. The TCP protocol continuously
increases its sending rate and causes network buffers
to fill up. TCP cuts its rate only when it receives
a packet drop or mark that is interpreted as a con-
gestion signal. However, drops and marks usually
occur when network buffers are full or almost full.

As a result, excess buffers, initially designed to
avoid packet drops, would lead to highly elevated
queueing latency and jitter. The phenomenon was
detailed in 2009 [1] and the term, “bufferbloat” was
introduced by Jim Gettys in late 2010 [2]. Recent
studies of home access network also confirmed that
modems often have large buffers and that DSL links
often have large high latency [3], [4].

Active queue management (AQM) schemes, such
as RED [5], BLUE [6], PI [7], AVQ [8], etc, have
been around for well over a decade. By selectively
dropping packets early to optimize traffic behaviors,
AQM schemes could potentially solve the aforemen-
tioned problem. RFC 2309 [9] strongly recommends
the adoption of AQM schemes in the network to
improve the performance of the Internet. Although
controlling delay is a key metric in assuring QoS,
the DOCSIS specifications do not define the adop-
tion of AQM and only recently added the option
to set a small queue size. The rationale behind it
was that DOCSIS does not need AQM because
DOCSIS addresses head-of-line blocking with fine-
grained queuing or scheduling, i.e. sorting traffic
into individual queue and then scheduling the drain
of the queues according to the priority of these
queues. In this way, the delay of the high priority
traffic is minimized since it does not incur the delay
issues caused by head-of-line blocking.

There are a few issues with the above line of
thinking. First, head-of-line blocking is not the only
cause for delay. Even if there is no head-of-line
blocking, a large queue can still cause a large delay.
For example, voice traffic can be sorted to one queue
and data traffic can be put into a separate queue so
there is no blocking of voice traffic. Nonetheless
the data queue can still experience excessive delay.
Second, limiting the buffer size is not the solution to
the bufferbloat problem because latency is still high
under persistent congestion. In addition, small buffer
does not have enough space to absorb short-term



bursts, which could lead to throughput loss. Third,
even with today’s technology, per flow queueing is
still rather complicated to implement. Except for
traffic class like voice, a lot of flows are queued into
to the same queue. For example, a background e-
mail download can still create head-of-line blocking
for a web browsing session. Latency control for this
data queue is still required in order to guarantee
QoE. Due to aforementioned issues, we believe that
AQM is crucial in controlling latency and solving
the bufferbloat problem.

Although AQM has not been adopted in the
DOCSIS specifications, RED, a well-known AQM
scheme, has been adopted in a wide variety of
network devices, such as switches and routers; and
it has been implemented in both hardware and
software. Unfortunately, due to the fact that RED
needs careful tuning of its parameters for various
network conditions, most network operators do not
turn RED on. In addition, RED is designed to
control the queue length which would affect delay
implicitly. It does not control latency directly.

We recognize that the delay bloat caused by
poorly managed big buffers is the core issue here.
If latency can be controlled, bufferbloat, i.e., adding
more buffers for bursts, is not a problem. More
buffer space would allow larger bursts of packets
to pass through as long as we control the average
queueing delay to be small. Unfortunately, Internet
today still lacks an effective design that can control
buffer latency to improve QoE of latency-sensitive
applications. In addition, it is a delicate balancing
act to design a queue management scheme that not
only allows short-term burst to smoothly pass, but
also controls the average latency when long-term
congestion persists.

Recently, a new AQM scheme, CoDel [10], was
proposed to control the latency directly to ad-
dress the bufferbloat problem. CoDel requires per
packet timestamps. Also, packets are dropped at the
dequeue function after they have been enqueued
for a while. Both of these requirements consume
excessive processing and infrastructure resources.
This consumption will make CoDel expensive to
implement and operate, especially in hardware.

