
RIGHT-SIZING CABLE MODEM BUFFERS FOR MAXIMUM 
APPLICATION PERFORMANCE 

Greg White (CableLabs®) 
Richard Woundy, Yiu Lee, Carl Williams (Comcast) 

 
Abstract 

The sizing of the cable modem (CM) upstream 
buffer can significantly impact application 
performance and end-user quality of experience.  Too 
little buffering will result in poor TCP throughput in the 
upstream direction.  Too much buffering will have a 
negative impact on latency sensitive applications when 
the upstream link is heavily utilized.  Studies have 
indicated that cable modems in the field today have 
perhaps an order of magnitude greater buffering than 
is needed to ensure TCP throughput, with the result 
being a sluggish user experience for web browsing, and 
outright failure of VoIP and real-time games at times 
when the upstream is being used simultaneously by 
TCP. 

This paper provides a background on the network 
dynamics involved, describes a new feature in the 
DOCSIS® 3.0 specification that allows the operator to 
tune the upstream buffer, and provides some initial 
experimental work that seeks to provide guidance to 
operators in the use of this feature. 

INTRODUCTION 

Buffering of data traffic is a critical 
function implemented by network elements 
(e.g. hosts, switches, routers) that serves to 
minimize packet loss and maximize efficient 
use of the next-hop link.  It is generally 
thought that for the Transmission Control 
Protocol (TCP) to work most efficiently, each 
element in a network needs to support 
sufficient buffering to allow the TCP window 
to open up to a value greater than or equal to 
the product of the next hop link bandwidth 
and the total round trip time for the TCP 
session (the bandwidth delay product). In 
many residential broadband scenarios, the 
cable modem is the head of the bottleneck 
link in the upstream direction, and as a result 
its buffering implementation can have a 

significant impact on performance – either 
imposing limits on upstream data rates or 
increasing delay for latency sensitive 
applications. 

Historically, upstream buffer 
implementations in CMs have been sized 
(statically) by the modem vendor, and the 
network operator has had no control or 
visibility as to the size of the buffer 
implementation.  In order to ensure optimal 
performance across the wide range of 
potential upstream configured data rates, 
modem suppliers have sized their upstream 
buffers such that there is sufficient buffering 
for TCP to work well at the highest possible 
upstream data rate, and at the greatest 
expected round trip time (i.e. the greatest 
possible bandwidth delay product).   In the 
majority of deployment scenarios, the 
configured upstream data rate is significantly 
less than the highest possible rate, and the 
average TCP round trip time is significantly 
less than the greatest expected.  The result is 
that in the majority of cases the cable modem 
has an upstream buffer that greatly exceeds 
what is necessary to ensure optimal TCP 
performance. 

In today's mix of upstream TCP and UDP 
traffic, some of which is latency sensitive, 
some of which is not, the impact of a vastly 
oversized upstream buffer is that the upstream 
TCP sessions attempt to keep the buffer as 
full as possible, and the latency sensitive 
traffic can suffer enormously. The result is 
poorer than expected application performance 
for VoIP, gaming, web surfing, and other 
applications.  Studies have shown upstream 
buffering in deployed cable modems on the 
order of multiple seconds.    



Recent work has established a standardized 
means by which a cable operator can set the 
upstream buffer size at the cable modem via 
the modem's configuration file (alongside 
other service defining parameters, such as the 
maximum traffic rate).  This paper provides 
an introduction to this new capability, 
investigates the performance impact of buffer 
size on a range of traffic scenarios, and seeks 
to provide some initial guidance for operators 
to properly configure buffer size for their 
service offerings. 

RESEARCH AND BEST PRACTICES 
RELATING TO BUFFER SIZING 

The TCP [2] is a connection-oriented, end-
to-end protocol that enables the reliable 
transmission of data across the Internet. The 
TCP is designed to recover data that is 
damaged, lost, duplicated, or delivered out of 
order by the network. 

The original TCP specification provides 
reliability and end-to-end flow control 
through the use of sequence numbers and the 
use of a “receive window”. All transmitted 
data is tracked by sequence number, which 
enables the TCP receiver to detect missing or 
duplicate data. The receive window enables 
flow control by identifying the range of 
sequence numbers that the receiver is 
prepared to receive, to prevent overflow of the 
receiver’s data buffer space. 

