
 V-REX – VOICE RELEVANCE ENGINE FOR XFINITY
Stefan Deichmann, Oliver Jojic, Akash Nagle, Scot Zola, Tom Des Jardins, Robert Rubinoff,

Amit Bagga
 Comcast Labs

 Abstract

 V-REX is a new platform Comcast is
building to provide speech-based applications
for television control and other areas. V-REX
applies automated speech recognition, natural
language processing, and action resolution
modules to interpret the user’s request and
identify the appropriate response. We
describe here how we use V-REX to support
an iPhone/Android app that allows users to
control their cable set-top boxes by speaking
into their phones. The primary focus of the
work involves building grammar rules and
dictionary entries for the range of requests the
app can handle. We use the grammar and
dictionary both to guide ASR and to allow
NLP to extract the actions and entities in the
request. We then convert these results into
appropriate database queries that extract the
information the user needs.

INTRODUCTION

 Using a voice interface provides two
advantages over traditional set-top-box
remote or web interfaces. First, it eliminates
the need for typing or other keyboard-based or
remote-based text entry methods. (In the case
of TV or cable remotes, this can be extremely
tedious.) Furthermore, by allowing the use to
directly specify what they want, it eliminates
the need to wade through a series of menus or
pages to find the desired option.

 In order to provide a voice interface, we
need to answer three questions: what words
did the user speak, what action or information
are they requesting, and how do we carry out
the action or get the information? Each of
these questions is answered by a specific
module in V-REX. Automated speech
recognition (ASR) identifies the words the

user has spoken. Natural language processing
(NLP) figures out what action or information
has been requested. Action resolution (AR)
responds to the request.

 Our initial V-REX application is an
iPhone/Android app for Comcast customers
that allows them to look up programs and
control their set-top box. The app currently
can handle three kinds of requests:

1) “What’s on” – list what programs are
available on a particular channel
and/or at a particular time (including
right now). The user can also
specifically ask for sports games, or
for a particular sport such as baseball
or basketball.

2) “Tune” – switch the cable box to a
specific channel

3) “Search/Find” – find when and on
what channel a particular program is
playing; this will also show if it is
available in the On Demand library

Figure 1 – Sample Results Display

 For “what’s on” and “search” requests, the
results are displayed on the screen, and the
user can select individual programs or
channels to get more detail. For example,
Figure 1 shows the response when the user
asks “What’s on CNN tonight”? In
subsequent sections, we will describe each
step of the process that produces this
response.

AUTOMATED SPEECH RECOGNITION

 The ASR module is built with CMU’s
Java-based toolkit, Sphinx4. We used Sphinx
because it is a well-developed open-source
system that we already had experience with.1
We replaced Sphinx4’s default acoustic model
with one from VoxForge, a web site that
collects transcribed speech for use with open
source speech recognition engines. We built
our own application-specific language model,
which has two major parts, a pronouncing
dictionary and a grammar, incorporating as
well a general language model built on the
English Gigaword Corpus
(www.keithv.com/software/giga).

 The dictionary maps words to their
possible pronunciations at a phonemic level.
The phonemes in our pronouncing dictionary
are based on the ARPABet developed for
speech understanding systems in the '70s.
There are 39 phonemes, not counting variants
due to lexical stress. Anything a person can
say, including actions like "tune to" and
channel names like ESPN, must be stored as a
phonetic representation.

 The grammar is a textual description of the
combinations of words and phrases the system
will accept. It is written in Java Speech
Grammar Format, an augmented BNF-style
format [1]. The grammar contains rules
describing how users can ask to change a

1 We are continuing to evaluate other ASR
systems, but so far have found Sphinx4’s
performance and accuracy to meet our needs.

channel, what exactly counts as a title, and
how people can ask about a time of day.
Within a limited domain like television, the
language model provides a higher level of
accuracy in detection than it would normally
achieve in an unconstrained system.

 The dictionary and grammar are designed
around three specific requirements of the
application. The first is to handle channel
names, many of which are not in the general
vocabulary of the basic Sphinx system. For
example, “SyFy” and “Tru TV” need to be
added. In addition, some channel names may
have multiple pronunciations, e.g.
“Univision” can be spoken with either English
or Spanish pronunciation; and some channel
names may contain words that are in the
general vocabulary but not commonly used
together outside of the domain, e.g. “Fox
Business” or “Showtime Family”. To handle
these cases, we added the names of all of the
channels Comcast provides to the dictionary.
Including the channel names in the dictionary
does more than just improve recognition of
these terms; it also lets us use a more
precisely tailored language model, improving
the overall ASR performance.

