
RIGHT-SIZING CABLE MODEM BUFFERS FOR MAXIMUM
APPLICATION PERFORMANCE

Greg White (CableLabs®)
Richard Woundy, Yiu Lee, Carl Williams (Comcast)

Abstract

The sizing of the cable modem (CM) upstream
buffer can significantly impact application
performance and end-user quality of experience. Too
little buffering will result in poor TCP throughput in the
upstream direction. Too much buffering will have a
negative impact on latency sensitive applications when
the upstream link is heavily utilized. Studies have
indicated that cable modems in the field today have
perhaps an order of magnitude greater buffering than
is needed to ensure TCP throughput, with the result
being a sluggish user experience for web browsing, and
outright failure of VoIP and real-time games at times
when the upstream is being used simultaneously by
TCP.

This paper provides a background on the network
dynamics involved, describes a new feature in the
DOCSIS® 3.0 specification that allows the operator to
tune the upstream buffer, and provides some initial
experimental work that seeks to provide guidance to
operators in the use of this feature.

INTRODUCTION

Buffering of data traffic is a critical
function implemented by network elements
(e.g. hosts, switches, routers) that serves to
minimize packet loss and maximize efficient
use of the next-hop link. It is generally
thought that for the Transmission Control
Protocol (TCP) to work most efficiently, each
element in a network needs to support
sufficient buffering to allow the TCP window
to open up to a value greater than or equal to
the product of the next hop link bandwidth
and the total round trip time for the TCP
session (the bandwidth delay product). In
many residential broadband scenarios, the
cable modem is the head of the bottleneck
link in the upstream direction, and as a result
its buffering implementation can have a

significant impact on performance – either
imposing limits on upstream data rates or
increasing delay for latency sensitive
applications.

Historically, upstream buffer
implementations in CMs have been sized
(statically) by the modem vendor, and the
network operator has had no control or
visibility as to the size of the buffer
implementation. In order to ensure optimal
performance across the wide range of
potential upstream configured data rates,
modem suppliers have sized their upstream
buffers such that there is sufficient buffering
for TCP to work well at the highest possible
upstream data rate, and at the greatest
expected round trip time (i.e. the greatest
possible bandwidth delay product). In the
majority of deployment scenarios, the
configured upstream data rate is significantly
less than the highest possible rate, and the
average TCP round trip time is significantly
less than the greatest expected. The result is
that in the majority of cases the cable modem
has an upstream buffer that greatly exceeds
what is necessary to ensure optimal TCP
performance.

In today's mix of upstream TCP and UDP
traffic, some of which is latency sensitive,
some of which is not, the impact of a vastly
oversized upstream buffer is that the upstream
TCP sessions attempt to keep the buffer as
full as possible, and the latency sensitive
traffic can suffer enormously. The result is
poorer than expected application performance
for VoIP, gaming, web surfing, and other
applications. Studies have shown upstream
buffering in deployed cable modems on the
order of multiple seconds.

Recent work has established a standardized
means by which a cable operator can set the
upstream buffer size at the cable modem via
the modem's configuration file (alongside
other service defining parameters, such as the
maximum traffic rate). This paper provides
an introduction to this new capability,
investigates the performance impact of buffer
size on a range of traffic scenarios, and seeks
to provide some initial guidance for operators
to properly configure buffer size for their
service offerings.

RESEARCH AND BEST PRACTICES
RELATING TO BUFFER SIZING

The TCP [2] is a connection-oriented, end-
to-end protocol that enables the reliable
transmission of data across the Internet. The
TCP is designed to recover data that is
damaged, lost, duplicated, or delivered out of
order by the network.

The original TCP specification provides
reliability and end-to-end flow control
through the use of sequence numbers and the
use of a “receive window”. All transmitted
data is tracked by sequence number, which
enables the TCP receiver to detect missing or
duplicate data. The receive window enables
flow control by identifying the range of
sequence numbers that the receiver is
prepared to receive, to prevent overflow of the
receiver’s data buffer space.

However, these controls were insufficient
to avoid “congestion collapse” in the Internet
in the mid-1980s [4]. Van Jacobson [1]
developed the initial mechanisms for TCP
congestion control, which many researchers
have continued to extend and to refine [6]. In
particular, TCP congestion control utilizes a
“congestion window” to limit the transmission
rate of the sender in response to network
congestion indications.

