
HTML5 Framework and Gateway Caching Scheme for Cloud Based UIs
 Mike McMahon, VP of Web Experience and Application Strategy
 Charter Communications

 Abstract

 Recent advances in our industry such as
TV Everywhere and second screen,
companion apps merge video delivery and
consumption with web technologies.
Similarly, much progress has been made in
introducing service-oriented architectures,
exposing common web services and enabling
a high degree of consistency and re-usability
in backend systems.

 Video is now clearly being consumed on a
wide range of devices and these devices can
vary wildly in terms of screen size,
capabilities, development platforms, etc.
Tablets, game consoles, smart TVs, mobile
phones and a number of other devices are all
viable video terminals. Processing and
delivering video into a variety of flavors, bit
rates and such is non-trivial but is generally
well understood and now fairly commonplace.
In order for the Cable industry to fully
embrace an already highly fragmented client
platform landscape and position itself to
exploit new devices as they become available
it is necessary to achieve a similar level of
abstraction and re-use in the way user
interfaces are built, delivered and maintained.
This paper presents an HTML5 based UI
framework, built on open standards but
optimized and configured specifically for the
needs of TV centric applications.

THE HTML5 OPPORTUNITY

 Although HTML5 remains a maturing
technology, the web development community
has actively embraced it and most modern
web browsers already support it. In our
industry, there has been some speculation
surrounding the video tag and the current lack
of DRM. The premise here is not “HTML5

video,” rather the use of cutting edge web
techniques associated with establishing a user
interface, built from a singular and re-usable
code base which is common and consistent
across a wide range of devices. For the Cable
Industry, moving the user interface code into
the Cloud in this way not only represents an
opportunity to address a variety of devices,
but additionally empowers us to embrace
retail devices as well as add features and
extend functionality at web-like velocity,
removing the burden of code downloads and
complex provisioning scenarios.

Open Source Frameworks

 There are countless examples of extremely
powerful applications, written entirely as web
applications that are as rich in functionality,
animation effects and behavior as desktop
applications. In practice, these are written as
a combination of HTML5 along with an
aggressive use of JavaScript and CSS3. It is
important to recognize that it is this collection
of technologies, rather than HTML5 itself that
enable these types of user interfaces. A
variety of JavaScript and CSS3 frameworks
such as jQuery or Sencha exist for HTML5
development. These typically abstract away
platform idiosyncrasies, establish object and
state models, provide a variety of animation
libraries and generally simplify the
development of a single web application to
run across a variety of devices.

THE GAP

 Without doubt, individual providers will
seek to differentiate their brand through
unique designs, features and interactivity.
While each individual service provider could
certainly select a given framework and
develop its own, unique cross platform user

interface there would be little commonality
across the industry and much duplication of
effort. We will all have linear listings and
VOD search. We will all have cover art and
DVR scheduling. Grids and a baseline set of
animations are inevitable. We will share the
need to support the same range of devices.
Furthermore, each provider would be
burdened with updating to versions of the
framework and addressing new devices,
screen resolutions, etc.

AN INDUSTRY FRAMEWORK

 Envisioned here is a Cable Industry UI
Framework. The ambition is to select among
the various open source HTML5 frameworks
the core aspects most beneficial to the generic
needs of TV centric user interfaces. There
would likely be several components involved,
the particular assembly of which would
constitute an MVC type construct with
particular focus on the device and object
abstractions required to represent “TV.” This
baseline component assembly would
constitute the core foundation but would
require an additional layer of CSS3 and
JavaScript abstraction for the Cable specific
UI components and underlying object model.
The high level stack is represented below:

 The overriding purpose of this stack is to
leverage the generalized foundations of an
underlying open source framework such as
jQuery and build on top of it the necessary
specifics relating the Cable industry. These
specifics would include such things as objects
for TV listings, recommendations, actors,
movies as well as standardized methods and
callback routines for fetching
recommendations, content searches, etc.
Likewise, a variety of UI components
representing things like an actual TV listings
grid and animation effects such as a cover art
carousel would be optimized. CSS3 style
sheets for each device family or particular
model would cater to the specifics needed in
each rendered component. Each layer of this
stack is intended to be extensible.

