
OPTIMIZING FAIRNESS OF HTTP ADAPTIVE STREAMING IN CABLE NETWORKS 
 
 Michael Adams 

Chris Phillips 
 Solution Area Media 
 Ericsson  
 

Abstract 
 
This paper describes a novel approach to 

traffic management for HTTP adaptive 
streaming that optimizes fairness across 
multiple clients and increases network 
throughput. Readers of the paper will gain 
an understanding of the network impacts of 
implementing HTTP adaptive streaming, and 
how network management techniques may be 
applied to optimize fair bandwidth allocation 
between competing streams. 
 

Benefits for the network operator 
include: 

- enforcing fairness in the network 
(without resorting to techniques such 
as deep packet inspection), 

- managing and ensuring consumers’ 
overall quality of experience, and 

- preventing network instability that 
can be caused by competing clients in 
a shared access network. 

 
Benefits for the consumer include: 
- a more consistent overall quality of 

viewing experience, and 
- the ability to simultaneously use 

multiple devices within the home. 
 

The concepts described in this paper 
have been prototyped to show improvements 
in fairness and overall network throughput 
without placing special constraints on the 
client implementation (which is typically 
outside of the operator’s control). The results 
are being published here for the first time. 

BACKGROUND 
 

There is a great deal of interest in HTTP 
adaptive streaming because it can greatly 
improve the user experience for video 
delivery over unmanaged networks. Adaptive 
streaming operates by dynamically adjusting 
the play-out rate to stay within the actual 
network throughput to a given endpoint, 
without the need for "rebuffering". So, if the 
network throughput suddenly drops, the 
picture may degrade but the end user still 
sees a picture. 

 
Although adaptive streaming was 

originally developed for "over-the-top" video 
applications over unmanaged networks, it 
also brings significant advantages to 
managed networks applications. For 
example, during periods of network 
congestion, operators can set session 
management polices to permit a predefined 
level of network over-subscription rather 
than blocking all new sessions. This 
flexibility will become more and more 
important as subscribers start to demand 
higher quality feeds (1080p and 4K). 

 
HTTP adaptive streaming is the generic 

term for various implementations: 
 
• Apple HTTP Live Streaming (HLS) 

[1]  
• Microsoft IIS Smooth Streaming [2] 
• Adobe HTTP Dynamic Streaming 

(HDS) [3] 
 
Although each of the above is different, 

they have a set of common properties (see 
Figure 1): 

 



• Source content is transcoded in 
parallel at multiple bit rates (multi-
rate transcoding). Each bit rate is 
called a profile or representation. 

• Encoded content is divided into fixed 
duration segments (or chunks), which 
are typically between two and 10 
seconds in duration. (Shorter 
segments reduce coding efficiency 
while larger segments impact speed 
to adapt to changes in network 
throughput). 

• A manifest file is created, and 
updated as necessary, to describe the 

encoding rates and URL pointers to 
segments. 

• The client uses HTTP to fetch 
segments from the network, buffer 
them and then decode and play them. 

• The client algorithm is designed to 
select the optimum profile so as to 
maximize quality without risking 
buffer underflow and stalling 
(rebuffering) of the play-out. Each 
time the client fetches a segment, it 
chooses the profile based on the 
measured time to download the 
previous segment. 

 

 

Figure 1: Ingest, transcoding, segmentation and adaptive streaming. 
 

MPEG DASH 
  

MPEG Dynamic Adaptive Streaming 
over HTTP (MPEG-DASH) is certain to 
become a significant force in the marketplace 
[4]. While HLS uses the MPEG-2 transport 
stream format (which is widely deployed in 
most conventional digital TV services), 
Smooth Streaming and MPEG-DASH use an 
MPEG-4 Part 14 (ISO/IEC 14496-12) 
transport format known as fMP4 or ISO 
MP4FF.  

 
Smooth Streaming and MPEG-DASH 

include full support for subtitling and trick 
modes, whereas HLS is limited in this 
regard. MPEG-DASH enables common 

encryption, which simplifies the secure 
delivery of content from multiple rights 
holders and to multiple devices.  
 

Another key difference is the way in 
which MPEG-DASH and Smooth Streaming 
play-out is controlled when transmission path 
conditions change. HLS uses manifest files 
that are effectively a playlist identifying the 
different segments so that, for instance, when 
path impairment occurs, the selection of the 
URL from the manifest file adapts so that 
lower bit-rate segments are selected. In 
Smooth Streaming the client uses time 
stamps to identify the segments needed and 
thus certain efficiencies are gained. Both 
HLS and Smooth Streaming handle files in 



subtly different ways, each claiming some 
efficiency advantage over the other. Both use 
HTTP, which has the ability to traverse 
firewalls and network address translation, 
giving it a clear advantage over RTSP, 
RTMP and MMS. 
  