In this paper, we present a lightweight algorithm,
PIE (Proportional Integral controller Enhanced),
which combines the benefits of both RED and
CoDel: easy to implement like RED while directly
control latency like CoDel. Similar to RED, PIE

randomly drops a packet at the onset of the conges-
tion. The congestion detection, however, is based
on the queueing latency like CoDel instead of the
queue length like conventional AQM schemes such
as RED. Furthermore, PIE also uses the latency
moving trends: latency increasing or decreasing,
to help determine congestion levels. In addition,
the design parameters are self-tuning, and hence
PIE is robust and optimized for various network
scenarios. Our DOCSIS 3.0 simulation results show
that PIE can control latency around the reference
under various congestion conditions. Furthermore,
it can quickly and automatically respond to network
congestion changes in an agile manner.

In what follows, Section II specifies our goals
of designing the latency-based AQM scheme. Sec-
tion III explains the scheme in detail. Section IV
presents simulation results of the proposed scheme.
In Section V, we discuss the implementation cost of
PIE. Section VII concludes the paper and discusses
future work.

II. DESIGN GOALS

We explore a queue management framework
where we aim to improve the performance of
interactive and delay-sensitive applications. The
design of our scheme follows a few basic criteria.

• Low Latency Control. We directly control
queueing latency instead of controlling queue
length. Queue sizes change with queue
draining rates and various flows’ round trip
times. Delay bloat is the real issue that
we need to address as it impairs real time
applications. If latency can be controlled to be
small, bufferbloat is not an issue. In fact, we
would allow more buffers for sporadic bursts
as long as the average latency is under control.

• High Link Utilization. We aim to achieve
high link utilization. The goal of low latency
shall be achieved without suffering link
under-utilization or losing network efficiency.
An early congestion signal could cause TCP
to back off and avoid queue buildup. On the
other hand, however, TCP’s rate reduction
could result in link under-utilization. There is
a delicate balance between achieving high link
utilization and low latency.



• Simple Implementation. The scheme should
be simple to implement and easily scalable
in both hardware and software. The wide
adoption of RED over a variety of network
devices is a testament to the power of simple
random early dropping/marking. We strive to
maintain similar design simplicity.

• Guaranteed Stability and Fast Responsiveness.
The scheme should ensure system stability
for various network topologies and scale well
with arbitrary number streams. The system
also should be agile to sudden changes in
network conditions. Design parameters shall
be set automatically. One only needs to set
performance-related parameters such as target
queue delay, but no need to set any of the
design parameters.

We aim to find an algorithm that achieves the
above goals. It is noted that, although important,
fairness is orthogonal to the AQM design whose
primary goal is to control latency for a given queue.
Techniques such as Fair Queueing [11] or its ap-
proximate such as Stochastic Fair Queueing (SFQ)
[12] can be combined with any AQM scheme to
achieve fairness. Therefore, in this paper, we focus
on controlling a queue’s latency and ensuring flows’
fairness is not worse than those under the standard
DropTail or RED design.

III. THE PIE SCHEME

In the section, we describe in detail the design
of PIE and its operations. As illustrated in Figure
1, our scheme comprises three simple components:
a) random dropping at enqueueing; b) periodic drop
probability update; c) departure rate estimation.

The following subsections describe these com-
ponents in further details, and explain how they
interact with each other. At the end of this section,
we will discuss how the scheme can be easily
augmented to precisely control bursts.

A. Random Dropping
Like most state-of-the-art AQM schemes, PIE

would drop packets randomly according to a drop
probability, p, that is obtained from the “drop
probability calculation” component. No extra step,
like timestamp insertion, is needed. The procedure

Fig. 1. Overview of the PIE Design. The scheme comprises
three simple components: a) random dropping at enqueueing;
b) latency based drop probability update; c) departure rate
estimation.

is as follows:

Random Dropping:
Upon packet arrival

randomly drop a packet with a probability p.

B. Drop Probability Calculation
The PIE algorithm updates the drop probability

periodically as follows:
• estimate current queueing delay using Little’s

law:
cur del = qlen

avg drate
;

• calculate drop probability p as:
p = p + α ∗ (cur del − ref del) + β ∗
(cur del − old del);

• update previous delay sample as:
old del = cur del.