Two key congestion control algorithms are
“slow start” and “congestion avoidance”. In
slow start, the sender increases the congestion
window by one segment for each TCP
acknowledgement (ACK) received; this action
doubles the transmission rate for each
roundtrip time, leading to exponential growth.
Once in congestion avoidance, the sender
increases the congestion window by one
segment per roundtrip time; this action
increases the transmission rate linearly. If a
segment is dropped due to a timeout, the
threshold for entering congestion avoidance is
set to one-half the current congestion window,
and the congestion window itself is reset to
one segment. This “sawtooth” behavior is
illustrated in Figure 1 [16].

Figure 1

Modern TCP implementations also
implement “fast retransmit” and “fast
recovery” algorithms. According to fast
retransmit, when the sender receives three
duplicate ACKs, the sender assumes a
segment has been lost and re-transmits that
segment. If that segment is subsequently
transmitted successfully, then under fast
recovery the sender cuts its congestion
window in half (rather than resetting to one
segment).

Using modern congestion control, the TCP
sender is constantly attempting to increase its
transmission rate to the maximum possible,
and it decreases the transmission rate in the
presence of segment loss. As a result of this
behavior, the TCP sender will send packets at
a continuously increasing rate, filling the

buffer of the network device at the head of the
bottleneck link, until one or more packets are
dropped. (This discussion ignores the
presence of Active Queue Management [3] or
Explicit Congestion Notification [5], neither
of which are commonly implemented in
broadband modems.)

Since the TCP sender’s behavior is to keep
the buffer full at the bottleneck link, it is
helpful to review the research
recommendations for the size of network
buffers.

Back in 1994, Villamizar and Song [7]
provided performance test results using up to
eight TCP flows over a national backbone
infrastructure. Their results led to the rule-of-
thumb that bottleneck links need a buffer size
equal to the bandwidth delay product (BDP) –
that is, equal to the available bandwidth at the
bottleneck multiplied by the roundtrip time of
the TCP sessions – for the TCP flows to
saturate the bottleneck link. A decade later,
Appenzeller, Keslassy and McKeown [8]
confirmed the BDP rule-of-thumb for a single
long-lived TCP flow, which may apply best to
a bottleneck link at the edge of the network,
such as a broadband modem’s upstream link.

Since that time, the topic of buffering at
network hops has become an active one, with
some beginning to look at the impact that the
rule-of-thumb has on non-TCP traffic, as well
as whether the rule-of-thumb holds up under
more real-world conditions. Vishwanath, et al.
[10] provide a good survey of recent work in
this area.

If the optimal buffer size for TCP
performance is presumed to be equal to the
bandwidth delay product, then one might
inquire how that compares to the buffer size
implemented in current broadband modems.
In 2007, Dischinger et al. [9] measured the
performance of a number of DSL and cable
operators in Europe and in North America.
While the measured broadband modem

minimum delay was typically under 15
milliseconds, the upstream buffer sizes were
found to be quite large – resulting in 600
milliseconds of queuing delay for most DSL
links, and several seconds for many cable
modems. These results suggest that broadband
buffer sizes are much larger than the BDP
rule-of-thumb.

Gettys [17] shows that such large buffer
sizes, or “bufferbloat”, is an issue today with
broadband modems both for wireline and for
wireless networks. As one example, some
have observed six seconds of latency in 3G
wireless networks related to queuing. The
issue of bufferbloat has also been observed in
other consumer equipment, such as home
routers and laptops. Gettys points to excessive
buffering at the head of the bottleneck link as
being disruptive to many user applications.

CABLE MODEM UPSTREAM
BUFFERING AND IMPACTS ON

APPLICATION PERFORMANCE/USER
EXPERIENCE

In the upstream traffic direction, the cable
modem is generally the entry point of the
bottleneck link, both topologically and in
terms of link capacity. As a result of this, its
buffer size can have a significant impact on
application performance. As noted previously,
TCP upload performance can be sensitive to
buffer size on the bottleneck link, and
furthermore will seek to keep the bottleneck
link buffer full. When latency-sensitive or
loss-sensitive traffic is mixed with TCP traffic
in the same cable modem service flow, issues
can arise as a result of the modem buffer
being kept full by the TCP sessions.

One impact will be that applications will
see an upstream latency that can be predicted
by the buffer size divided by the upstream
configured rate. For example, in the case of a
256KiB buffer and a configured upstream rate
of 2Mb/s, the upstream latency would be

expected to be on the order of 1 second. More
buffering will result in a proportional increase
in latency.

Another impact will be that upstream
applications will experience packet loss due to
buffer overflow. Bulk TCP sessions are
immune to packet loss resulting from buffer
overflow, and in fact their congestion
avoidance algorithm relies on it. However,
other applications may be more sensitive. In
contrast to the latency impact, the packet loss
rate will increase if the buffer is undersized.

How Much Buffering Should There Be?

