
 Intelligent Caching In An ABR Multi-Format CDN World
 Patrick Wright-Riley, Brian Tarbox
 Motorola Mobility, Inc.

 Abstract

 In their infancy, content libraries
contained a few thousand pieces of content
and most vendors put a copy of everything
everywhere. As the contents grew to tens of
thousands of titles, Central Libraries were
added and Least Recently Used (LRU), then
intelligent caching, was employed. As content
libraries have grown by orders of magnitude
and now adding Adaptive Bit Rate / multi-
format copies to the mix, some suggest
intelligent caching is no longer possible.
Motorola asserts that intelligent caching is
both possible and even more critical today
than ever. Intelligent caching still plays a
valuable role in the ABR Multi-Format world.

INTRODUCTION

 In the last ten years the industry has
experienced at least three distinct generations
of thinking on the approach to placement and
duplication of content. We define the first
generation as a time when content libraries
were small enough that each Video On
Demand (VOD) system maintained its own
copy of each piece of content. These libraries
were stored on spinning media and were
served either directly via disc arrays or
DRAM. These libraries tended to contain a
few thousand titles of standard definition
content. Caching in these systems was
something that happened in the disk driver or
the VOD server’s memory backplane.

 Generation two can be characterized by
the slow introduction of high definition
content and libraries of tens of thousands
titles. This increase drove the capital
expenditure equation high enough to

discourage the placement of all content at
every site. Thus, the Central Library
approach containing the “Gold Copy” along
with smaller edge libraries that maintained
copies of the commonly viewed content being
watched by subscribers within their domain
was introduced. Many VOD systems were
constructed with the 80/20 rule where it was
assumed that 80% of the subscribers viewed
the same 20% of content. Given this
assumption, distributed edge libraries used a
simple Least Recently Used (LRU) caching
algorithm to determine which 20% of the
content from the edge library was essential to
maintain. As it turned out, this content
distribution model did not produce the content
storage and reduction in network congestion
operators expected. This dilemma led to the
development of an alternative approach called
intelligent caching. Intelligent caching (IC)
incorporated additional information about
content viewing behaviors beyond what LRU
could provide. From there IC became the
norm for caching at the edge. However not so
far down the road, the explosion in SD and
more HD content storage requirements
combined with a growing number of smart
devices and tablets, Adaptive Bit Rate/Multi-
Rate was destined to become part of the
picture.

 In the third generation, content libraries
jumped again to hundreds of thousands of
titles, with HD now dominating the content
scene. Today this content is now chunked and
replicated into several bit rates and wrapped
in several formats. Thus, hundreds of
thousands of titles can easily become millions
or billions of file chunks linked by manifest
files.

 Conventional wisdom suggested that
reaching these levels of processing and file

management rendered intelligent caching
obsolete. It’s suggested LRU caching within
the content delivery network (CDN) is both
the best that can be done and is enough.
Given that intelligent caching increased the
efficiency of edge content retention such that
98% of the content was properly retained, it
seems reasonable to explore if those benefits
can be retained in an ABR, multi-bit rate
environment.

PROBLEM DEFINITION

What is Caching and What Drives It?

 Caching is a predictive activity. When
caching, the system uses data about past
viewing behaviors to make assumptions about
future viewing behavior associated with a
given channel. The assumption typically
results in the allocation of a scarce resource
before it is actually needed. The “hit rate” of
the cache is the percent of time that the
assumption turns out to be correct. The
impact of the hit rate is based on the
comparative cost of permanently reserving the
resource against the cost of allocating the
resource on-the-fly. To achieve this second,
more efficient method, caching is most
powerful, especially given that in terms of
network usage and related congestion, when
the cost of real-time allocation is high.

 In order to quantify the value of caching
we have to look at the differential cost of
resource allocation. Disks are substantially
slower than memory and networks are
substantially slower than disks. Some VOD
vendors made a business out of this
differential by attempting to build systems
where the entire active portion of the content
library lived in memory, or DRAM. This was
a successful strategy until the growth of the
library outpaced the growth in memory chip
size. The battle then moved from DRAM vs.
Disk to Disk vs. Library where the relative
cost of late allocation was even higher.

Basic Caching

 Caching algorithms are characterized by
the predictive algorithms employed within the
CDN. Caches are assumed to be filled with
content at all times. Thus, the critical decision
is actually which content item to remove from
the edge storage. The most basic type of
algorithm supporting this capability is the
Least Recently Used or LRU. This algorithm
maintains a usage timestamp for entries in the
cache and when content removal is required
will eject the item with the oldest usage time
and replace it with new content. Such
systems update the usage timestamp whenever
there is a “hit” on the item. These algorithms
can be compared to the psychological
principal of “Win-Stay, Lose-Shift” where a
successful outcome will cause a subject to
make the same choice again and an
unsuccessful outcome will cause the subject
to make a different decision.