However, these controls were insufficient 
to avoid “congestion collapse” in the Internet 
in the mid-1980s [4]. Van Jacobson [1] 
developed the initial mechanisms for TCP 
congestion control, which many researchers 
have continued to extend and to refine [6]. In 
particular, TCP congestion control utilizes a 
“congestion window” to limit the transmission 
rate of the sender in response to network 
congestion indications. 

Two key congestion control algorithms are 
“slow start” and “congestion avoidance”. In 
slow start, the sender increases the congestion 
window by one segment for each TCP 
acknowledgement (ACK) received; this action 
doubles the transmission rate for each 
roundtrip time, leading to exponential growth. 
Once in congestion avoidance, the sender 
increases the congestion window by one 
segment per roundtrip time; this action 
increases the transmission rate linearly. If a 
segment is dropped due to a timeout, the 
threshold for entering congestion avoidance is 
set to one-half the current congestion window, 
and the congestion window itself is reset to 
one segment. This “sawtooth” behavior is 
illustrated in Figure 1 [16]. 

 

Figure 1 

Modern TCP implementations also 
implement “fast retransmit” and “fast 
recovery” algorithms. According to fast 
retransmit, when the sender receives three 
duplicate ACKs, the sender assumes a 
segment has been lost and re-transmits that 
segment. If that segment is subsequently 
transmitted successfully, then under fast 
recovery the sender cuts its congestion 
window in half (rather than resetting to one 
segment). 

Using modern congestion control, the TCP 
sender is constantly attempting to increase its 
transmission rate to the maximum possible, 
and it decreases the transmission rate in the 
presence of segment loss. As a result of this 
behavior, the TCP sender will send packets at 
a continuously increasing rate, filling the 



buffer of the network device at the head of the 
bottleneck link, until one or more packets are 
dropped. (This discussion ignores the 
presence of Active Queue Management [3] or 
Explicit Congestion Notification [5], neither 
of which are commonly implemented in 
broadband modems.) 

Since the TCP sender’s behavior is to keep 
the buffer full at the bottleneck link, it is 
helpful to review the research 
recommendations for the size of network 
buffers.  

Back in 1994, Villamizar and Song [7] 
provided performance test results using up to 
eight TCP flows over a national backbone 
infrastructure. Their results led to the rule-of-
thumb that bottleneck links need a buffer size 
equal to the bandwidth delay product (BDP) – 
that is, equal to the available bandwidth at the 
bottleneck multiplied by the roundtrip time of 
the TCP sessions – for the TCP flows to 
saturate the bottleneck link. A decade later, 
Appenzeller, Keslassy and McKeown [8] 
confirmed the BDP rule-of-thumb for a single 
long-lived TCP flow, which may apply best to 
a bottleneck link at the edge of the network, 
such as a broadband modem’s upstream link. 

Since that time, the topic of buffering at 
network hops has become an active one, with 
some beginning to look at the impact that the 
rule-of-thumb has on non-TCP traffic, as well 
as whether the rule-of-thumb holds up under 
more real-world conditions. Vishwanath, et al. 
[10] provide a good survey of recent work in 
this area.  

If the optimal buffer size for TCP 
performance is presumed to be equal to the 
bandwidth delay product, then one might 
inquire how that compares to the buffer size 
implemented in current broadband modems. 
In 2007, Dischinger et al. [9] measured the 
performance of a number of DSL and cable 
operators in Europe and in North America. 
While the measured broadband modem 

minimum delay was typically under 15 
milliseconds, the upstream buffer sizes were 
found to be quite large – resulting in 600 
milliseconds of queuing delay for most DSL 
links, and several seconds for many cable 
modems. These results suggest that broadband 
buffer sizes are much larger than the BDP 
rule-of-thumb. 

Gettys [17] shows that such large buffer 
sizes, or “bufferbloat”, is an issue today with 
broadband modems both for wireline and for 
wireless networks. As one example, some 
have observed six seconds of latency in 3G 
wireless networks related to queuing. The 
issue of bufferbloat has also been observed in 
other consumer equipment, such as home 
routers and laptops. Gettys points to excessive 
buffering at the head of the bottleneck link as 
being disruptive to many user applications. 