Commonly used VoIP and video
conferencing applications such as Vonage,
Skype, iChat, FaceTime, and umi, provide a
better user experience when end-to-end
latency is kept low. The ITU has developed
models and recommendations for end-to-end
delay for voice and other interactive services.
The ITU-T Recommendation G.114 [11]
suggests one-way latency be kept below
150ms in order to achieve "essentially
transparent interactivity", and that delays
greater than 400ms are unacceptable for
interactive applications. Furthermore it has
defined the "E-model" (ITU-T G.107 [12],
G.108 [13] & G.109 [14]) used for predicting
digital voice quality based on system
parameters. The E-model has been reduced to
a simpler form for VoIP applications by Cole
& Rosenbluth, which points to significant
degradation in voice quality beginning when
the one-way latency exceeds ~177ms. Packet
loss also degrades quality, with losses of less
than 2.5% being necessary to achieve "Best"
quality. Included in the packet loss statistic
are any packets that exceed the ability of the
receiver de-jitter buffer to deliver them
isochronously.

Multiplayer online games can also be
sensitive to latency and packet loss. Fast-
paced, interactive games are typically the

most sensitive to latency, where some games
require that players have less than 130ms
round-trip time between their host and the
game server in order to be allowed to play,
and lower is generally better.

Even more latency sensitive are games that
are run on a cloud server, with a video stream
sent to the player, and a control stream sent
from the player back to the server. Services
such as these may require a maximum of 20-
50ms round-trip time across the cable
operator's network.

While not typically considered to be a
latency sensitive application, web-browsing
activities can also be impacted by upstream
latency. Consider that a webpage load
consists of a cascade of perhaps a dozen or
more round trips to do DNS lookups and
HTTP object fetches. An upstream latency on
the order of 500ms or more is likely to cause
the web browsing experience to be much
slower than a user might find acceptable,
particularly if they are paying for a
downstream connection speed measured in
tens of megabits per second.

In addition, any downstream-centric TCP
application (such as web browsing) has the
potential to be throttled due to the latency
experienced by the upstream TCP-ACK
stream from the receiver. In practice this is
not an issue, because many cable modems
support proprietary means to accelerate TCP-
ACKs by queuing them separately from bulk
upstream data.

How Much Queuing Latency Is There?

Historically, cable modems have
implemented static buffer sizes regardless of
upstream data rate. Evidence suggests that
cable modems in the field today may have
buffers that are sized (using the BDP rule-of-
thumb) for the maximum possible upstream
data rate (~25Mb/s for DOCSIS 2.0 CMs and

~100Mb/s for current DOCSIS 3.0 CMs) and
the maximum coast-to-coast Round Trip Time
(RTT) that might be experienced (100ms or
more).

Our observations indicate that most
conventional cable modems are built with
buffer size between 60KiB and 300KiB.

Since the majority of modems (particularly
those in residential service) are currently
operated with upstream rates in the range of 1
to 2Mb/s, the result (as corroborated by
Dischinger [9]) is that the modems have
buffering latencies on the order of several
seconds, which may be 1 or 2 orders of
magnitude greater than would be ideal.

DOCSIS 3.0 BUFFER CONTROL
FUNCTIONALITY

A recent addition to the DOCSIS 3.0
specifications provides, for the first time, the
ability for cable operators to tune thetransmit
buffers for cable modems and CMTSs in their
networks. This new feature, support for
which became mandatory for cable modems
submitted for CableLabs certification in early
April 2011 (and is optional for CMTSs), gives
the operator control of the configured buffer
size for each DOCSIS Service Flow. The
feature controls upstream buffering in the
cable modem, and downstream buffering in
the CMTS.

The new feature is referred to as Buffer
Control, and is defined as a Quality of Service
(QoS) Parameter of a DOCSIS Service Flow.
Specifically, the Buffer Control parameter is a
set of Type-Length-Value (TLV) tuples that
define a range of acceptable buffer sizes for
the service flow, as well as a target size. This
allows the CM/CMTS implementer some
flexibility on the resolution of its buffer
configuration. For example, a CM
implementer might choose to manage
buffering in blocks of 1024 bytes, if that

offered some implementation advantages.
When presented with a Buffer Control TLV,
such a CM would then choose a number of
blocks that results in a buffer size that is
within the range of acceptable sizes, and is as
close to the target buffer size as possible.

The Buffer Control TLV is comprised of
three parameters:

Minimum Buffer - defines the lower limit
of acceptable buffer sizes. If the device
cannot provide at least this amount of
buffering, it will reject the service flow. If
this parameter is omitted, there is no
minimum buffer size.