The average draining rate of the queue, avg drate,
is obtained from the “departure rate estimation”
block. Variables, cur del and old del, represent the
current and previous estimation of the queueing
delay. The reference latency value is expressed in
ref del. The update interval is denoted as Tupdate.
Parameters α and β are scaling factors.

Note that the calculation of drop probability is
based not only on the current estimation of the



queueing delay, but also on the direction where the
delay is moving, i.e., whether the delay is getting
longer or shorter. This direction can simply be
measured as the difference between cur del and
old del. Parameter α determines how the deviation
of current latency from the target value affects the
drop probability; β exerts the amount of additional
adjustments depending on whether the latency is
trending up or down. The drop probability would
be stabilized when the latency is stable, i.e. cur del
equals old del; and the value of the latency is equal
to ref del. The relative weight between α and β
determines the final balance between latency offset
and latency jitter. This is the classic Proportional
Integral controller design [13], which has been
adopted for controlling the queue length before
in [7] and [14]. We adopt it here for controlling
queueing latency. In addition, to further enhance the
performance, we improve the design by making it
auto-tuning as follows:

if p < 1%: α = α̃/8; β = β̃/8;
else if p < 10%: α = α̃/2; β = β̃/2;
else: α = α̃; β = β̃;

where α̃ and β̃ are static configured parameters.
Auto-tuning would help us not only to maintain
stability but also to respond fast to sudden changes.
The intuitions are the following: to avoid big swings
in adjustments which often leads to instability, we
would like to tune p in small increments. Suppose
that p is in the range of 1%, then we would want
the value of α and β to be small enough, say 0.1%,
adjustment in each step. If p is in the higher range,
say above 10%, then the situation would warrant
a higher single step tuning, for example 1%. The
procedures of drop probability calculation can be
summarized as follows.

Drop Probability Calculation:
Every Tupdate interval

1. Estimation current queueing delay:

cur del =
qlen

avg drate
.

2. Based on current drop probability, p, determine
suitable step scales:

if p < 1%, α = α̃/8; β = β̃/8;

else if p < 10%, α = α̃/2; β = β̃/2;

else , α = α̃; β = β̃;

3. Calculate drop probability as:

p = p+ α ∗ (cur del − ref del) +

β ∗ (cur del − old del);

4. Update previous delay sample as:

old del = cur del.

We have discussed packet drops so far. The algo-
rithm can be easily applied to networks codes where
Early Congestion Notification (ECN) is enabled.
The drop probability p could simply mean marking
probability.

C. Departure Rate Estimation
The draining rate of a queue in the network

often varies either because other queues are sharing
the same link, or the link capacity fluctuates. Rate
fluctuation is particularly common in wireless
networks. Hence, we decide to measure the
departure rate directly as follows:

Departure Rate Calculation:
Upon packet departure

1. Decide to be in a measurement cycle if:

qlen > dq threshold;

2. If the above is true, update departure count
dq count:

dq count = dq count+ dq pktsize;

3. Update departure rate once dq count >
dq threshold and reset counters:

dq int = now − start;

dq rate =
dq count

dq int
;

avg drate = (1− ε) ∗ avg drate

+ ε ∗ dq rate

start = now.

dq count = 0;

From time to time, short, non-persistent bursts of
packets result in empty queues, this would make the
measurement less accurate. Hence we only measure



the departure rate, dq rate, when there are sufficient
data in the buffer, i.e., when the queue length
is over a certain threshold, dq threshold. Once
this threshold is crossed, we obtain a measurement
sample. The samples are exponentially averaged,
with averaging parameter ε, to obtain the average
dequeue rate, avg drate. The parameter, dq count,
represents the number of bytes departed since the
last measurement. The threshold is recommended
to be set to 5KB assuming a typical packet size
of around 1KB or 1.5KB. This threshold would
allow us a long enough period, dq int, to obtain an
average draining rate but also fast enough to reflect
sudden changes in the draining rate. Note that this
threshold is not crucial for the system’s stability.

D. Handling Bursts
The above three components form the basis of

the PIE algorithm. Although we aim to control the
average latency of a congested queue, the scheme
should allow short term bursts to pass through the
system without hurting them. We would like to
discuss how PIE manages bursts in this section.