CABLE MODEM UPSTREAM 
BUFFERING AND IMPACTS ON 

APPLICATION PERFORMANCE/USER 
EXPERIENCE 

In the upstream traffic direction, the cable 
modem is generally the entry point of the 
bottleneck link, both topologically and in 
terms of link capacity.  As a result of this, its 
buffer size can have a significant impact on 
application performance. As noted previously, 
TCP upload performance can be sensitive to 
buffer size on the bottleneck link, and 
furthermore will seek to keep the bottleneck 
link buffer full. When latency-sensitive or 
loss-sensitive traffic is mixed with TCP traffic 
in the same cable modem service flow, issues 
can arise as a result of the modem buffer 
being kept full by the TCP sessions. 

One impact will be that applications will 
see an upstream latency that can be predicted 
by the buffer size divided by the upstream 
configured rate.  For example, in the case of a 
256KiB buffer and a configured upstream rate 
of 2Mb/s, the upstream latency would be 



expected to be on the order of 1 second.  More 
buffering will result in a proportional increase 
in latency. 

Another impact will be that upstream 
applications will experience packet loss due to 
buffer overflow.  Bulk TCP sessions are 
immune to packet loss resulting from buffer 
overflow, and in fact their congestion 
avoidance algorithm relies on it.  However, 
other applications may be more sensitive.  In 
contrast to the latency impact, the packet loss 
rate will increase if the buffer is undersized. 

How Much Buffering Should There Be? 

Commonly used VoIP and video 
conferencing applications such as Vonage, 
Skype, iChat, FaceTime, and umi, provide a 
better user experience when end-to-end 
latency is kept low.   The ITU has developed 
models and recommendations for end-to-end 
delay for voice and other interactive services.  
The ITU-T Recommendation G.114 [11] 
suggests one-way latency be kept below 
150ms in order to achieve "essentially 
transparent interactivity", and that delays 
greater than 400ms are unacceptable for 
interactive applications.  Furthermore it has 
defined the "E-model" (ITU-T G.107 [12], 
G.108 [13] & G.109 [14]) used for predicting 
digital voice quality based on system 
parameters.  The E-model has been reduced to 
a simpler form for VoIP applications by Cole 
& Rosenbluth, which points to significant 
degradation in voice quality beginning when 
the one-way latency exceeds ~177ms.  Packet 
loss also degrades quality, with losses of less 
than 2.5% being necessary to achieve "Best" 
quality.  Included in the packet loss statistic 
are any packets that exceed the ability of the 
receiver de-jitter buffer to deliver them 
isochronously. 

Multiplayer online games can also be 
sensitive to latency and packet loss.  Fast-
paced, interactive games are typically the 

most sensitive to latency, where some games 
require that players have less than 130ms 
round-trip time between their host and the 
game server in order to be allowed to play, 
and lower is generally better. 

Even more latency sensitive are games that 
are run on a cloud server, with a video stream 
sent to the player, and a control stream sent 
from the player back to the server.  Services 
such as these may require a maximum of 20-
50ms round-trip time across the cable 
operator's network. 

While not typically considered to be a 
latency sensitive application, web-browsing 
activities can also be impacted by upstream 
latency.  Consider that a webpage load 
consists of a cascade of perhaps a dozen or 
more round trips to do DNS lookups and 
HTTP object fetches. An upstream latency on 
the order of 500ms or more is likely to cause 
the web browsing experience to be much 
slower than a user might find acceptable, 
particularly if they are paying for a 
downstream connection speed measured in 
tens of megabits per second.   

In addition, any downstream-centric TCP 
application (such as web browsing) has the 
potential to be throttled due to the latency 
experienced by the upstream TCP-ACK 
stream from the receiver.  In practice this is 
not an issue, because many cable modems 
support proprietary means to accelerate TCP-
ACKs by queuing them separately from bulk 
upstream data.  

How Much Queuing Latency Is There? 

Historically, cable modems have 
implemented static buffer sizes regardless of 
upstream data rate.  Evidence suggests that 
cable modems in the field today may have 
buffers that are sized (using the BDP rule-of-
thumb) for the maximum possible upstream 
data rate (~25Mb/s for DOCSIS 2.0 CMs and 



~100Mb/s for current DOCSIS 3.0 CMs) and 
the maximum coast-to-coast Round Trip Time 
(RTT) that might be experienced (100ms or 
more). 

