
 Just-In-Time Packaging vs. CDN Storage
 Yuval Fisher
 RGB Networks

 Abstract

 Operators delivering video-on-demand
(VoD) to multiple devices using HTTP
streaming must select between two options:
store assets in multiple formats to be
delivered via a content delivery network
(CDN), or utilize an on-the-fly, or just-in-time
(JIT), packaging to convert VoD assets into
the required client format when it’s requested.
This paper discusses the benefits of JIT
packaging and then proposes a model to
evaluate the costs associated with each
approach, discussing the parameters
associated with various use cases. We also
discuss the implications of the cost model for
more general edge processing, such as just in
time transcoding.

INTRODUCTION

HTTP streaming of video based on protocols
defined by Apple, Microsoft and Adobe (see
[HLS], [MSS], and [HDS]) has led to the
development of a new component in the video
delivery chain – the packager (sometimes also
called a segmenter or fragmentor). This
component creates the segmented video files
that are delivered over HTTP to clients that
then stitch the segments together to form a
contiguous video stream. The packager may
be integrated into the encoder/transcoder that
creates the digital encoding of the video, but
often it is a separate component. Separating
the components has various advantages,
including the ability to capture the output of
the encoder/transcoder as a mezzanine format
that can be reused for packaging in both live
and off-line scenarios.

The emerging MPEG DASH (see [DASH])
standard attempts to standardize and unify
these protocols under one open specification
umbrella; but in the near term, DASH adds

more formats that service providers may need
to address, since HLS, MSS, and HDS will
not disappear immediately, if ever. In fact,
DASH has several profiles that have very
different underlying delivery formats, so that
it may be necessary for packagers to serve not
just HLS, MSS and HDS, but an MPEG-2 TS
DASH profile and a base media file format
DASH profile as well.

In this paper, we focus on one specific use
case: just-in-time packaging (JITP), which is
applicable for VoD and network digital video
recorder (nDVR) applications, including
catch-up and restart TV. In all of these
applications, each client makes a separate
request to view video content (typically from
its beginning), so that unlike broadcast video,
viewing sessions are independent.

When delivering HTTP streams, two options
are possible: either the assets are stored in an
HTTP-ready format, so that clients can make
HTTP requests for video segments directly
from a plain HTTP server. Or, assets can be
stored in a canonical (or mezzanine) format
which is then converted to HTTP segments as
the client makes requests for them – just-in-
time. The first option is more disk storage
intensive, while the second is more
computationally intensive.

Just-in-Time Packaging

In a typical JITP use case, VoD assets are
created from live content that is first
transcoded into MBR outputs and captured by
a “catcher” component that converts the live
streams into files stored in a chosen
mezzanine format. Alternatively, file assets,
rather than live streams, are transcoded into a
mezzanine format which uses H.264/AAC for
the video/audio codecs and a pre-selected
container format. MPEG-2 TS container

format is a natural choice for the mezzanine
files, since it can contain much of the
signaling present in the original signals in an
industry-standard way.

Clients that request a stream from the JIT
packager first receive a client-manifest
describing the available profiles (bitrates,
resolutions, etc). The JIT packager will create
the manifest when it is requested the first
time; subsequent requests are served from a
cached copy. Clients subsequently request
specific chunks from the packager which
extracts the requested chunks from the
mezzanine files and delivers them to the
clients. Thus, each client request is served
from the JIT packager – the more subscribers
that exist, the more JITP capacity is needed.

Selecting a Mezzanine Format

What characteristics should the mezzanine
format have? It should:
• be computationally simple to package

just-in-time;
• retain metadata in the input streams;
• be a commonly used format with an

ecosystem of creation and diagnostic
tools.

There are two commonly used mezzanine
formats: ISO MPEG file format and MPEG-2
TS files. The first has the advantage that
multi-bitrate output can be stored in just one
file, as opposed to as many files as profiles, as
happens in the MPEG-2 TS case. This makes

management of files easier. However, MPEG-
2 TS files can provide standardized ways to
store many types of commonly used metadata,
e.g. SCTE-35 cues for ad insertion points or
various forms of closed captions and
subtitling, and these are not standardized in
the MPEG file case. Moreover, MPEG-2 TS
would normally be the format captured in the
NDVR use case, and the ecosystem of support
tools (e.g. catchers, stream validation tools,
stream indexing) is larger in the MPEG-2 TS
case. Thus, MPEG-2 TS files make a better
mezzanine format than ISO MPEG files in
most cases.

WHY USE JITP?

There are a number of reasons why JITP may
be a better alternative to pre-positioning assets
in all final delivery formats.

Storage Cost Favings

When multiple HTTP streaming formats are
used, every asset must be stored in multiple
formats, with associated storage costs. This is
especially true for network DVR where legal
requirements in some regions mandate that
separate copies are stored for each customer.

Format future-proofing

The HTTP streaming protocols in use today
are still evolving; using JITP of mezzanine-
format assets eliminates the need to re-
package VoD libraries when these formats
change. Changes in formats can be addressed

JIT Packaging: stored mezzanine files are converted
into the delivered format when requested by clients.

via software updates of the JIT packager,
which can then also manage a heterogeneous
ecosystem of different format versions (e.g.
various flavors of HLS). This is a huge boon
to operators who must otherwise decide on a
specific version of a format and thus
potentially miss features in new format
versions or not serve subscribers who haven’t
updated their video players.