Target Buffer - defines the desired size of
the buffer. The device will select a buffer size
that is as close to this value as possible, given
its implementation. If this parameter is
omitted, the device selects any buffer size
within the allowed range, via a supplier-
specific algorithm.

Maximum Buffer - defines the upper limit
of acceptable buffer sizes. If the device
cannot provide a buffer size that is less than or
equal to this size, it will reject the service
flow. If this parameter is omitted, there is no
maximum buffer size.

Each of these parameters is defined in
bytes, with an allowed range of 0 -
4,294,967,295 (4 GiB).

As noted, each of the three parameters is
optional. If all three parameters are omitted,
the interpretation by the device is that there is
no limitation (minimum or maximum) on
allowed buffer size for this service flow, and
that the device should select a buffer size via a
vendor specific algorithm. This is exactly the
situation that existed prior to the introduction
of this feature. As a result, if the operator
does not change its modem configurations to
include Buffer Control, the operator should
see no difference in behavior between a

modem that supports this new feature and one
that does not.

In many configuration cases it will be most
appropriate to omit the Minimum Buffer and
Maximum Buffer limits, and to simply set the
Target Buffer. The result is that the modem
will not reject the service flow due to
buffering configuration, and will provide a
buffer as close as the implementation allows
to the Target Buffer value.

In certain cases however, the operator may
wish to be assured that the buffer is within
certain bounds, and so would prefer an
explicit signal (i.e., a rejection of the
configuration) if the modem cannot provide a
buffer within those bounds. Hard limits are
provided for these cases.

The cable modem is required to support
buffer configurations of up to 24KiB per
service flow, but is expected to support
significantly more, particularly when a small
number of service flows is in use. Put another
way, if the Minimum Buffer parameter is set
to a value less than or equal to 24576, the
cable modem is guaranteed not to reject the
configuration due to that parameter value. If
the Minimum Buffer parameter is set to a
value that is greater than 24576, then there is
some risk that a modem implementation will
reject the configuration.

Since they are part of the QoS Parameter
Set, the Buffer Control TLVs can be set
directly in the cable modem's configuration
boot file; they can be set indirectly via a
named Service Class defined at the CMTS;
and they can be set and/or modified via the
PacketCableTM Multimedia (PCMM) interface
to the CMTS.

In order to use this new feature to control
upstream buffering in DOCSIS 3.0 cable
modems, it is necessary that the CM software
be updated to a version that supports it.
Furthermore, CMTS software updates are

necessary in order to ensure that the CMTS
properly sends the TLVs to the CM,
regardless of which of the above methods is
utilized.

EXPERIMENTAL WORK

Methodology

The new Buffer Control parameters
described in a previous section enable us to
provision the buffer size in the cable modem,
and thus provide the opportunity to
investigate the application performance
impact in various scenarios. For the purposes
of this paper, we ran three sets of tests:

In the first set of tests, we correlate the
buffer size and upstream speed. The purpose
of the test is to understand the impact buffer
size would have on the ability of the customer
to utilize his/her provisioned upstream
bandwidth. As an illustration, if the round-
trip time for a TCP session is 40ms and the
upstream service is provisioned for 5Mb/s, the
rule-of-thumb for buffer size would indicate
5000Kb/s * 0.04s = 200Kb or 24.4KiB. If the
buffer size was then set to 16KiB, the
expectation is that a single TCP session would
not be able to utilize the 5Mb/s service. In this
set of tests, we validate that expectation, and
we additionally look at the effect when
multiple simultaneous TCP sessions are
sharing the upstream link.

In the second set of tests we correlate the
buffer size and QoS of real-time applications
during upstream self-congestion (i.e.
saturation of the user's allotted bandwidth by a
mix of applications). During congestion,
packets from real-time applications may
queue up in the buffer. If the buffer size is too
large, this will increase the latency and may
severely impact real-time applications such as
online games and Voice over IP (VoIP). This
set of tests examines whether changing the

buffer size can improve real-time
applications’ QoS or not.

The third set of tests examines the
implications of buffer size when the token
bucket feature defined in the DOCSIS 3.0
specification is utilized to provide the user a
high burst transmit rate (as is currently the
practice by several operators). In this test, the
token bucket is set to 5MB and, after a
suitable idle period, a 5MB file is transferred
using a single TCP session (FTP). The TCP
session runs through the process discussed
earlier, beginning with slow start and
transitioning to congestion avoidance. Since
the token bucket size is equal to the size of the
file, the rate shaping function in the CM
doesn't come into play, and thus the limits to
the transfer speed in this test are: a) the
maximum speed of the upstream channel,
which in this case is approximately 25Mb/s;
and b) ability of a single TCP session to
utilize the link in the presence of limited
buffering.