 This leads to the need to understand the
content viewing behavior attempting to be
predicted. In the case of content viewership
there are two approaches: attempting to
predict the future behavior of a given viewer
or the future behavior of a group of viewers.
By tracking content watched by a particular
viewer, inferences can be drawn regarding the
potential viewing of that content by the set of
all other viewers. However, when using an
LRU algorithm to do so, the system simplifies
the analysis to a single parameter—time last
used—and may not be fully representative of
the likelihood of future viewing by a group.
Thus, although LRU has some value, it is
greatly limited when compared to more
intelligent, multi-parameter caching
algorithms.

Comparison of LRU with Garbage Collection

 Java is the world’s most popular computer
language and its performance is largely
dictated by the behavior of its memory

reclamation or garbage collection system.
The Java computer language’s Garbage
Collection (GC) system is one of the world’s
most studied caching systems. Valuable
insights may be gleaned by comparing GC
with various other caching algorithms.

 One of the primary drawbacks of a simple
LRU approach is that it understates or ignores
the effect of what GC calls infant mortality of
reference. Many objects have a usage model
of initial creation followed by limited use,
ending with no further activity. In a computer
program a variable might be declared, used in
a single computation and then discarded.
Similarly, in a television viewing experience a
user might tune to a channel, watch for a few
seconds and then move on. In this scenario
the content would have a very high LRU
score. In essence, the naïve algorithm
employed by LRU would preserve the item in
cache in spite of its low actual usage. This
confirms the low predictive strength of LRU.
This is important when we consider that most
CDN “intelligent caching” systems are based
on LRU approaches.

 To achieve greater predictive power, an
algorithm must incorporate a more
sophisticated object lifecycle model; an object
being a piece of content or a chunk of content
carrying specific bite rate and format
characteristics. Such a lifecycle model is
typically generational. The GC partitions the
cache into three generations: 1) Eden, 2)
Tenured, and 3) Permanent. When objects are
first created they live in Eden. The system
periodically scans the memory list looking for
items to eject. Items in Eden that are not
ejected after two passes, meaning they still
have active references to them, are promoted
to Tenured. Items living in Tenure that
survive more passes are promoted to
Permanent and thus remain much longer in
cache. There are actually two types of GC
passes: full and partial. Partial collections are
run quite frequently, have relatively little
impact on system throughput and do not

examine the Permanent cache. Full
collections on the other hand are
comparatively rare, can often affect system
throughput and do look at the Permanent
cache. So, content that exists in the
Permanent cache are only occasionally
examined for ejection.

 Segmented LRU cache uses a similar
(though limited) system. There are two LRU
lists. Items initially live on the first list and
after a second “hit” get promoted to the
second list. While this is certainly better than
a simple LRU, there is still a world of
difference between noticing a second hit and
true intelligent caching.

Advantage of Intelligent Caching

 Intelligent Caching is a term we reserve
for systems incorporating a more
sophisticated object usage model. Such a
model must acknowledge the realities of
content viewing such as channel surfing, free
content preview, time of day and day of week
viewership patterns and other patterns of
apparent viewership that may or may not
represent true viewing of content.

 The bottom line is that content hits, initial
or passive, are not predictive or representative
of actual viewership until the aggregate
viewing time has exceeded a certain quantum
of time. Once the aggregated viewing time of
the content has passed a threshold (which may
be dynamic and involve multiple analytic
parameters) then statistical inferences may be
made about the future likelihood of additional
views. This is the basis for intelligent caching
algorithms and where their value lies above
LRU algorithms.

Factors That MAY Diminish Predictability

 If in a multi-bit rate, multi-format world
where content is delivered over a CDN, one
could argue that caching, in its entirety, is
unnecessary. There are factors that are

commonly cited as evidence that caching is no
longer possible or valuable. These may or
may not eliminate the usefulness of all
caching algorithms, but they certainly provide
a challenge to the usefulness of some caching
techniques. It is helpful to remember that the
caching algorithm attempts to extrapolate
from the past exposure or access of content
the future possibility of that content being
viewed again, possibly by another viewer.
The problem in understanding and valuing
cache is that “the same content” may now
exist in multiple copies, in different formats
and bit rates, with chunks spread across
multiple edge streaming servers. (See section
Content Affinity for more details about chunk
distribution).