Our observations indicate that most 
conventional cable modems are built with 
buffer size between 60KiB and 300KiB. 

Since the majority of modems (particularly 
those in residential service) are currently 
operated with upstream rates in the range of 1 
to 2Mb/s, the result (as corroborated by 
Dischinger [9]) is that the modems have 
buffering latencies on the order of several 
seconds, which may be 1 or 2 orders of 
magnitude greater than would be ideal. 

DOCSIS 3.0 BUFFER CONTROL 
FUNCTIONALITY 

A recent addition to the DOCSIS 3.0 
specifications provides, for the first time, the 
ability for cable operators to tune thetransmit 
buffers for cable modems and CMTSs in their 
networks.  This new feature, support for 
which became mandatory for cable modems 
submitted for CableLabs certification in early 
April 2011 (and is optional for CMTSs), gives 
the operator control of the configured buffer 
size for each DOCSIS Service Flow.  The 
feature controls upstream buffering in the 
cable modem, and downstream buffering in 
the CMTS. 

The new feature is referred to as Buffer 
Control, and is defined as a Quality of Service 
(QoS) Parameter of a DOCSIS Service Flow.  
Specifically, the Buffer Control parameter is a 
set of Type-Length-Value (TLV) tuples that 
define a range of acceptable buffer sizes for 
the service flow, as well as a target size.  This 
allows the CM/CMTS implementer some 
flexibility on the resolution of its buffer 
configuration.  For example, a CM 
implementer might choose to manage 
buffering in blocks of 1024 bytes, if that 

offered some implementation advantages.  
When presented with a Buffer Control TLV, 
such a CM would then choose a number of 
blocks that results in a buffer size that is 
within the range of acceptable sizes, and is as 
close to the target buffer size as possible. 

The Buffer Control TLV is comprised of 
three parameters: 

Minimum Buffer - defines the lower limit 
of acceptable buffer sizes.  If the device 
cannot provide at least this amount of 
buffering, it will reject the service flow.  If 
this parameter is omitted, there is no 
minimum buffer size. 

Target Buffer - defines the desired size of 
the buffer.  The device will select a buffer size 
that is as close to this value as possible, given 
its implementation. If this parameter is 
omitted, the device selects any buffer size 
within the allowed range, via a supplier-
specific algorithm. 

Maximum Buffer - defines the upper limit 
of acceptable buffer sizes.  If the device 
cannot provide a buffer size that is less than or 
equal to this size, it will reject the service 
flow.  If this parameter is omitted, there is no 
maximum buffer size. 

Each of these parameters is defined in 
bytes, with an allowed range of 0 - 
4,294,967,295 (4 GiB). 

As noted, each of the three parameters is 
optional.  If all three parameters are omitted, 
the interpretation by the device is that there is 
no limitation (minimum or maximum) on 
allowed buffer size for this service flow, and 
that the device should select a buffer size via a 
vendor specific algorithm.  This is exactly the 
situation that existed prior to the introduction 
of this feature.   As a result, if the operator 
does not change its modem configurations to 
include Buffer Control, the operator should 
see no difference in behavior between a 



modem that supports this new feature and one 
that does not. 

In many configuration cases it will be most 
appropriate to omit the Minimum Buffer and 
Maximum Buffer limits, and to simply set the 
Target Buffer.  The result is that the modem 
will not reject the service flow due to 
buffering configuration, and will provide a 
buffer as close as the implementation allows 
to the Target Buffer value. 

In certain cases however, the operator may 
wish to be assured that the buffer is within 
certain bounds, and so would prefer an 
explicit signal (i.e., a rejection of the 
configuration) if the modem cannot provide a 
buffer within those bounds.  Hard limits are 
provided for these cases. 

The cable modem is required to support 
buffer configurations of up to 24KiB per 
service flow, but is expected to support 
significantly more, particularly when a small 
number of service flows is in use.  Put another 
way, if the Minimum Buffer parameter is set 
to a value less than or equal to 24576, the 
cable modem is guaranteed not to reject the 
configuration due to that parameter value.  If 
the Minimum Buffer parameter is set to a 
value that is greater than 24576, then there is 
some risk that a modem implementation will 
reject the configuration. 