Bursts are well tolerated in the basic scheme for
the following reasons: first, the drop probability
is updated periodically. Any short term burst that
occurs within this period could pass through without
incurring extra drops as it would not trigger a
new drop probability calculation. Secondly, PIE’s
drop probability calculation is done incrementally.
A single update would only lead to a small incre-
mental change in the probability. So if it happens
that a burst does occur at the exact instant that
the probability is being calculated, the incremental
nature of the calculation would ensure its impact is
kept small.

Nonetheless, we would like to give users a
precise control of the burst. We introduce a
parameter, max burst, that is similar to the burst
tolerance in the token bucket design. By default, the
parameter is set to be 100ms. Users can certainly
modify it according to their application scenarios.
The burst allowance is added into the basic PIE
design as follows:

Burst Allowance Calculation:
Upon packet arrival

1. If burst allow > 0

enque packet bypassing random drop;

Upon dq rate update
2. Update burst allowance:

burst allow = burst allow − dq int;

3. if p = 0; and both cur del and old del less
than
ref del/2, reset burst allow,

burst allow = max burst;

The burst allowance, noted by burst allow, is
initialized to max burst. As long as burst allow
is above zero, an incoming packet will be en-
queued bypassing the random drop process. When-
ever dq rate is updated, the value of burst allow
is decremented by the departure rate update period,
dq int. When the congestion goes away, defined by
us as p equals to 0 and both the current and previous
samples of estimated delay are less than ref del/2,
we reset burst allow to max burst.

IV. PERFORMANCE EVALUATION

In this section we present our ns-2 [15] simulation
results for the scenario of DOCSIS cable modems.
We first demonstrate the basic functions of PIE
using a few basic scenarios, and then compare PIE
and CoDel performance using various scenarios. We
focus our attention on the following performance
metrics: instantaneous queueing delay, drop proba-
bility, TCP throughput and link utilization.

The CM (upstream) is modeled as a single queue
that implements both rate shaping using a token
bucket algorithm (with parameters Max Sustained
Rate, Traffic Burst and Peak Traffic Rate), and the
Request-Grant DOCSIS MAC. The CMTS (down-
stream) is implemented as a single rate shaping
queue with token bucket. The upstream queue is
modeled as a PIE (or other AQM scheme) queue,
while the downstream queue is implemented using
a DropTail model.

In our simulation, the upstream token bucket
parameters are set to the following values: Max
Sustained Rate = 5Mbps, Traffic Burst = 10MB and
Peak Traffic Rate = 20Mbps. The downstream token
bucket parameters are set as follows: Max Sustained
Rate = 20Mbps, Traffic Burst = 20MB and Peak
Traffic Rate = 50Mbps. The RTT is 100ms and
unless otherwise stated the buffer size is 480ms . We



use both TCP and UDP traffic for our evaluation.
All TCP traffic sources are implemented as TCP
New Reno with SACK running FTP applications.
UDP traffic is implemented using Constant Bit Rate
(CBR) sources. Both UDP and TCP packets are
configured to have a fixed size of 1500B. Unless
otherwise stated the PIE parameters are configured
as follow: ref del = 20ms, Tupdate = 15ms, α
= 0.25Hz, β = 2.5Hz, dq threshold = 4500B,
max burst = 50ms.

(a) Light 1 TCP Flows (b) Medium 5 TCP Flows

(c) Heavy 15 Flows

Fig. 2. Queueing Latency Under Various Traffic Loads: a) 1
TCP flow; b) 5 TCP flows; c) 15 TCP flows. Queueing latency
is controlled at the reference level of 20ms regardless of the
traffic intensity.

Function Verification: We first validate the func-
tionalities of PIE, making sure it performs as de-
signed using static traffic sources under various
loads.