Multiple Formats

 As we enter into the second half of 2012
the video format battle is raging on. Apple’s
HLS format appears to be dominant, but the
Microsoft and Adobe formats are still
contenders. Although it is unclear what
position these latter companies are taking with
respect to future support, they cannot be
discounted. At the same time the DASH
specification is evolving and may, over time,
acquire significant share. While many hope
to support fewer than four formats, that time
is not yet here (and may never arrive).

 There are at least two ways to address the
question of how multiple formats effect cache
predictability.

 One way is to ask the question, “Does the
fact that a piece of content was viewed in a
particular format “enough” provide any
evidence that it will be viewed again in the
future…in that same format and/or in other
formats?” Since the multi-format ABR world
is so new it’s hard to anticipate future usage
patterns. To the extent that we can
extrapolate from existing usage patterns it
seems safe to assert that content reaching a

threshold of use is in general more likely to
receive future plays than content that has not
reached the threshold. It is also reasonable,
though untested, that reaching the threshold
on a particular piece of content in one format
is at least weak evidence for the future
popularity of that content under a different
format. To state the opposite one would have
to assert that popularity in one format
provided zero evidence of possible future
popularity under another format which is
unreasonable.

 A second approach to this problem is to
think about multistage packaging and
common formats. As has been discussed in
other papers, there is an ongoing debate of the
merits of packaging in various locations.
Some lobby the benefits of Central Packaging.
Others point out the potential benefits of
customization from Edge Packaging. An
interesting hybrid approach is to perform an
initial round of chunking and manifest
creation in the center, followed by a real-time
component that transwraps content and
performs unique, targeted manifest
generation. From a caching point of view this
approach defers the combinatorics of multiple
formats until well downstream of the CDN. A
cache element located “upstream” of this real-
time transwrapper might see just a single
format, thus diminishing its value.

Multiple Bit Rates

 The key to adaptive bit rate streaming is
the availability of multiple representations of
each piece of content. This can be seen from
at least two points of view. On one hand the
same content might well be viewed at a
different bit rate on a phone, a tablet and a
big-screen LCD based simply on the
capability of the various devices. In this slice
of the world each stream might have a
different bit rate, but does not necessarily
change its bit rate during the presentation. In
the other slice, each client responds to the

ever-changing load on the network by asking
for smaller content when the network is slow
and larger content when the network is fast.
This is the grand assumption behind most
ABR streaming.

The problem is that it invokes the dilemma of
the commons: when there is a shared and
limited resource, the greater good is often
different from the individual good. When the

Figure 1: Possible Caching Prior to Transwrapping

will be made available that attempt to game
the system to consume more than “their fair
share” when the network is congested? We
assert that it remains to be seen just how many
distinct bit rates are actually active for a given
content. So, while at first blush ABR might
multiply the number of different copies of
each piece of content by a factor of
per format, the actual number may be

anging load on the network by asking
for smaller content when the network is slow
and larger content when the network is fast.
This is the grand assumption behind most

The problem is that it invokes the dilemma of
s a shared and

the greater good is often
different from the individual good. When the

network is congested, every viewer will fully
support the idea that everyone else
limit their bandwidth such that “I” can
continue streaming the highest quality
experience. And everyone else feels the same
way. This can be controlled if the client
software is controlled by the infrastructure
providers in that their client software can
enforce the self-limiting behavior. On the
other hand, does anyone doubt that clients

: Possible Caching Prior to Transwrapping

be made available that attempt to game
the system to consume more than “their fair

the network is congested? We
assert that it remains to be seen just how many

rates are actually active for a given
content. So, while at first blush ABR might
multiply the number of different copies of

content by a factor of six to ten
, the actual number may be

significantly lower, perhaps
format.

NDVR – Unique Copy

 Unique copy basically eliminates the
ability to do caching at all. For those
unfamiliar with the concept, a legal ruling has

network is congested, every viewer will fully
support the idea that everyone else should
limit their bandwidth such that “I” can

e highest quality
experience. And everyone else feels the same
way. This can be controlled if the client
software is controlled by the infrastructure
providers in that their client software can

limiting behavior. On the
anyone doubt that clients

perhaps three or four per

Unique copy basically eliminates the
ability to do caching at all. For those
unfamiliar with the concept, a legal ruling has

declared that if some number of viewers
record the same content, the NDVR system
must store a unique and distinct copy of that
content for each of those viewers. In the
systems, operators are explicitly forbidden to
store a single copy and manage viewer access
to that copy. So the only opportunity for re-
use of segments or manifests would be if an
individual user watched a recorded show
multiple times—probably not sufficient to
take advantage of caching.