Adaptive Streaming Standardization  
  
There are a number of initiatives aimed at 
large parts of the overall solution for 
streaming video. A document called MPEG 
Modern Transport over Networks was 
approved at the 83rd MPEG meeting in 
January 2008, which proposed a client that 
was media aware with optimization between 
the transport and content layers to enable 
video to traverse networks in an adaptive 

manner. However, at that time, its focus was 
on the widespread adoption of a variant of 
AVC/MVC called SVC (Scalable Video 
Coding) that would allow the client to 
generate acceptable video from a subset of 
the total aggregated transport stream. 
 

 Subsequently, at the 93rd meeting, the 
focus was changed to HTTP streaming of 
MPEG Media called Dynamic Adaptive 
Streaming over HTTP (DASH) using 3GPP's 
Adaptation HTTP Streaming (AHS) 
as the starting point. MPEG 
has standardized a Manifest File (MF), a 
Delivery Format (DF), and means for easy 
conversion from/to existing File Formats 
(FF) and Transport Streams (TS) as 
illustrated in Figure 2.

 

Figure 2: Dynamic Adaptive Streaming over HTTP (DASH). 
Courtesy: Christian Timmerer, Assistant Professor at Klagenfurt University (UNIKLU) 
 
The MPEG-DASH standard got Final 

Draft International Standard status in 
December 2011. MPEG-DASH has the 
potential to simplify and converge the 
delivery of IP video, provide a rich and 
enjoyable user experience, help drive down 
costs and ultimately enable a better content 
catalog to be offered to consumers, because 
more revenues can be re-invested in content, 
rather than paying for operating overheads. It 

will help streamline and simplify workflows 
and enable operators and content providers to 
build sustainable business models to continue 
to deliver the services that consumers 
demand. 
 
FAIRNESS IN ADAPTIVE STREAMING 

 
HTTP adaptive streaming clients 

implement a “greedy” algorithm, in which 



they will always seek to achieve the 
maximum bit rate available. This can lead to 
instability, oscillation and unfairness, where 
some clients will win and others will lose in 
times of network congestion [5], [6]. 
 
Reference Architecture 
 

Figure 3 illustrates a typical arrangement 
where HTTP adaptive streaming is used to 

deliver video and audio programming to a 
device in a subscriber's home. Note that a 
CDN is typically used to replicate segments 
within the core network and this is assumed 
to have infinite bandwidth. At the edge of the 
network, the bandwidth is constrained by: 
 

1. The downstream path over DOCSIS. 
2. The wireless network path to a Wi-Fi 

connected device. 
 

 

Figure 3: Reference architecture 

Prototype System Description 
 

Figure 4 shows the prototype system that 
was developed to analyze the behavior of 
standard HLS adaptive streaming clients on a 
shared access network. 

 
Packet scheduling is determined by the 

bandwidth monitor/allocator. It also creates a 
virtual pipe and constrains all packet delivery 
within it. The virtual pipe can be dynamically 
resized while the system is running. Two 
scheduling algorithms can been implemented 
within the virtual pipe; best-effort and 
weighted fair queuing. Best-effort 

implements first-come, first-served packet 
delivery. The weighted fair queuing 
algorithm schedules transmission according 
to the virtual pipe size and compares the 
amount of data transmitted through various 
classes to ensure that each class is allocated 
its fair share. 

 
The bandwidth monitor/allocator also 

logs bandwidth utilization data for use by the 
real-time statistics monitor and the graphing 
module. This data is used to visualize the 
behavior of the system and to understand the 
behavior of the adaptive streaming clients. 
 



 

Figure 4: Prototype system

EXPERIMENTAL RESULTS 
 
The experimental approach followed was 

to compare results of the best-effort (no 
traffic management) behavior with that of 
weighted fair queuing. The first best-effort 
run was repeated with identical parameters 
except for enabling the weighted fair queuing 
algorithm in the second and third runs. A 
fourth and fifth run were done with a 
different set of encoding profiles to 
investigate the effect that this would have on 

the behavior of the adaptive streaming 
clients. 
Run 1: Best Effort 
 
Start Time 15:30:00 GMT 
Pipe 10 Mbps   
Content How to Train your Dragon 
Profiles 560, 660, 760, 860, 1000, 

2000, 4000 Kbps 
Clients Mac Mini (115), iPad (112), 

iPad (114), iPad (111), 
iPhone (117) 

Server Best Effort 



 
1. Each client started in sequence; all 

clients settled to 2 Mbps profile 
(Graph 1). 