Single Workflow

Using JITP for VoD with a caching CDN can
automatically lead to an efficient distribution
of contents in the CDN – that is, the caching
of short tail (or commonly viewed) assets in
the CDN and the use of JITP for un-cached
long tail (rarely viewed) assets. This ensures
that new assets automatically migrate into the
CDN without requiring a separate offline
packaging step in the workflow, as well as a
separate, offline determination of which assets
are short tail and which are long tail.

Graduated Investment

New VoD service offering using storage
rather than JITP would require all assets to be
stored in all formats up front, leading to large
initial capital expenditure. With JITP,
operators can add VoD capacity as the
number of subscribers grows with capital
expenses that match subscriber growth and
revenue.

Unicast Relationship

Because the JIT Packager has a unicast
session with the client, it can be used to
encrypt VoD sessions uniquely for each
client. Moreover, other unicast services, such
as targeted ad insertion, can be integrated into
the packager. Note that when chunks are
encrypted per user, they cannot be cached in
the CDN.

COST MODEL

In this section we describe a cost model for
comparing storage with JITP. The cost model
depends on whether the VoD streams are
CDN-cachable or not, as could be the case,
for example, if they are encrypted per user. If
they are cacheable, the storage in the core
used to store the assets, as well as the storage
in the tiers of the CDN, can be compared to an
equivalent JITP capacity. When the assets are
not cacheable, the JITP cost is higher, since
both the short and long tail content must be
packaged just-in-time.

Cacheable Assets: Storage vs. JITP

A simple cost model (see also [Fisher]) can be
created based on a few assumptions. First, we
assume that short tail content will be served
from the CDN and will not require JITP.

The cost of storing the complete library in
multiple formats depends on multiple factors
listed in the table below:

The total cost of storage Cts is then:

Cts = Cs x T x F x 3600 x L x B x 10-6 x 1/8

For example, a library of 20,000 hours stored
in three formats at the core with two CDN
points of presence (or CDN roots or different
CDN tiers) would cost $1.08M.

The equivalent cost Cjitp of serving a JITP
stream rather than using storage is the total

Description Values

L Library size (hours) 10K-150K

B MBR bitrate (Mbps) 10

S Number of subscribers 100K-10M

Pc Peak concurrency 5%

PL Percentage of long tail requests 10%

Cs Cost of storage ($/TB) US $2,000

T Number of CDN storage tiers 2

F Number of ABR formats 3

storage cost divided by the number of long
tail stream requests:

Cjitp = Cts / (S x Pc x Ps)

So, in the example above, a million users
would have an equivalent JITP cost per
stream of $216.

We can look at the parameter space of library
sizes and subscriber count to see where JITP
provides value. Given that a high-end server
can deliver hundreds of simultaneous JITP
streams, the graph shows that the range of
storage-equivalent JITP cost ranges from low
(not even sustaining hardware costs) to very
high (where significant savings can be
achieved by delivering JITP streams rather
than storage). Roughly speaking, the region
where JITP leads to cost savings over storage
is the upper left triangular half of the graph.

It’s worth noting that JITP may incur an
additional cost in inbound network traffic, at
least when it is centralized. Of course, if JITP
is not centralized, then the library must be
stored multiple times at the edge, mitigating
JITP’s value. A complete analysis of every
variation is beyond the scope of this paper,
but the model described above can be easily
modified and used in each situation.

Non-cacheable Assets

When VoD assets are not cacheable, the cost
model can still be used by considering 100%
of the assets to be long tail. This eliminates
the benefit (and cost savings) of caching the
short tail in the CDN.

Just-In-Time Transcoding

The cost model does not discuss what type of
processing is done in the network – only its
cost compared to storage. Since the
computational density of transcoding is about
two orders of magnitude less than for
packaging, the cost graph shows which
regions in the subscriber library parameter
space are suitable for transcoding as well; this
is (roughly) the upper-left triangular portion
of the graph that supports processing costs
above $1000 per stream.

CONCLUSION

JITP may offer significant cost savings over
storage, but its real value may be in other
benefits: a simplified workflow, per-
subscriber encryption based on unicast
delivery, future-proofing against the evolution
of formats, and investment and growth in
capacity that is commensurate with subscriber
growth.

REFERENCES

[Cablevision] 2nd Circuit Court ruling on
network DVR
http://www.ca2.uscourts.gov/decisions/isysqu
ery/339edb6b-4e83-47b5-8caa-
4864e5504e8f/1/doc/07-1480-cv_opn.pdf

[Fisher] Comparing Just-in-Time Packaging with
CDN Storage for VoD and nDVR Applications,
Proceedings of the Canadien SCTE, March 2012.

 [HLS] HTTP Live Streaming, R. Pantos,
http://tools.ietf.org/html/draft-pantos-http-live-
streaming-06

 [MSS] IIS Smooth Streaming Transport Protocol,
http://www.iis.net/community/files/media/smooth
specs/%5BMS-SMTH%5D.pdf

[HDS] HTTP Dynamic Streaming on the Adobe
Flash Platform,
http://www.adobe.com/products/httpdynamicstrea
ming/pdfs/httpdynamicstreaming_wp_ue.pdf

[DASH] ISO MPEG 23009-1 Information
technology — Dynamic adaptive streaming over
HTTP (DASH) — Part 1: Media presentation
description and segment formats