Since they are part of the QoS Parameter 
Set, the Buffer Control TLVs can be set 
directly in the cable modem's configuration 
boot file; they can be set indirectly via a 
named Service Class defined at the CMTS; 
and they can be set and/or modified via the 
PacketCableTM Multimedia (PCMM) interface 
to the CMTS. 

In order to use this new feature to control 
upstream buffering in DOCSIS 3.0 cable 
modems, it is necessary that the CM software 
be updated to a version that supports it.  
Furthermore, CMTS software updates are 

necessary in order to ensure that the CMTS 
properly sends the TLVs to the CM, 
regardless of which of the above methods is 
utilized. 

EXPERIMENTAL WORK 

Methodology 

The new Buffer Control parameters 
described in a previous section enable us to 
provision the buffer size in the cable modem, 
and thus provide the opportunity to 
investigate the application performance 
impact in various scenarios.  For the purposes 
of this paper, we ran three sets of tests: 

In the first set of tests, we correlate the 
buffer size and upstream speed.  The purpose 
of the test is to understand the impact buffer 
size would have on the ability of the customer 
to utilize his/her provisioned upstream 
bandwidth.  As an illustration, if the round-
trip time for a TCP session is 40ms and the 
upstream service is provisioned for 5Mb/s, the 
rule-of-thumb for buffer size would indicate 
5000Kb/s * 0.04s = 200Kb or 24.4KiB.  If the 
buffer size was then set to 16KiB, the 
expectation is that a single TCP session would 
not be able to utilize the 5Mb/s service. In this 
set of tests, we validate that expectation, and 
we additionally look at the effect when 
multiple simultaneous TCP sessions are 
sharing the upstream link. 

In the second set of tests we correlate the 
buffer size and QoS of real-time applications 
during upstream self-congestion (i.e. 
saturation of the user's allotted bandwidth by a 
mix of applications).  During congestion, 
packets from real-time applications may 
queue up in the buffer. If the buffer size is too 
large, this will increase the latency and may 
severely impact real-time applications such as 
online games and Voice over IP (VoIP).  This 
set of tests examines whether changing the 



buffer size can improve real-time 
applications’ QoS or not. 

The third set of tests examines the 
implications of buffer size when the token 
bucket feature defined in the DOCSIS 3.0 
specification is utilized to provide the user a 
high burst transmit rate (as is currently the 
practice by several operators). In this test, the 
token bucket is set to 5MB and, after a 
suitable idle period, a 5MB file is transferred 
using a single TCP session (FTP). The TCP 
session runs through the process discussed 
earlier, beginning with slow start and 
transitioning to congestion avoidance.  Since 
the token bucket size is equal to the size of the 
file, the rate shaping function in the CM 
doesn't come into play, and thus the limits to 
the transfer speed in this test are: a) the 
maximum speed of the upstream channel, 
which in this case is approximately 25Mb/s; 
and b) ability of a single TCP session to 
utilize the link in the presence of limited 
buffering. 

We used upstream buffer sizes of 8KiB, 
16KiB, 32KiB, 64KiB, 128KiB, and 256KiB, 
although in some test scenarios we limited the 
choice of buffer sizes due to time constraints.  
In the experiments the upstream bandwidth 
was provisioned to 1Mb/s, 2Mb/s, 5Mb/s, or 
10Mb/s. These upstream speeds are indicative 
of services currently available in the market. 
The tests simulated RTTs of 40ms and 100ms. 
40ms represents a local file transfer within a 
metropolitan network region (perhaps from a 
cache). 100ms represents a coast-to-coast 
session. 

Network Setup 

Figure 2 depicts the experimental setup, 
which emulates a typical home network 
behind a CM. The home network consisted of 
PCs running test applications and other 
hardware for measuring network 
characteristics and performance. Typical 
home networks would include a home 

gateway between the CM and the rest of the 
home network equipment. To eliminate any 
bias that might be introduced by the packet 
forwarding performance of a home gateway, 
we instead used a Gigabit switch to connect 
the home network equipment to the CM. We 
then configured the CM to allow multiple 
devices connecting to it. 