We used upstream buffer sizes of 8KiB,
16KiB, 32KiB, 64KiB, 128KiB, and 256KiB,
although in some test scenarios we limited the
choice of buffer sizes due to time constraints.
In the experiments the upstream bandwidth
was provisioned to 1Mb/s, 2Mb/s, 5Mb/s, or
10Mb/s. These upstream speeds are indicative
of services currently available in the market.
The tests simulated RTTs of 40ms and 100ms.
40ms represents a local file transfer within a
metropolitan network region (perhaps from a
cache). 100ms represents a coast-to-coast
session.

Network Setup

Figure 2 depicts the experimental setup,
which emulates a typical home network
behind a CM. The home network consisted of
PCs running test applications and other
hardware for measuring network
characteristics and performance. Typical
home networks would include a home

gateway between the CM and the rest of the
home network equipment. To eliminate any
bias that might be introduced by the packet
forwarding performance of a home gateway,
we instead used a Gigabit switch to connect
the home network equipment to the CM. We
then configured the CM to allow multiple
devices connecting to it.

Figure 2

The CM was installed with the new
DOCSIS 3.0 firmware that provides the
capability of using the Buffer Control feature
so that specific buffer queue sizes might be
set. A CMTS with knowledge of such settings
was connected to the CM. Inside the home
network, there are four applications: (1) a
PING test client, (2) a VoIP Analog Terminal
Adaptor (ATA), (3) a Network Test System,
and (4) a Web Server. The PING test client
measured the RTT to the PING server in the
test network. This was set up to validate the
PING latency while the network was
congested. The VoIP ATA was set up for the
QoS test for real-time applications. A VoIP
tester was connected to the ATA. This tester
would measure the Mean Opinion Score
(MOS) when the ATA made a phone call to
the VoIP gateway in the Internet. The
Network Test System allowed an easy way to
simulate multiple TCP devices
simultaneously. The Web server was setup to
generate packets over TCP by uploading a
large file via HTTP to the client behind the
CMTS. In order to simulate the network

Latency
Test

Client

PSTN

Cable
Modem CMTS

Web
Client

VoIP
Gateway

Internet

HTTP Upload Test

Latency
Test

Server

Router

ICMP Test

RTP Packets

MOS Tester

DummyNet

ATA

Web
Server

Cable
Modem CMTS

Network
Test System

Sender

Network
Test System

Receiver

latency, Dummynet was used. Dummynet
[18] is an internal packet filter for FreeBSD
which can inject artificial delay in the
network. It was connected between the CM
and Web server. Delay was injected in both
upstream and downstream. For example: we
configured Dummynet to inject 20ms in both
directions for the HTTP upload test to
simulate 40ms RTT delay.

Baseline Results

As an initial test, we configured the CM
with an upstream rate limit of 35Mb/s
(effectively no rate-limiting), and investigated
the achievable TCP data rate for a range of
buffer sizes, both for the 40ms RTT case and
for the 100ms RTT case. Figure 3 shows the
resulting achieved data rate for 10
simultaneous upstream TCP sessions, along
with the data rate that would be predicted
based on the BDP. The maximum data rate
that a single DOCSIS upstream channel could
support is approximately 25Mb/s, so the
achieved rates for 256KiB, 128KiB and
perhaps 64KiB should be considered to be
artificially limited by this constraint. It is
interesting to note that in nearly all cases,
when multiple TCP sessions were utilized, we
were able to achieve a higher data rate (and in
some cases a much higher data rate) than
would be predicted based on the rule-of-
thumb. Our conjecture is that the multiple
TCP sessions were desynchronized (that is,
the TCP sawtooths were not synchronized
across sessions), and Appenzeller, Keslassy
and McKeown [8] demonstrate that
significantly less buffering than the bandwidth
delay product is needed in this scenario.

Figure 3

Test 1 Results

Figure 4 and Figure 5 show the results of
data rate in various buffer sizes. Figure 4
shows the data rate of 1Mb/s and 2Mb/s
upstream services. Figure 5 shows the data
rate of 5Mb/s and 10Mb/s upstream services.
The tests were executed with either 40ms or
100ms delay. All the tests were run with a
single TCP stream.