 The second requirement is to handle a
wide range of time and date specifications.
While most of these are part of the general
language, there are some that are specific to
the television domain (e.g. “prime time”).
More importantly, we want to directly handle
complex phrases such as “next Tuesday
evening after 10” and recognize them as
indicating the time of a program as early in
the processing as possible. To that end, we
include in the grammar a large range of ways
of referring to dates and times. A portion of
this grammar is shown in Figure 2.

 Finally, we need to recognize titles of
movies and TV programs. This is a particular
challenge, as titles can contain deliberate
misspellings or ungrammatical phrases that
would be rejected by a general language

model, e.g. “eXistenZ” or “De-Lovely”, or
subtitles that don’t fit into normal sentence
structure, e.g. “Dodgeball: A True Underdog
Story”. Even without these kinds of problems
within a title, there is the danger of processing
the title as a normal part of the whole
sentence. For example “What time is Seven
on?” is most likely asking about the movie
“Seven”, not channel 7 or seven o’clock. In
order to handle these problems, we have
added movie and TV show titles to our
dictionary. This allows us to recognize titles
when spoken (in places where titles make
sense).

 In order to add titles to the dictionary,
though, we need to know which titles to add.
We can’t simply add all of the titles that have
ever been produced, because that would
involve several million titles. This would
drastically increase the size of the dictionary,
seriously diminishing both speed and
accuracy of the ASR system. Furthermore,
the vast majority of the titles would be for
movies or TV shows that aren’t currently
available and that the user has almost
certainly never heard of. Instead we limit the
titles to all shows that are currently available
(either on a broadcast or cable channel or on

demand). We also include the most popular
movies and TV shows, even if they are not
available, since there is a good chance the
user will ask for them.

 The top level of the grammar specifies the
range of possible requests the system can
handle (and therefore needs to recognize). A
simplified version of the grammar is shown in
Figure 3. The three possible request types
each have their own top-level rule, which is
further specified in subsequent rules. The
various parts of the grammar are combined to
provide a language model that constrains and
guides the recognition process.2

2 As the application expands to handle a larger
range of requests, we anticipate allowing
some of the ASR work to use a more general
statistical language model, so that the system
can recognize unrestricted language. This
will be particularly important when we start
handling extended dialog. The grammar will
stay play an important role in interpreting the
request, though, as described in the section on
the NLP module.

<temporalAdverb> = (<weekday>
 | on <weekday>
 | this <weekday>
 | prime time
 | [right] now
 | tomorrow <daytime>
 | today <dayTime>
);

<dayTime> = (morning | afternoon | evening | night);
<weekday> = (sunday | monday | tuesday | wednesday | thursday | friday |
saturday);
<clockTime> =
 (at <hour> o'clock
 | at <hour> [<minute>] [<amOpm>]
);

Figure 2 - A portion of the date/time grammar

NATURAL LANGUAGE PROCESSING

 Once the ASR module processes the user’s
request, the output (i.e. the request in text
form) is sent on to the NLP module. NLP
starts by parsing the text, using the same
grammar used by ASR.3 The text is parsed
using the JSGF parsing facility, part of the
package used to write the grammar (as
described above). The NLP module uses the
resulting parse tree to interpret the utterance,
inferring the semantics from the rules used
and the tags assigned in the parsing process.

 For example, consider the request “What’s
on Disney on Saturday?”; the parse structure
for this is shown in Figure 4. Here we can
determine the request type from the <whats-
on-phrase> node, the requested channel from
the <channel> node, and the time constraint
from the <temporal-adverb> node. These
three different pieces of information are
actually obtained in three different ways. The
request type is determined to be “what’s on”

3 The two modules don’t have to use the same
grammar, although that is the case in the
current system. It might be appropriate to use
different grammars if, for example, we want
to allow incidental comments that are not
relevant to the request (e.g. “tune to HBO,
please”). In particular, if we switch to using a
statistical language model for part or all of
ASR rather than a grammar-based one, NLP
and ASR will need to use different grammars.