2. After 10 minutes iPad (114) goes to 1 
Mbps profile; 9 Mbps pipe utilization. 

3. Stopped iPad (114); 8 Mbps or 100% 
utilization (Graph 2). 

4. Stopped iPad (111); 6 Mbps or 60% 
utilization (Graph 2). 

5. After approximately 10 minutes, Mac 
Mini (115) jumped to 4 Mbps profile; 
still at only 80% pipe utilization. 

6. Eventually, after approximately 30 
minutes, system achieved 10 Mbps or 
100% utilization (Graph 3). 

 

 

Graph 1: Five clients started in sequence. 
 

 

Graph 2: From four to three clients, 60% 
utilization. 

 

 

Graph 3: Final state achieved: 100% 
utilization. 

 

This result was unexpected. It appears 
that the three clients (Graph 2) became 
locked in a synchronous pattern and as a 
result measured a lower segment-download 
rate than expected. As a result, none of the 
clients moved to a higher-rate profile, even 
though adequate bandwidth (4 Mbps) 
remained unused. Eventually (Graph 3) this 
pattern corrected itself, but not until 
approximately 30 minutes had elapsed. 
 
Run 2: Weighted Fair Queuing 
 
Start Time 15:27:00 GMT 
Pipe 10 Mbps   
Content How to Train your Dragon 
Profiles 560, 660, 760, 860, 1000, 

2000, 4000 Kbps 
Clients Mac Mini (115), iPad (112), 

iPad (114), iPad (111), 
iPhone (117) 

Server Weighted Fair Queuing 
Weighting 
Factor 

All clients set to 1 

 
1. Each client was started in sequence 

(as before); same result as best-effort 
case (Graph 4). 

2. iPad (111), iPad (116), and Mac Mini 
(115) all occasionally reached the 1 
Mbps profile. Pipe stays at very close 
to 100% utilization. 

3. Stopped iPad (114); immediately 
remaining clients achieved 100% pipe 
utilization. After 2 min iPad (111) 
reached the 4 Mbps profile (Graph 5). 

4. Stopped iPad (111); pipe at 90% and 
then increased to 100% utilization 
(Graph 6). 

 

 



Graph 4: Five clients, 100% utilization. 
 

 

Graph 5: Four clients, 100% utilization. 
 

 

Graph 6: Three clients, 100% utilization. 
 

It is apparent from Graphs 5 and 6 that 
the throughput of the system is much higher 
than in the best-effort case. In all cases, the 
pipe was utilized at, or close to, 100%. This 
may be understood by considering the 
scheduling algorithm at the HTTP server 
sequences through each partial segment 
download. Hence the clients take turns to 
achieve a more efficient segment download 
and therefore request a higher profile than in 
the best-effort case. The pipe throughput is 
maximized by the scheduling algorithm. 
 
Run 3: Weighted Fair Queuing 
 
Start Time 20:39:00 GMT 
Pipe 10 Mbps   
Content How to Train your Dragon 
Profiles 560, 660, 760, 860, 1000, 

2000, 4000 Kbps 
Clients Mac Mini (115), iPad (112), 

iPad (114), iPad (111), 
iPhone (117) 

Server Weighted Fair Queuing 
Weighting 
Factor 

iPad(116) = 2, 3, 4 

 

1. All clients started - no premium factor 
applied (Graph 7). 

2. iPad (116) stopped. 
3. Premium factor 2 applied to iPad 

(116) and started - quickly ramped to 
2 Mbps (Graph 8). 

4. Premium increased to 3.  115 went to 
4 Mbps (momentarily). 

5. Premium increased to 4.  114 went to 
4 Mbps  (Graph 9). 

 

 

Graph 7: Fair network queuing. 
 

 

Graph 8: Weighted fair queuing: iPad (116) 
weighting factor = 2. 

 

 

Graph 9: Weighted fair queuing: iPad (116) 
weighting factor = 4. 

 
The weighting factor allows the premium 

client to achieve a higher profile than in Run 
2, but it did not achieve the highest profile, 
probably because it was such a large jump in 
bit rate from 2 Mbps to 4 Mbps. Therefore, it 
was decided to re-run the test with a closer 
set of profile rates. 



 
Run 4: Best Effort 
 
Start Time 20:42:00 GMT 
Pipe 8 Mbps   
Content Promo Reel 
Profiles 400, 600, 910, 1200, 1600, 

2000 Kbps 
Clients iPad (111), Mac Mini (182), 

iPhone (117), iPad (114), 
iPad (116) 

Server Best Effort 
 

1. iPad (111), Mac Mini (182), iPhone 
(117), and iPad (114) started (Graph 
10 and Figure 5). 

2. 5th client iPad (116) started at 
20:46:25 (Graph 11 and Figure 5). 