Figure 4

05
1015202530

8 16 32 64 128 256

D
at

a
R

at
e

(M
b

/s
)

Buffer Size (KiB)

Multi-TCP Data Rate (non-rate-limited)

40ms 100ms40ms - BDP 100ms - BDP

00.51
1.52

16 64 256D
at

a
R

at
e

(M
b

/s
)

Buffer Size (KiB)

Data Rate (1 Mbps/2 Mbps)

2Mb/s (40msRTT)2Mb/s (100msRTT)1Mb/s (40msRTT)1Mb/s (100msRTT)

Figure 5

For 1Mb/s and 2Mb/s services, 16KiB buffer
size was sufficient to utilize the upstream
bandwidth with either 40ms and 100ms delay.
For 5Mb/s, results showed that at least 64KiB
buffer was needed when delay was 100ms.
For 10Mb/s, results showed that 64KiB buffer
was needed for 40ms delay and 256KiB
buffer was needed for 100ms delay.

From the previous section, the tests
performed with 10Mb/s upstream service for
16KiB and 64KiB showed significant
bandwidth under-utilization. The question
becomes: is it possible to achieve utilization
of the whole bandwidth with multiple parallel
TCP sessions? In additional experiments we
used 10 TCP sessions established in parallel
recording individual data rates and provided
the aggregation plots in the graph provided in
Figure 6a and Figure 6b for 10Mb/s upstream
service with buffer sizes of 16KiB and 64KiB.

 Figure 6a shows that with a 16KiB buffer,
a single TCP session with 40ms delay is
unable to achieve the full upstream rate, with
only 1.97Mb/s of the 10Mb/s upstream
service being used. By aggregating 10 TCP
sessions and keeping other factors fixed, the
channel utilization improved by a factor of
four to 7.11Mb/s. Still, full utilization wasn’t
realized. When 64KiB buffer size was used,
we saw no difference in throughput between a

single TCP session and 10 TCP sessions.
Both were able to achieve the full 10Mb/s rate
limit.

Figure 6a

Figure 6b shows further results with a 100ms
delay. Bandwidth utilization could be
improved for both 16KiB and 64KiB buffers
when aggregating 10 TCP sessions. The test
using 16KiB buffer size with a 100ms delay
resulted in 4.95Mb/s upstream utilization, a
three times improvement over the test that
was conducted using a single TCP sessions.
However, 5Mb/s of capacity remains unused.
When using a 64KiB buffer size with 10 TCP
sessions, there was improvement with a data
rate of 8.77Mb/s compared to 6.05Mb/s for
the single TCP flow test. Here again 1Mb/s
of capacity was unused.

Figure 6b

Figure 7 and Figure 8 show the results of
packet latency when an upstream link was

02
46
810

16 64 256D
at

a
R

at
e

(M
b

/s
)

Buffer Size (KiB)

Data Rate (5 Mbps/10 Mbps)

10Mb/s (40msRTT) 10Mb/s (100msRTT)5Mb/s (40msRTT) 5Mb/s (100msRTT)
02
46
81012

16 64D
at

a
R

at
e

(M
b

/s
)

Buffer Size (KiB)

1 TCP vs 10 TCPs (40ms RTT)

1 TCP (40ms RTT) 10 TCP (40ms RTT)

02
46
810

16 64D
at

a
R

at
e

(M
b

/s
)

Buffer Size (KiB)

1 TCP vs 10 TCPs (100ms RTT)

1 TCP (100ms RTT) 10 TCP (100ms RTT)

congested with a single TCP session. Figure 7
shows the latency of 1Mb/s and 2Mb/s
upstream services. Figure 8 shows the latency
of 5Mb/s and 10Mb/s upstream services when
the upstream link was congested with a single
TCP session.

Figure 7

Figure 8

For all upstream services, the pattern is that
the bigger the buffer, the higher the PING
latency. The observed pattern of the test
results show (as expected) that the latency is
directly proportional to the buffer size. If the
buffer size is increased to four times the size,
the latency would increase roughly four times.
For example, when testing with a 2Mb/s

upstream service, the PING latency was
52.04ms for a 16KiB buffer. The PING
latency increased to 200ms for a 64KiB buffer
and 1019.17ms for a 256KiB buffer.
However, this pattern was not observed when
using a 10Mb/s service for 16KiB and 64KiB
buffer sizes. This is because a single TCP
session was unable to utilize the full 10Mb/s
service with 40ms and 100ms delay.
Therefore, the PING packets proceeded
without congestion impact.

Test 2 Results

In this test, we wanted to understand how
buffer size would impact the VoIP MOS
under congestion. The VoIP ATA was
connected into the simulated home network in
our test environment. We started a large
upstream file transfer (using a single TCP
session) to simulate a self-congested
upstream. The Dummynet test set injected
either 40ms or 100ms round-trip latency to the
TCP stream. The two latency values impact
the dynamics of the TCP congestion
avoidance algorithm differently, and thus
result in a different pattern of CM buffer
usage. For each bandwidth/buffer/delay
permutation, we ran 10 tests and computed
the average MOS.