MSO Customization and Extensibility

 Each MSO would benefit for the shared
plumbing in the underlying framework.
Configuration files, unique to each MSO
would map to their web service endpoints,
define the specific assembly of the various UI
components into their presentation and
provide a skinning capability via CSS3
overrides.

 As new objects, event handlers or
animations were envisioned and required; an
MSO or third party would develop them
within the overall framework. Ideally, these
would be contributed back into the
community such that other MSOs would
benefit. There would likely, for example, be
several variations of a TV listings component
to choose from as well as useful extensions by
way of animation effects.

Inclusion in App Stores

 There is often confusion between “Apps”
and “HTML5.” The two are indeed different
things as “Apps” are compiled, installable
binaries and “HTML5” represents web pages.
App stores and HTML5 are, however,

perfectly compatible. There is, of course,
very good reason to place applications in app
stores. Most users of iOS and Android
devices in particular are now familiar with
app stores and this is the dominant avenue by
which they are likely to search for and
discover an MSO application. Applications
available in these stores are compiled natively
for the specific platform. In order to achieve
the benefits of app store inclusion as well as
the ability to re-purpose HTML5 across
platforms a “native wrapper application” is
written which essentially compiles a
rudimentary shell for the specific platform
and uses the device’s underlying web browser
to render all actual user interface screens.
This is, for example, the way in which Netflix
develops its applications.

ADDRESSING THE BIG SCREEN

 With regards to the common retail devices
of today such as iOS and Android powered
smartphones and tablets, laptops and PCs this
framework would provide a robust
mechanism to deliver a common and
consistent user interface as well as minimize
the associated code. The UI is, effectively, a
giant web site delivered from the Cloud.
Changes made to a single file would
propagate to all devices and users would not
need to download any updates, they would
simply benefit from the new experience
during their next session. This is all well and
good, but to what extent could the framework
be used to deliver the same experience to a
STB connected to a 60-inch plasma?

Relevance to the RDK

 The RDK recently introduced by Comcast
includes a Webkit implementation. Webkit is
an open source HTML5 compliant web
browser, used in both Apple’s Safari and
Google’s Chrome browsers. This provides
an alternative to Java as the presentation

environment on the CableLabs <tru2way>
reference implementation.
 This stack can be used in a master-slave in-
home architecture whereby a gateway device
running the full RDK stack serves as the
service termination point within the home,
commanding control of tuners, handling
conditional access, etc. Additional devices
such as laptops, tablets and smartphones can
connect to the gateway and both consume
tuners and receive the user interface, which is
delivered as HTML5 via a web server running
inside the gateway. The gateway can be
“headed” meaning a television display is
actually connected to it or “headless” meaning
it serves as the termination point but
exclusively provides the UI and services to
other devices within the home. Additional
outlets need only be very dumb, thin IP STBs,
which run Webkit.

 To be sure, this description of the RDK
does not do it full justice as it is, truly, a very
compelling development and much more
significant than the brief description above.
The point here, however, is that there is an
HTML5 presentation layer available and that
it can render to the big screen.

 Thus, a modern HTML5 compliant web
browser is available through the RDK. The
RDK, however, does not provide any specific
UI or further framework, just that open book
upon which things could be written. As is the
case with other HTML5 devices, each MSO
would need to develop and maintain its own
specific UI.

 The proposal is to extend the RDK to
include the same UI framework discussed in
this paper.

GATEWAY CACHING SCHEME

 The UI framework would necessarily be
hosted in the Cloud. This would allow it to be
used independent of RDK gateway
architectures as well as ensure that the UI

could be rendered outside of the home over
any network. By including the framework
within the RDK, however, there are additional
benefits relating to caching and performance
to explore.