 

 

Graph 10: Best effort, four clients. 
 

 

Figure 5: Best effort, four clients 
 

 

Graph 11: Best effort, fifth client started at t 
= 20:46:25. 

 

 

Figure 6: Best effort bit-rate allocation. 
 

In this case, the bandwidth was shared 
unfairly. We hypothesize that the clients that 
first achieved the highest profile (2 Mbps) 
were able to maintain an unfair share of the 
pipe because of a positive feedback effect. 

 
Run 5: Weighted Fair Queuing 
 
Start Time 20:54:30 GMT 
Pipe 8 Mbps   
Content Promo Reel 
Profiles 400, 600, 910, 1200, 1600, 

2000 Kbps 
Clients iPad (111), Mac Mini (182), 

iPhone (117), iPad (116), 
iPad (114) 

Server Weighted Fair Queuing 
Weighting 
Factor 

iPad(114) = 3 

 
1 iPad (111), Mac Mini (182), iPhone 

(117), and iPad (114) started (Graph 
12 and Figure 7). 

2 iPad(114) with weighting factor of 3 
started, and quickly ramped to 2 
Mbps (Graph 13 and Figure 8) 

 

 

Graph 12: Four clients, fair network queuing. 
 



 

Figure 7: Four clients, fair network queuing. 

 

 

Graph 13: Five clients, WFQ iPad (114) 
weighting factor = 3 

 

 

Figure 8: Five clients, WFQ iPad (114) 
weighting factor = 3 

 
In this case, bandwidth was allocated 

equally (Figure 7) with four equally weighted 
clients. Subsequently, a greater share of 
bandwidth was allocated to a premium client 
(Figure 8) with a weighting factor of 3. 

 

CONCLUSIONS 
 
Implementation of a bit-wise, round-

robin scheduler at the HTTP server can be 
used to effectively enforce fairness amongst 
HTTP adaptive streaming clients. In 
addition, a weighting factor may be 
established for a “premium” client to ensure 
that it experiences greater throughput during 
periods of access network congestion.  

 
It appears that the weighted fair queuing 

mechanism [7] implemented in the prototype 
system is effective because it operates at the 
HTTP server layer, which is at a higher layer 
in the network stack than TCP congestion 
control alone [8], [9], and because it operates 
over a significantly longer time frame. If a 
client tries to “cheat” the system by 
requesting a higher profile than can be 
sustained by the network, it will only impact 
its own performance and not that of other 
clients. 

 
IMPLEMENTATION OPTIONS 

 
In order for the weighted fair queuing 

algorithm to be effective it must be 
implemented at the point in which traffic 
converges on a shared link in the access 
network. In the case of a DOCSIS access 
network, each downstream service group 
must be treated separately. The algorithm is 
implemented at the HTTP server (at the edge 
cache) and a virtual pipe must be created to 
each downstream service group (as illustrated 
in Figure 9).



 

Figure 9: Implementation in DOCSIS Network 
 
References 
 
1. R. Pantos and W. May. HTTP Live 

Streaming. IETF Draft, June 2010. 
2. A. Zambelli. IIS smooth streaming 

technical overview. Microsoft 
Corporation, 2009. 

3. Adobe HTTP Dynamic Streaming. 
http://www.adobe.com/products/hds-
dynamic-streaming.html. 

4. ISO/IEC 23009-1:2012 – Information 
Technology – Dynamic Adaptive 
Streaming over HTTP. 

5. Saamer Akhshabi, Ali C. Begen, and 
Constantine Dovrolis. An Experimental 
Evaluation of Rate-Adaptation 
Algorithms in Adaptive Streaming over 
HTTP. Mac MiniSys’11, February 23–
25, 2011, San Jose, California, USA.  

6. Bing Wang, Jim Kurose, Prashant 
Shenoy, and Don Towsley. Multimedia 
streaming via TCP: An Analytic 
Performance Study. Department of 
Computer Science, University of 
Massachusetts. 

7. Martin J. Fischer, Denise M. Bevilacqua 
Masi, and John F. Shortle. Simulating 
The Performance of a Class-based 
Weighted Fair Queuing System. 
Proceedings of the 2008 Winter 
Simulation Conference.  

8. Robert Kuschnig, Ingo Kofler, and 
Hermann Hellwagner. An Evaluation of 
TCP-based Rate-Control Algorithms for 
adaptive Internet streaming of 
H.264/SVC. Institute of Information 
Technology (ITEC) Klagenfurt 
University, Austria. 

9. Luca De Cicco and Saverio Mascolo. An 
Experimental Investigation of the 
Akamai Adaptive Video Streaming. 
Dipatimento di Elettrotecnica ed 
Elettronica, Politecnico di Bari. 