Figure 9a

10
100

1000
10000

16 64 256

La
te

n
cy

 (
m

s)

Buffer Size (KiB)

PING Latency (1 Mbps/2 Mbps)

2Mb/s (40msRTT) 2Mb/s (100msRTT)1Mb/s (40msRTT) 1Mb/s (100msRTT)

10
100

1000

16 64 256

La
te

n
cy

 (
m

s)

Buffer Size (KiB)

PING Latency (5 Mbps/10 Mbps)

10Mb/s (40msRTT) 10Mb/s (100msRTT)5Mb/s (40msRTT) 5Mb/s (100msRTT)
12
34
5

8 16 32 64 128 256

M
O

S

Buffer Size (KiB)

MOS vs Buffer Size (1Mbps)

1Mbps (40ms) 1Mbps (100ms)

Figure 9a shows the results when the
upstream was configured to 1Mb/s. In this
case, the 16KiB buffer gave the best MOS
result regardless of the TCP RTT. When the
buffer size increased to 64KiB, the MOS
started to drop. In fact, when the buffer size
was set to 256KiB with 100 ms delay, many
tests couldn’t be completed. The test set
reported a Timeout. The timeout could be
caused by long delay introduced by the large
buffer.

Figure 9b

Similar results were obtained for 2MB/s, as
shown in Figure 9b.

Figure 9c

Figures 9c and 9d show the results of
5Mb/s and 10Mb/s upstream bandwidths. For

both of these cases, the best MOS results were
recorded when the buffer size was set between
32KiB and 64KiB. What was interesting is
when the buffer was set below 64KiB, there
should not be any congestion because the
buffer size was too small for the competing
TCP session to utilize the full upstream
bandwidth. Also when the buffer size was set
to 8KiB or 16KiB, the VoIP traffic should see
very low buffering latency (between 6ms and
26ms). Both of these factors should result in
high MOS scores. However, the MOS score
was degraded when the buffer size was set to
8KiB or 16KiB, and this low MOS is likely to
be caused by packet loss due to the periodic
saturation of the small CM buffer by the
competing TCP congestion window.

Figure 9d

When we increased the buffer size above
128KiB, the MOS started to deteriorate. In
fact, the test set failed to complete some tests
and required us to re-run the test when we set
the upstream bandwidth to 10Mb/s with
256KiB buffer and 100ms delay. This could
be caused by the long delay of the VoIP
signaling packets for the call setup.

Another interesting observation is that,
while adding latency to the TCP session did in
some cases affect the VoIP MOS, it didn't
point to a different optimal buffer size.

12
34
5

8 16 32 64 128 256

M
O

S

Buffer Size (KiB)

MOS vs Buffer Size (2Mbps)

2Mbps (40ms) 2Mbps (100ms)

12
34
5

8 16 32 64 128 256

M
O

S

Buffer Size (KiB)

MOS vs Buffer Size (5Mbps)

5Mbps (40ms) 5Mbps (100ms)

12
34
5

8 16 32 64 128 256

M
O

S

Buffer Size (KiB)

MOS vs Buffer Size (10Mbps)

10Mbps (40ms) 10Mbps (100ms)

Test 3 Results

In this test, the CM's rate-shaping token
bucket depth was set to 5MB to mimic the
configuration that some operators use to boost
performance for bursty interactive traffic. The
test set was then used to transit a 5MB file in
the upstream direction using FTP. The test
measured the transfer time and, from this, an
average data rate was calculated. Due to the
fact that the file size was equal to the token
bucket depth, there was effectively no
upstream rate-shaping in play. Figure 10
shows the result of Average Transfer Time for
the scenario with 40ms RTT and the scenario
with 100ms RTT.

Figure 10

Figure 11 shows the calculated average
throughput based on the average transfer time
and the file size. It is clear that the choice of
buffer size can have a dramatic impact on
achievable throughput during this
performance boost period. It is important to
note that the average throughput shown in
Figure 11 is for the entire file transfer, and so
includes the slow-start effect as well as the
initial FTP hand-shaking.

Figure 11

FUTURE WORK

Additional work is necessary to more fully
understand the impact of CM buffering on
application performance and user experience.
The overarching goal of this work is to enable
cable operators to optimize network
performance and user experience across a
wide range of application and usage scenarios.

The experimental work described in this
paper focused both on upstream bulk TCP
performance, and on the impact that bulk TCP
traffic would have on a VoIP session across a
range of buffer sizes in fairly isolated and
controlled scenarios. Further work will seek
to examine the effect of buffering on some
more real-world application scenarios, such as
a scenario in which TCP sessions are
numerous and short-lived, such that many of
them stay in the slow-start phase for their
entire duration, and never (or rarely) enter the
congestion avoidance phase. Additionally,
future work should assess the impact of buffer
sizing on other latency or loss sensitive
applications beyond VoIP.