simply from the presence of a <whats-on-
phrase> node, which reflects that the request
has the structure and content of a “what’s on”
request. The channel is determined to be
“Disney” based on the value of the <channel-
name> node, which the grammar indicates is
the appropriate value for the text “Disney”.
(In this case the channel name and the text are
the same, but that is not the case for all
channels.) The time constraint needs more
complex processing, which is provided by
special-purpose code in the NLP module that
knows the range of possible parse structures
and how to extract time and date values from
them. Once it has identified all the pieces of
the request, the NLP module assembles them
into a request structure that is passed on to the
AR module.

<whatsOn> = <actionPhrase> [<modifierPhrase>];
<tuneTo> = <tuneToPrefix> <channel>;
<search> = (<searchPrefix> <title> [now] | <title>);

<searchPrefix> = (can i watch | play | search | find);

<actionPhrase> = <whatsOnPrefix> | <whatsOnPrefix> <channel>;

<tuneToPrefix> = ((tune to | change the channel [to] | change [to]);

Figure 3 – a portion of the top level grammar

Figure 4 - Parse Structure for “What’s on Disney on

Saturday?”

 For the current application, we assume that
any information not indicated in the request is
deliberately left unspecified. For example, if
no channel is mentioned, we assume the user
wants to know the most popular shows
available on any channel in the requested time
span; if no time is specified, we assume the
request is for programs on during prime time
today. Missing information is therefore either
left unspecified in the request or filled in with
a default value.

 In more complex applications, we might
need to explicitly mark that the information is
missing so that later processing can take
necessary action to deal with the situation.

ACTION RECOGNITION

 The AR module receives the request
structure built by the NLP module and
attempts to carry out the request. This
involves constructing and sending an
appropriate query to Comcast’s REX search
system. REX is the system we use to index
and search through the complete set of
programs available on broadcast and cable
channels and on demand. The precise form of
the query to REX depends on the type of
action requested. For “what’s on” requests,
the query indicates the requested channel (if
any) and time span. For “search” requests,
the query indicates the title that the user
specified. For “tune” requests, the query
indicates the name of the requested channel.
We need to query REX for tune requests to
find the channel number corresponding to the
channel name; if the request specified a
channel number directly then we can skip the
query.

 The results returned by REX are packaged
up along with an indication of the request type
and the output of the ASR module and sent
back to the client app. In case of an error, an
appropriate error code is returned, along with
any relevant information about the error. As
mentioned above, a more complex application

might require further interaction with the user,
either to resolve an error or to get more
information needed to carry out the request.
The AR module contains a simple text-to-
speech component, based on the FreeTTS
system [2], to handle such interaction. This
capability is not needed currently, though.

THE IPHONE/ANDROID CLIENT APP

 The server-side components described
above support a client iPhone/Android app
that allows the user to speak requests and see
and respond to the results. The initial screen
for this app is shown in Figure 5; the user can
press the microphone and speak a request. A
typical response is shown in Figure 6; here the
user has asked “what’s on CNN tonight?” and
the app displays the list of programs returned
after processing through the ASR, NLP, and
AR modules. The user can select a specific
show to get more detail, as shown in Figure 7.
Search requests display similar responses,
except that the results are organized by
relevance to the request rather than by time.

Figure 5 – Initial Client App Screen

 CONCLUSION AND FURTHER WORK

 Speech-based interfaces provide a uniquely
simple and direct interface. Users can simply
say what they want, without having to type in
complex queries or navigate through layers of
menus. The V-REX platform combines
automated speech recognition, natural
language processing, and action resolution to
power speech interfaces. Our initial app
brings this ability to searching and controlling
cable set-top boxes. We are exploring ways
to extend V-REX to other applications built
on Comcast’s cable/internet infrastructure.

One possibility is to extend it to our Play Now
system for watching programs over the web.
A more interesting extension is to apply it to
Comcast’s home security service, so that
people can easily check on the status of their
homes while they are away.

REFERENCES

[1] http://java.sun.com/products/java-
media/speech/forDevelopers/JSGF/index.html

[2]
http://freetts.sourceforge.net/docs/index.php

Figure 6 – Response to “What’s on” request

Figure 7 – Details of a specific program