1) Light TCP traffic: We first consider a single
TCP flow. Figure 2(a) and Figure 3(a) show the
queueing delay and throughput, respectively. From
Figure 3(a), it is clear that a single TCP flow is
able to take advantage of the initial Peak Rate
burst at 20Mbps except the initial dip around 1s.
Once the token bucket transitions into the Maxi-
mum Sustained Rate of 5Mbps, we can see that
the throughput oscillates around 5Mbps with the
typical TCP sawtooth behavior. Due to dual token
bucket rates, we are not losing throughput: if the
throughput is under 5Mbps, the token of the peak
rate would allow it to burst over 5Mbps. Due to the
rate changes, there is a sudden spike in the queueing
latency around 7s as shown in Figure 3(a). However,

(a) Light 1 TCP Flows (b) Medium 5 TCP Flows

(c) Heavy 15 TCP Flows

Fig. 3. Link Throughput Under Various Traffic Loads: a) 1
TCP flow; b) 5 TCP flows; c) 15 flows. High link utilization
is achieved regardless of traffic intensity, even under low
multiplexing case.

the algorithm can quickly control the delay to be
around the target value of 20ms. The average drop
probability here is 0.9%.

2) Medium TCP traffic: In this test scenario, we
increase the number of TCP flows to 5. With higher
traffic intensity, the link utilization reaches 100%
for both the peak and sustained rates as clearly
shown in Figure 3(b). Except the sudden spike
around 7s due to the rate change, the queueing delay,
depicted in Figure 2(b), is controlled around the
desired 20ms. The equilibrium latency is unaffected
by the increased traffic intensity. Due to higher
multiplexing, the link throughput is smoother. The
queueing delay fluctuates more evenly around the
reference level. The average throughput reaches full
capacity of 5Mbps as shown in Figure 3(b). The
average drop probability is 2.0%.

3) Heavy TCP traffic: To demonstrate PIE’s per-
formance under persistent heavy congestion, we
increase the traffic load to 15 TCP flows. The
corresponding latency plot can be found in Figure
2(c). Again, PIE is able to contain the queueing
delay around the reference level regardless of the
traffic mix while achieving both the peak and sus-
tained rates shown in Figure 3(c). The average drop
probability in this case is 6.2%.

4) PowerBoost: In this test, we investigate PIE’s
ability to control the queuing delay when the DOC-
SIS model shifts to a higher upstream bandwidth:



Fig. 4. Normal vs. Powerboost Delay Comparison Under 15
TCP flows: the queuing delay oscillating around the delay
reference of 20ms in a similar fashion for both cases regardless
of configured speeds.

Fig. 5. Normal vs. Powerboost Throughput Comparison with
15 TCP flows: both the peak rate and the sustained rate are
achieved under normal and Powerboost scenarios.

50Mbps as the peak rate and 20Mbps as the sus-
tained rate (a.k.a PowerBoost). The critical aspect
to verify is whether PIE’s parameter settings hold
for both the normal and PowerBoost scenarios.

Figure 4 and 5 plot the queuing delays
experienced and throughputs achieved under
the normal and PowerBoost conditions with 15
TCP flows. The plots show that, while different
throughputs are achieved, the queuing delay
oscillating around the delay reference of 20ms in
a similar fashion for both cases. This verifies that
PIE’s auto-tuning helps PIE to adapt to the higher
speed traffic conditions found in DOCSIS 3.0 cable
modem environments.

Performance Evaluation and Comparison: The
functions of PIE are verified above. This section
evaluates PIE under various application scenarios,
compares its performance against CoDel and shows

Fig. 6. PIE vs. Codel Performance Comparison: the CDF
plot of 2000 web pages’ download time with 15 long lived
TCP flows running in the background. PIE and CoDel behave
similarly in this situation.

how PIE is better suited for controlling latency in
todays Internet. The simulation topology is similar
to the above. The cable modem runs either the PIE
or CoDel scheme.

5) HTTP Traffic: This test consists of 15 long-
lived TCP flows that share the upstream bandwidth
with 100 concurrent web page downloads. Each
web page is 75KB in size and they are evenly
downloaded from four different sites with RTTs
of 20ms, 30ms, 50ms and 100ms respectively. The
download process is repeated 20 times so that a total
of 2000 web page downloads are generated. The
long-lived TCP traffic has RTT of 100ms. Figure
6 shows the web page download time as CDF for
both CoDel and PIE. From the graph, we see that
the web page download times for both schemes are
comparable.