020406080100120

8 16 32 64 128 256

T
ra

n
sf

er
 T

im
e

(s
)

Buffer Size (KiB)

Average Transfer Time

40ms 100ms

0.1
1.0

10.0
100.0

8 16 32 64 128 256

T
h

ro
u

gh
p

u
t

(M
b

p
s)

Buffer Size (KiB)

Average Throughput

40ms 100ms

CONCLUSIONS

We have shown that the size of the
upstream service flow buffer in the cable
modem can have significant effects on
application performance. For applications
that use TCP to perform large upstream
transmissions (i.e. upstream file transfers such
as uploading a large video clip), insufficient
buffering capacity can limit throughput.
Applications utilizing a single TCP session
see the most pronounced effect. Applications
that are latency sensitive, on the other hand,
see degraded performance when too much
buffer capacity is provided.

Cable modems deployed today appear to
have significantly greater buffering than is
needed to sustain TCP throughput, potentially
causing high latency when the upstream is
congested. The result is poorer than expected
application performance for VoIP, gaming,
Web surfing, and other applications that are
latency-sensitive.

A new feature for DOCSIS 3.0 CMs allows
operators to configure the upstream buffer
size for each upstream service flow in order to
optimize application performance and to
improve user experience. In choosing the
buffer size, the operator will need to consider
the upstream QoS parameters for the service
flow, the expected application usage for the
flow, as well as the service goals for the flow.

Service features that utilize a large token
bucket size (in order to provide high
throughput for short bursts) complicate
matters since the buffer size cannot
realistically be resized in real time. Thus a
buffer configuration that may be optimized to
provide a good balance in performance
between TCP uploads and real-time services
for the configured sustained traffic rate, may
result in poorer than expected burst speeds.

Further work is needed to evaluate the
performance impact that buffer size has on a
wider range of application scenarios.

REFERENCES

[1] V. Jacobson, Congestion Avoidance and
Control, ACM SIGCOMM '88, August
1988.

[2] J. Postel, Transmission Control Protocol,
STD 7, RFC793, September 1981.

[3] Braden, B., et al., Recommendations on
Queue Management and Congestion
Avoidance in the Internet, RFC 2309,
April 1998.

[4] S. Floyd, Congestion Control Principles,
BCP 41, RFC 2914, September 2000.

[5] K. Ramakrishnan, S. Floyd and D. Black,
The Addition of Explicit Congestion
Notification (ECN) to IP, RFC 3168,
September 2001.

[6] M. Allman, V. Paxson and E. Blanton,
TCP Congestion Control, RFC 5681,
September 2009.

[7] C. Villamizar and C. Song, High
Performance TCP in ANSNet. ACM
CCR, 24(5):45-60, 1994.

[8] G. Appenzeller, I. Keslassy, and N.
McKeown, Sizing Router Buffers, ACM
SIGCOMM, USA, 2004.

[9] M. Dischinger, et al., Characterizing
Residential Broadband Networks,
Proceedings of the 7th ACM SIGCOMM
Conference on Internet Measurement,
Oct. 24-26, 2007, San Diego, CA, USA.

[10] A. Vishwanath, V. Sivaraman, M.
Thottan, Perspectives on Router Buffer
Sizing: Recent Results and Open
Problems, ACM CCR, 39(2):34-39, 2009.

[11] ITU-T Recommendation G.114, One-way
Transmission Time, http://www.itu.int

[12] ITU-T Recommendation G.107, The E-
model, a computational model for use in
transmission planning, http://www.itu.int

[13] ITU-T Recommendation G.108,
Application of the E-model: A planning
guide, http://www.itu.int

[14] ITU-T Recommendation G.109,
Definition of categories of speech
transmission quality, http://www.itu.int

[15] R. G. Cole and J. H. Rosenbluth, Voice
over IP performance monitoring,
ACMCCR, 31(2), 2001.

[16] Internetworking lectures from La Trobe
University,
http://ironbark.bendigo.latrobe.edu.au/sub
jects/INW/lectures/19/, 2011.

[17] J. Gettys, Bufferbloat: Dark Buffers in
the Internet,
http://mirrors.bufferbloat.net/Talks/Pragu
eIETF/IETFBloat7.pdf, April 2011.

[18] L. Rizzo, Dummynet: a simple approach
to the evaluation of network protocols,
ACM Computer Communication Review,
Vol. 27, No. 1, pp. 31-41, January 1997.