 While this might be seen as ending any
discussion of caching, keep in mind that
Unique Copy presents problems for many
aspects of the system. It is anticipated that
some vendors may push the envelope of
mixed common copy / unique copy systems,
especially outside North America. In this
scenario, caching may have a larger role to
play.

Personalization

 Personalization is the process of
converting a general video stream into one
tailored for a particular viewer or group of
viewers. Two main categories exist here; ad
insertion and blackout (both are discussed in
more detail in the paper “Complexity
Considerations for Centralized Packaging vs.
Remote Packaging” being presented at this
conference.) In each case a stream that
logically could be used to satisfy many stream
requests is turned into one that is usable for a
subset of those requests. To the degree that
this personalization happens upstream of the
caching system it will naturally render the
caching system useless.

Factors That May Enhance Predictability

 While many types of systems suffer from
added scale, caching algorithms actually tend
to work better in larger environment, if simply
because there is more data to use for decision

making and there is more content to provide a
better opportunity to employ caching to
enhance performance. There will
undoubtedly be many different sized
deployments of video systems, now and in the
future. CDN-enabled, multi-format, multi-bit
rate systems will be overwhelmingly biased
towards the larger of these deployments; the
cost of the complexity associated with such
CDN systems precludes them from the
smaller tier two and tier three deployments.

 This then leads to the next important
question which is, “Where does the caching
engine live in the CDN architecture?” If it
lives on the edge server, then it is limited to
the total number of streams supported by that
server. Many edge servers are relatively
small devices supporting only a few thousand
streams. The chances of getting meaningful
hit rates in such a small environment are
correspondingly low. On the other hand, if
the caching engine lives near the edge, but in
the CDN it might well be able to see dozens
or hundreds of the edge servers. This scale
changes everything. The chances of getting
several play requests for a given content out
of several hundred thousand streams is quite
reasonable.

The Role of Content Affinity in CDN Caching

 Most diagrams of ABR streaming show
the client talking directly to an edge Packager
or the CDN; the role of any edge server is not
discussed. Motorola believes this is a mistake
and causes large opportunities for caching via
the use of Content Affinity to possibly be
overlooked. If the diagrams do show an edge
streamer they tend to show only a single one.
In almost all cases any reasonably sized
deployment will involve dozens or hundreds
of edge streamers since each such device
typically only supports a few thousand
streams at a time.

 Technical papers that have included a
multiplicity of edge streamers have tended to
view them as interchangeable, even on the per
stream basis. It has been asserted that each
chunk request from a client might be serviced
from a different edge streamer, assuming tha
every edge streamer has the same chunks
This is then described as a resilient stateless
design that can trivially survive the loss of
one or more edge streamers. Some of that is
true, but at a cost. The cost is that by making
server selection stateless we remove the
possibility of using knowledge from previous
states to improve our caching.

 Content Affinity is the process whereby
all streams for the same content are directed
to the same edge streamer. This can result in
enormous savings in both disk space and
network bandwidth utilization. If all streams
for Spiderman, as an example, go to the same
streamer, there is a far greater opportunity for
fragment re-use than if the streams
Spiderman are distributed randomly to several
dozen streamers.

 If we accept the gains that can be realized
from Content Affinity then we must look to
see which deployment models give the best

Figure

papers that have included a
multiplicity of edge streamers have tended to
view them as interchangeable, even on the per
stream basis. It has been asserted that each

request from a client might be serviced
, assuming that

every edge streamer has the same chunks.
This is then described as a resilient stateless
design that can trivially survive the loss of

edge streamers. Some of that is
The cost is that by making

ss we remove the
possibility of using knowledge from previous

Content Affinity is the process whereby
all streams for the same content are directed
to the same edge streamer. This can result in

disk space and
network bandwidth utilization. If all streams

go to the same
there is a far greater opportunity for

use than if the streams for
are distributed randomly to several

If we accept the gains that can be realized
from Content Affinity then we must look to
see which deployment models give the best

chance of using Affinity to our advantage.
Figure 2 shows one such configuration.

 The client makes its initial request
Cluster Manager (CM) which is a control
plane application that maintains the
knowledge of which edge streamer ha
content. The CM selects a streamer and
issues an HTTP redirect message to that
device. The client re-issues the request to the
streamer which either services it directly if
possible or defers to the Edge
create the manifest, if necessary.