 

Figure 2 

The CM was installed with the new 
DOCSIS 3.0 firmware that provides the 
capability of using the Buffer Control feature 
so that specific buffer queue sizes might be 
set. A CMTS with knowledge of such settings 
was connected to the CM. Inside the home 
network, there are four applications: (1) a 
PING test client, (2) a VoIP Analog Terminal 
Adaptor (ATA), (3) a Network Test System, 
and (4) a Web Server. The PING test client 
measured the RTT to the PING server in the 
test network. This was set up to validate the 
PING latency while the network was 
congested. The VoIP ATA was set up for the 
QoS test for real-time applications. A VoIP 
tester was connected to the ATA. This tester 
would measure the Mean Opinion Score 
(MOS) when the ATA made a phone call to 
the VoIP gateway in the Internet. The 
Network Test System allowed an easy way to 
simulate multiple TCP devices 
simultaneously.  The Web server was setup to 
generate packets over TCP by uploading a 
large file via HTTP to the client behind the 
CMTS. In order to simulate the network 

Latency
Test

Client

PSTN

Cable 
Modem CMTS

Web
Client

VoIP
Gateway

Internet

HTTP Upload Test

Latency
Test

Server

Router

ICMP Test 

RTP Packets

MOS Tester

DummyNet

ATA

Web
Server

Cable
Modem CMTS

Network
Test System

Sender

Network
Test System

Receiver



latency, Dummynet was used. Dummynet 
[18] is an internal packet filter for FreeBSD 
which can inject artificial delay in the 
network. It was connected between the CM 
and Web server. Delay was injected in both 
upstream and downstream. For example: we 
configured Dummynet to inject 20ms in both 
directions for the HTTP upload test to 
simulate 40ms RTT delay.   

Baseline Results 

As an initial test, we configured the CM 
with an upstream rate limit of 35Mb/s 
(effectively no rate-limiting), and investigated 
the achievable TCP data rate for a range of 
buffer sizes, both for the 40ms RTT case and 
for the 100ms RTT case. Figure 3 shows the 
resulting achieved data rate for 10 
simultaneous upstream TCP sessions, along 
with the data rate that would be predicted 
based on the BDP.  The maximum data rate 
that a single DOCSIS upstream channel could 
support is approximately 25Mb/s, so the 
achieved rates for 256KiB, 128KiB and 
perhaps 64KiB should be considered to be 
artificially limited by this constraint.  It is 
interesting to note that in nearly all cases, 
when multiple TCP sessions were utilized, we 
were able to achieve a higher data rate (and in 
some cases a much higher data rate) than 
would be predicted based on the rule-of-
thumb. Our conjecture is that the multiple 
TCP sessions were desynchronized (that is, 
the TCP sawtooths were not synchronized 
across sessions), and Appenzeller, Keslassy 
and McKeown [8] demonstrate that 
significantly less buffering than the bandwidth 
delay product is needed in this scenario. 

 

 

Figure 3 

 

Test 1 Results 

Figure 4 and Figure 5 show the results of 
data rate in various buffer sizes. Figure 4 
shows the data rate of 1Mb/s and 2Mb/s 
upstream services.  Figure 5 shows the data 
rate of 5Mb/s and 10Mb/s upstream services. 
The tests were executed with either 40ms or 
100ms delay. All the tests were run with a 
single TCP stream.  

 

Figure 4 
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Figure 5 

For 1Mb/s and 2Mb/s services, 16KiB buffer 
size was sufficient to utilize the upstream 
bandwidth with either 40ms and 100ms delay. 
For 5Mb/s, results showed that at least 64KiB 
buffer was needed when delay was 100ms. 
For 10Mb/s, results showed that 64KiB buffer 
was needed for 40ms delay and 256KiB 
buffer was needed for 100ms delay.  

From the previous section, the tests 
performed with 10Mb/s upstream service for 
16KiB and 64KiB showed significant 
bandwidth under-utilization.  The question 
becomes: is it possible to achieve utilization 
of the whole bandwidth with multiple parallel 
TCP sessions? In additional experiments we 
used 10 TCP sessions established in parallel 
recording individual data rates and provided 
the aggregation plots in the graph provided in 
Figure 6a and Figure 6b for 10Mb/s upstream 
service with buffer sizes of 16KiB and 64KiB.  