 Insofar as an RDK based gateway acts as a
web server (both to itself and other devices
within the home) it is, in effect, a proxy to the
actual remotely hosted Cloud. Like all
proxies, it acts as the source of truth from the
perspective of the client. This presents
potential challenges by way of ensuring the
gateway is, in fact, up to date but also
represents a significant opportunity to be used
as a caching node within a distributed
architecture. Open source caches such as
Varnish could be additionally included within
the RDK and would provide a tremendous
performance benefit. Specifically, the
gateway could be configured to proactively
cache guide and VOD listings, cover art,
network images, user profiles and targeted
ads. This could be done relatively easily via a
lazy cache whereby the gateway deferred to
the Cloud and simply stored content and data
as it passed it through to the client, making it
locally available for subsequent requests. It
could also take on a more elaborate form
whereby server side algorithms proactively
pushed information to the gateway, likely
during dark hours and with certain targeting
parameters designed towards personalization
of the UI.

ADDITIONAL CONSIDERATIONS

 While I believe the industry would benefit
significantly from a common, shared core UI
framework it still assumes HTML5 and
relatively modern web browsers. What about
older PCs or even fairly modern devices with
limited rendering capabilities like Smart TVs
or game consoles?

 HTML5 does not render everywhere.
Older browsers like those in many PCs or

early incarnations of Smart TVs are capable
of rendering simpler versions of HTML. It is
necessary that the framework can degrade
gracefully by recognizing these devices and
rendering a simpler, less animated form of the
UI. This would require a somewhat more
complex abstraction than would otherwise be
necessary but is perfectly feasible. Other
devices, like a current Xbox, will require
platform specific applications. These devices
will benefit from at least a general
commonality of the UI in terms of data and
objects as served from backend web services,
but would still require platform specific,
native applications to be written. HTML5
will not currently provide a UI on every
device; although it will address a wide range
of current devices and it is likely Webkit will
continue to proliferate to things like Smart
TVs and game consoles.

The Vulgarity

 More challenging to the notion of a
common UI framework is the fact that there is
currently very little consistency in the
backend of MSOs. While most of us are
embracing web services and these web
services are notionally representing very
similar things they are far from standardized.
The grid for example, is assumed to be in
most operators’ UI in some form or another.
The data used to populate the grid would be
fetched through a web service along the lines
of:

 http://operator.com/apis/getGrid();

The host and specific method call, of course,
would be perfectly configurable and each
MSO would have their own unique endpoint.
This is not a problem. The syntax and
structure of the response, however, is a
challenge. There are differences in semantic
naming conventions as well as overall object
models. The semantics of one MSO labeling
HBO a “network” and another “provider” or
“programmer” are somewhat easier to deal

with. Structural differences in the objects or
varied sets of interfaces are far more
troublesome. One MSO might include actors
and detailed descriptions in the getGrid()
response. Another might have a secondary
web service for getAssetDetails() and a third
that does not include actors at all.

 These backend variations are not
insurmountable but they do require some
additional thought. Standardization of core
web services is, of course, the ideal solution.
It is also possible to establish a JavaScript
mapping layer within the framework,
although that will likely lead to poor
performance. A possible middle ground
scenario would involve each MSO
establishing a server side transformation layer
to its existing web services.

CONCLUSION

 As MSOs, we face a similar challenge in
providing consistent user interfaces to a
growing set of devices. Cloud based UIs
allow us to more uniformly deliver and
present a user interface as well as extend new
features and services in a coherent and
efficient manner unlike with traditional STBs.
This is something we can immediately
explore online and through smartphones and
tablet devices and will increasingly become
viable on leased CPE through initiatives like
the RDK. A common, shared industry UI
framework would allow us to further exploit
the opportunity and reduce the individual
burden of redundant web development. Such
a framework could be developed based on
best in breed, open source efforts from the
web community but configured specifically to
suit the needs of TV centric user interfaces.