 Note that Content Affinity is a separate
concept from caching and the CM contains no
storage of manifests or content chunks
CM simply directs streaming requests in such
a way as to increase the likelihood that the
target Edge Streamer will already contain the
required chunks for a stream.

Figure 2: Content Affinity Deployment

chance of using Affinity to our advantage.
Figure 2 shows one such configuration.

The client makes its initial request to a
Cluster Manager (CM) which is a control
plane application that maintains the
knowledge of which edge streamer has which
content. The CM selects a streamer and
issues an HTTP redirect message to that

issues the request to the
reamer which either services it directly if

Edge Packager to
if necessary.

Note that Content Affinity is a separate
concept from caching and the CM contains no

content chunks. The
simply directs streaming requests in such

a way as to increase the likelihood that the
target Edge Streamer will already contain the

for a stream.

Comparing Intelligent Caching with LRU
Caching in a CDN

 LRU-based caching in a CDN
intelligence about the content, its placement
or its usage. The algorithm simply notices
which chunks were the least recently used and
discards them when it determines that it needs
to create space for new chunks. There is a
single ordered list of the chunks
maintained at the edge of the
single list covers all chunks sent to all edge
streamers. It also makes no use of the fact
that chunks may actually be related, i.e.
part of larger piece of content. This can be a
benefit as well as a drawback.

 If a viewer is channel surfing and briefly
visits 20 different channels for 5 seconds
each, then the system will likely generate the
highest time-last-used values for those chunks
and so they will remain stored in cache over
other content that should be kept instead.
more intelligent system would never have
promoted those chunks as they are clearly of
transitory usage. On the positive side
the system views each chunk individually it
would not use those minor play times to
promote later chunks from the same pieces of
content.

Figure 3: LRU-based Caching of
Popular/UnPopular Content

Comparing Intelligent Caching with LRU

CDN uses no
intelligence about the content, its placement,
or its usage. The algorithm simply notices

the least recently used and
discards them when it determines that it needs

. There is a
chunks logically

maintained at the edge of the CDN. This
sent to all edge

streamers. It also makes no use of the fact
may actually be related, i.e., being

. This can be a

surfing and briefly
visits 20 different channels for 5 seconds
each, then the system will likely generate the

for those chunks
remain stored in cache over

other content that should be kept instead. A
elligent system would never have

they are clearly of
On the positive side, since

individually it
not use those minor play times to

same pieces of

 An intelligent caching system would tend
to treat such channel surfing as below the
threshold for promotion within
would thus not eject other, more popular
content.

 To put it another way,
where three clients sampled a piece of content
but ultimately were watching
content and a fourth client sampled and then
watched the content the other
Putting aside the bit rate and format questions
for a moment, we should objectively conclude
that the program being watched by three
viewers was more popular than the
content and should bias any limited resources
such as caching towards the more popular
program. The CDN/LRU-based cache cannot
do that as it uses a strictly time
algorithm rather than a hit counting
algorithm. The Content Affinity
system, on the other hand
direction of the common content to a common
edge streamer and the one
different edge streamer. This automatically
increases the locality of usage of each
content to a given pump and thus
the hit rate of the particular pump’s

ased Caching of
Popular/UnPopular Content

Figure 4: Affinity-based Caching of
Popular/UnPopular Content

An intelligent caching system would tend
to treat such channel surfing as below the

within the cache and
other, more popular

consider the case
sampled a piece of content

were watching a different
sampled and then

the others sampled.
rate and format questions

we should objectively conclude
being watched by three

was more popular than the other
and should bias any limited resources

such as caching towards the more popular
based cache cannot

do that as it uses a strictly time-last-used
ther than a hit counting-based

algorithm. The Content Affinity-based
on the other hand, allows for the

direction of the common content to a common
-off content to a

different edge streamer. This automatically
locality of usage of each piece of

and thus increases
particular pump’s cache.

ased Caching of
Popular/UnPopular Content

CONCLUSION

 Historically, Intelligent Caching has been
shown to provide significant reductions in the
need for potentially expensive content
storage. This benefit should not be
discounted lightly. We have described several
of the challenges facing intelligent caching in
a multi-format ABR streaming environment.
Some of these challenges such as the legal
requirement for unique copy NDVR may

prove insurmountable. We have, however,
shown several opportunities that may allow
the use of intelligent caching in other domains
to have significant benefits over LRU
caching. In particular, we have shown that
the affects of Content Affinity can be
profoundly and positively affected by
efficient, intelligent caching algorithms.