 Figure 6a shows that with a 16KiB buffer, 
a single TCP session with 40ms delay is 
unable to achieve the full upstream rate, with 
only 1.97Mb/s of the 10Mb/s upstream 
service being used.  By aggregating 10 TCP 
sessions and keeping other factors fixed, the 
channel utilization improved by a factor of 
four to 7.11Mb/s. Still, full utilization wasn’t 
realized. When 64KiB buffer size was used, 
we saw no difference in throughput between a 

single TCP session and 10 TCP sessions.  
Both were able to achieve the full 10Mb/s rate 
limit.  

 

Figure 6a 

Figure 6b shows further results with a 100ms 
delay. Bandwidth utilization could be 
improved for both 16KiB and 64KiB buffers 
when aggregating 10 TCP sessions.  The test 
using 16KiB buffer size with a 100ms delay 
resulted in 4.95Mb/s upstream utilization, a 
three times improvement over the test that 
was conducted using a single TCP sessions.  
However, 5Mb/s of capacity remains unused.  
When using a 64KiB buffer size with 10 TCP 
sessions, there was improvement with a data 
rate of 8.77Mb/s compared to 6.05Mb/s for 
the single TCP flow test.  Here again 1Mb/s 
of capacity was unused. 

 

Figure 6b 

Figure 7 and Figure 8 show the results of 
packet latency when an upstream link was 
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congested with a single TCP session. Figure 7 
shows the latency of 1Mb/s and 2Mb/s 
upstream services. Figure 8 shows the latency 
of 5Mb/s and 10Mb/s upstream services when 
the upstream link was congested with a single 
TCP session. 

 

Figure 7 

 

Figure 8 

For all upstream services, the pattern is that 
the bigger the buffer, the higher the PING 
latency. The observed pattern of the test 
results show (as expected) that the latency is 
directly proportional to the buffer size.  If the 
buffer size is increased to four times the size, 
the latency would increase roughly four times. 
For example, when testing with a 2Mb/s 

upstream service, the PING latency was 
52.04ms for a 16KiB buffer. The PING 
latency increased to 200ms for a 64KiB buffer 
and 1019.17ms for a 256KiB buffer. 
However, this pattern was not observed when 
using a 10Mb/s service for 16KiB and 64KiB 
buffer sizes. This is because a single TCP 
session was unable to utilize the full 10Mb/s 
service with 40ms and 100ms delay. 
Therefore, the PING packets proceeded 
without congestion impact.   

Test 2 Results 

In this test, we wanted to understand how 
buffer size would impact the VoIP MOS 
under congestion. The VoIP ATA was 
connected into the simulated home network in 
our test environment. We started a large 
upstream file transfer (using a single TCP 
session) to simulate a self-congested 
upstream. The Dummynet test set injected 
either 40ms or 100ms round-trip latency to the 
TCP stream.  The two latency values impact 
the dynamics of the TCP congestion 
avoidance algorithm differently, and thus 
result in a different pattern of CM buffer 
usage. For each bandwidth/buffer/delay 
permutation, we ran 10 tests and computed 
the average MOS. 
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Figure 9a shows the results when the 
upstream was configured to 1Mb/s. In this 
case, the 16KiB buffer gave the best MOS 
result regardless of the TCP RTT. When the 
buffer size increased to 64KiB, the MOS 
started to drop. In fact, when the buffer size 
was set to 256KiB with 100 ms delay, many 
tests couldn’t be completed. The test set 
reported a Timeout. The timeout could be 
caused by long delay introduced by the large 
buffer.  

 

 

Figure 9b 

Similar results were obtained for 2MB/s, as 
shown in Figure 9b. 

 

 

Figure 9c 

Figures 9c and 9d show the results of 
5Mb/s and 10Mb/s upstream bandwidths. For 

both of these cases, the best MOS results were 
recorded when the buffer size was set between 
32KiB and 64KiB. What was interesting is 
when the buffer was set below 64KiB, there 
should not be any congestion because the 
buffer size was too small for the competing 
TCP session to utilize the full upstream 
bandwidth. Also when the buffer size was set 
to 8KiB or 16KiB, the VoIP traffic should see 
very low buffering latency (between 6ms and 
26ms).  Both of these factors should result in 
high MOS scores.  However, the MOS score 
was degraded when the buffer size was set to 
8KiB or 16KiB, and this low MOS is likely to 
be caused by packet loss due to the periodic 
saturation of the small CM buffer by the 
competing TCP congestion window.  