6) Video traffic: This test consists of a single
UDP flow at 6.5Mbps on the upstream link. Since
most real time video communication adopt the UDP
protocol, this test compares how each scheme be-
haves given a real-time, high-definition video traffic.
Figure 7 shows the utilization of the upstream link
for both CoDel and PIE. In both schemes, the link
utilization is around 6.5Mbps (offered load) until
50s. Once tokens are exhausted at 50s, the link
utilization goes down to 5Mbps for both schemes.

Figure 8 plots the queueing delay on the upstream
queue. Both schemes only incur the MAC layer
delay of 5ms-6ms in the initial 50s. Once the
tokens are exhausted at 50s, queue builds up in both
schemes. PIE is able to adapt to the increasing queue



Fig. 7. PIE vs. Codel Performance Comparison Under UDP
traffic: the test represents a real time video traffic which sends
6.5Mbps. In both schemes, the link utilization is around 6.5
Mbps (offered load) until 50s. Once the peak rate tokens are
exhausted at 50s, the link utilization goes down to 5Mbps for
both schemes.

Fig. 8. PIE vs. Codel Performance Comparison Under UDP
traffic: the queuing delay on the upstream queue. Both schemes
maintain a low queuing delay in the initial 50s. Once the
tokens are exhausted at 50s, queue builds up in both schemes.
PIE is able to adapt to the increasing queue size and bring
down the queuing latency around 53s, whereas CoDel takes
much longer to bring down the latency (around 63s).

size and bring down the queuing latency around 53s,
whereas CoDel takes much longer to bring down
the latency (around 63s). PIEs auto-tuning features
helps PIE to adapt faster to dynamically changing
link and traffic conditions.

V. IMPLEMENTATION

PIE can be applied to existing hardware or soft-
ware solutions. In this section, we discuss the im-
plementation cost of the PIE algorithm. There are
three steps involved in PIE as discussed in Section
III. We examine their complexities as follows.

Upon packet arrival, the algorithm simply drops
a packet randomly based on the drop probabil-

ity p. This step is straightforward and requires
no packet header examination and manipulation.
Besides, since no per packet overhead, such as a
timestamp, is required, there is no extra memory
requirement. Furthermore, the input side of a queue
is typically under software control while the output
side of a queue is hardware based. Hence, a drop at
enqueueing can be readily retrofitted into existing
hardware or software implementations.

The drop probability calculation is done in the
background and it occurs every Tudpate interval.
Given modern high speed links, this period trans-
lates into once every tens, hundreds or even thou-
sands of packets. Hence the calculation occurs at
a much slower time scale than packet processing
time, at least an order of magnitude slower. The
calculation of drop probability involves multiplica-
tions using α and β. Since the algorithm is not
sensitive to the values of α and β, we can choose
the values, e.g. α = 0.25 and β = 2.5 so that
multiplications can be done using simple adds and
shifts. As no complicated functions are required,
PIE can be easily implemented in both hardware
and software. The state requirement is only two
variables per queue: cur del and old del. Hence
the memory overhead is small.

In the departure rate estimation, PIE uses a
counter to keep track of the number of bytes de-
parted for the current interval. This counter is in-
cremented per packet departure. Every Tupdate, PIE
calculates latency using the departure rate, which
can be implemented using a multiplication. Note
that many network devices keep track an interface’s
departure rate. In this case, PIE might be able to
reuse this information and incurs no extra cost. Be-
sides, in cable modem or CMTS scenarios, the peak
rate and sustained rate are preconfigured. Hence,
PIE can take advantage of this rate information and
current congestion state to simply skip the third step
of the algorithm.

In summary, the state requirement for PIE is lim-
ited and computation overheads are small. Hence,
PIE is simple to be implemented. In addition, since
PIE does not require any user configuration, it does
not impose any new cost on existing network man-
agement system solutions. SFQ can be combined
with PIE to provide further improvement of latency
for various flows with different priorities. However,
SFQ requires extra queueing and scheduling struc-
tures. Whether the performance gain can justify the



design overhead needs to be further investigated.

VI. ACKNOWLEDGEMENT

We would like to thank Greg White from Cable-
Labs for providing us the ns2 model for DOCSIS
3.0 cable modems.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have described PIE, a latency-
based design for controlling bufferbloat in the In-
ternet. The PIE design bases its random dropping
decisions not only on current queueing delay but
also on the delay moving trend. In addition, the
scheme self-tunes its parameters to optimize system
performance. As a result, PIE is effective across
diverse range of network scenarios. Our simulation
studies of DOCSIS 3.0 modems show that PIE can
ensure low latency under various congestion situa-
tions. It achieves high link utilization while main-
taining stability consistently. It is a light-weight,
enqueueing based design that works with both TCP
and UDP traffic. The PIE design only requires low
speed drop probability update, so it incurs very
small overhead and is simple enough to implement
in both hardware and software.

Going forward, we will explore efficient methods
to provide weighted fairness under PIE. There are
two ways to achieve this: either via differential
dropping for flows sharing a same queue or through
class-based fair queueing structure where flows are
queued into different queues. There are pros and
cons with either approach. We will study the trade-
offs between these two methods.

REFERENCES

[1] B. Turner, “Has AT&T Wireless Data Congestion Been
Self-Inflicted?” [Online]. Available: BroughTurnerBlog

[2] J. Gettys, “Bufferbloat: Dark buffers in the internet,” IEEE
Internet Computing, vol. 15, pp. 95–96, 2011.

[3] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxon, “Netalyzer:
Illuminating the edge network,” in Proceedings of Internet
Measurement Conference, 2010.

[4] G. Maier, A. Feldmann, V. Paxon, and M. Allman, “On domi-
nant characteristics of residential broadband internet traffic,” in
Proceedings of Internet Measurement Conference, 2009.

[5] S. Floyd and V. Jacobson, “Random early detection gateways
for congestion avoidance,” IEEE/ACM Transactions on Net-
working, vol. 1, no. 4, pp. 397–413, Aug. 1993.

[6] W. Feng, K. Shin, D. Kandlur, and D. Saha, “The blue active
queue management algorithms,” IEEE/ACM Transactions on
Networking, vol. 10, no. 4, pp. 513–528, Aug. 2002.

[7] C. V. Hollot, V. Misra, D. Towsley, and W. bo Gong, “On
designing improved controllers for aqm routers support,” in
Proceedings of IEEE Infocom, 2001, pp. 1726–1734.

[8] S. Kunniyur and R. Srikant, “Analysis and design of an adaptive
virtual queue (avq) algorithm for active queue management,” in
Proceedings of ACM SIGCOMM, 2001, pp. 123–134.

[9] B. Braden, D. Clark, J. Crowcroft, and et. al., “Recommenda-
tions on Queue Management and Congestion Avoidance in the
Internet,” RFC 2309 (Proposed Standard), 1998.

[10] K. Nichols and V. Jacobson, “A Modern AQM is just one
piece of the solution to bufferbloat.” [Online]. Available:
http://queue.acm.org/detail.cfm?id=2209336

[11] A. Demers, S. Keshav, and S. Shenker, “Analysis and simula-
ton of a fair queueing algorihtm,” Journal of Internetworking
Research and Experience, pp. 3–26, Oct. 1990.

[12] P. McKenney, “Stochastic fairness queueing,” Internetworking:
Research and Experience, vol. 2, pp. 113–131, Jan. 1991.

[13] G. Franklin, J. D. Powell, and A. Emami-Naeini, in Feedback
Control of Dynamic Systems, 1995.

[14] R. Pan, B. Prabhakar, and et. al., “Data center bridging
- congestion notification.” [Online]. Available: http://www.
ieee802.org/1/pages/802.1au.html

[15] “NS-2.” [Online]. Available: http://www.isi.edu/nsnam/ns/