 

 

Figure 9d 

When we increased the buffer size above 
128KiB, the MOS started to deteriorate. In 
fact, the test set failed to complete some tests 
and required us to re-run the test when we set 
the upstream bandwidth to 10Mb/s with 
256KiB buffer and 100ms delay. This could 
be caused by the long delay of the VoIP 
signaling packets for the call setup. 

Another interesting observation is that, 
while adding latency to the TCP session did in 
some cases affect the VoIP MOS, it didn't 
point to a different optimal buffer size.  
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Test 3 Results 

In this test, the CM's rate-shaping token 
bucket depth was set to 5MB to mimic the 
configuration that some operators use to boost 
performance for bursty interactive traffic. The 
test set was then used to transit a 5MB file in 
the upstream direction using FTP. The test 
measured the transfer time and, from this, an 
average data rate was calculated. Due to the 
fact that the file size was equal to the token 
bucket depth, there was effectively no 
upstream rate-shaping in play. Figure 10 
shows the result of Average Transfer Time for 
the scenario with 40ms RTT and the scenario 
with 100ms RTT.  

 

Figure 10 

Figure 11 shows the calculated average 
throughput based on the average transfer time 
and the file size.  It is clear that the choice of 
buffer size can have a dramatic impact on 
achievable throughput during this 
performance boost period. It is important to 
note that the average throughput shown in 
Figure 11 is for the entire file transfer, and so 
includes the slow-start effect as well as the 
initial FTP hand-shaking. 

 

Figure 11 

FUTURE WORK 

Additional work is necessary to more fully 
understand the impact of CM buffering on 
application performance and user experience.  
The overarching goal of this work is to enable 
cable operators to optimize network 
performance and user experience across a 
wide range of application and usage scenarios. 

The experimental work described in this 
paper focused both on upstream bulk TCP 
performance, and on the impact that bulk TCP 
traffic would have on a VoIP session across a 
range of buffer sizes in fairly isolated and 
controlled scenarios.  Further work will seek 
to examine the effect of buffering on some 
more real-world application scenarios, such as 
a scenario in which TCP sessions are 
numerous and short-lived, such that many of 
them stay in the slow-start phase for their 
entire duration, and never (or rarely) enter the 
congestion avoidance phase.   Additionally, 
future work should assess the impact of buffer 
sizing on other latency or loss sensitive 
applications beyond VoIP. 
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CONCLUSIONS   

We have shown that the size of the 
upstream service flow buffer in the cable 
modem can have significant effects on 
application performance.  For applications 
that use TCP to perform large upstream 
transmissions (i.e. upstream file transfers such 
as uploading a large video clip), insufficient 
buffering capacity can limit throughput.  
Applications utilizing a single TCP session 
see the most pronounced effect.  Applications 
that are latency sensitive, on the other hand, 
see degraded performance when too much 
buffer capacity is provided.  

Cable modems deployed today appear to 
have significantly greater buffering than is 
needed to sustain TCP throughput, potentially 
causing high latency when the upstream is 
congested.  The result is poorer than expected 
application performance for VoIP, gaming, 
Web surfing, and other applications that are 
latency-sensitive. 

A new feature for DOCSIS 3.0 CMs allows 
operators to configure the upstream buffer 
size for each upstream service flow in order to 
optimize application performance and to 
improve user experience.  In choosing the 
buffer size, the operator will need to consider 
the upstream QoS parameters for the service 
flow, the expected application usage for the 
flow, as well as the service goals for the flow. 

Service features that utilize a large token 
bucket size (in order to provide high 
throughput for short bursts) complicate 
matters since the buffer size cannot 
realistically be resized in real time.  Thus a 
buffer configuration that may be optimized to 
provide a good balance in performance 
between TCP uploads and real-time services 
for the configured sustained traffic rate, may 
result in poorer than expected burst speeds. 

Further work is needed to evaluate the 
performance impact that buffer size has on a 
wider range of application scenarios. 
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