
Infrastructure and tools to support secure, scalable, and highly
available APIs

 Agustin Schapira
 Comcast

 Abstract

 This paper describes a layered HTTP
infrastructure designed to support web-based
APIs in a standard, secure, scalable, and
highly available fashion. The efforts described
here are based on the observation that large
scale distributed systems exhibit greater
robustness, flexibility, and extensibility when
they are conceived, built, and operated as a
set of small independent but interconnected
components. Leveraging the power of DNS
routing and the HTTP protocol, we have built
a platform that makes it easy for engineering
teams within the organization to expose their
services to other teams as HTTP APIs, and in
turn to build their solutions based on other
teams' APIs. The adoption of the API platform
has reduced duplicate efforts, increased the
overall security of our systems, provided
greater control and visibility of how
components are being used, and ultimately
helped us innovate more quickly.

INTRODUCTION

 It is by now a widely accepted tenet of
web-based application development that de-
coupling application logic and core data
services from presentation layers enables the
independent development of the two pieces
and therefore reduces development cycles,
increases the maintainability of the code, and
allows for the quick migration to new
platforms and devices (Burbeck, 1987). More
general software engineering principles, such
as decomposition (Parnas, 1972) and
separation of concerns (Dijkstra, 1982),
enhance overall architectural robustness,
reduce the duplication of efforts, facilitate

systems integration, and encourage the sense
of ownership and responsibility over an
individual component. The benefits of these
practices go beyond pure engineering and into
the business realm, as the same mechanisms
that encourage the sharing of solutions across
engineering teams and subsidiaries may also
enable partners to further extend a company’s
core offerings through syndication
arrangements, encouraging development of
new, unforeseen solutions based on the
existing, highly focused components
(Benslimane, Dustdar, & Sheth, 2008).
Ultimately, these strategies enable companies
to innovate quickly in a technological
landscape constantly in flux (Papazoglou &
Georgakopoulos, 2003).

 In the world of Internet applications and
services, reusable solutions are most
commonly implemented as components that
expose an Application Programming
Interface, or API, which other components
(internal or external) may invoke in order to
extend their own functionality. An API is a
well-defined contract that specifies how a
consumer should exchange information with a
service provider in order to access and use its
services (Papazoglou & Georgakopoulos,
2003). In the case of the web, the particular
set of rules and data formats specified by the
API usually rely on general communications
and architectural patterns, such as the SOAP
(W3C, 2007) and REST (Fielding, 2000)
styles, to specify how the actual messages
should be exchanged and interpreted (e.g.,
how to represent the space of possible actions,
how to encode the messages, how to report
errors, etc.). Ultimately, all of these
architectural styles use HTTP as the
underlying communications protocol.

 This paper describes a platform to
encourage and support, within an
organization, the creation and use of web
APIs. The starting point for this work was the
question: "What are best ways to encourage
the creation, operation, documentation,
maintenance, and use of APIs in a large
organization, where tens of engineering
groups and hundreds of developers are
working on their own problems and
solutions?" In other words, if we believe that
this particular engineering practice can
improve our agility, robustness, and time-to-
market, then how can we encourage its
adoption in a large organization with
multitudes of product lines, deadlines,
engineering practices, and goals?

 To guide our work, we established five
core principles, and then sought to provide
answers and solutions to address them:

 1. Exposing APIs should not impose a
big burden on the owner of the service --
and, in fact, it should have obvious benefits.
To address this issue, we built shared
infrastructure that solves the common
difficulties involved in supporting APIs
(security, access policies, and scalability), and
established standard protocols and procedures
for incorporating an API onto the
infrastructure. By simply "plugging in", API
providers get all those issues solved and are
freed to focus on their core competencies.

 2. Leveraging existing APIs should not
impose a big burden on developers --the
ultimate goal being that a developer who
learns how to use one API will immediately
also know how to access all other internal
APIs. To address this issue, we established
well-known protocols for making calls
through the infrastructure onto the APIs, and
based them on widely used open standards.
Furthermore, we created and distributed
libraries for several programming languages
to take care of the details of making HTTP

requests according to the infrastructure's
requirements.

 3. API owners should not lose control of
their services --and, in particular, they should
be able to make all the choices afforded by the
HTTP protocol, as long as those decisions do
not interfere with the core security
requirements. To address this issue, we chose
a highly distributed operations and control
structure. We ensured that the API
infrastructure imposes as few demands as
possible (and that those demands are based on
open standards), placed the operational
responsibilities on API owners, and gave them
complete freedom on issues such as data
formats, URL patterns, cache control
directives, etc.

 4. The use of APIs should not introduce
unnecessary obscurity in the underlying
communication channels --and, in particular,
the API infrastructure should preserve as
much as possible the transparency and ease-
of-use of HTTP and of the architectural styles
built on top of it. To address that issue, we
introduced HTTP headers that trace the
processing of requests as they travel through
the infrastructure, and built tools to test and
debug APIs from a web browser.

 5. Delays for getting on board, either as
an API provider or a consumer, should be
minimal --because people lose interest very
quickly when faced with too many hurdles to
test a new technology. To address this issue
for API providers, we created a sandbox
version of the infrastructure --with very few
limitations compared with the production
environment-- where it's possible to get a new
API up and running in less than 30 minutes.
For API consumers, on the other end, we built
a Developer Portal where they can find an
API catalog, read detailed documentation, and
even access live versions of APIs directly
from their web browser, so they can quickly
learn about the inputs and outputs of an API
without writing a single line of code.

 The remainder of the paper describes in
more detail the shared API infrastructure that
we built, the communications protocols that
we imposed on it, and the Developer Portal
where we centralize the documentation of
existing APIs.

API INFRASTRUCTURE AND
ENVIRONMENTS

 The most common issues that engineering
teams have to face when exposing APIs are
security, access control policies, and
scalability. In order to address these issues,
we built an API infrastructure that
enables service providers to simply "plug in
their APIs" (following some basic protocols)
and effectively delegate those responsibilities
to the shared platform.

 An API integrated with this infrastructure
offers its resources via public URLs that bind
(via Layer 3 / DNS routing) to the platform
infrastructure. Through this level of
indirection, an HTTP request from an API
client is first routed through the platform so
that, by the time it reaches the API’s origin
servers, most of the scalability and security
decisions have been made.

 Following the separation of concerns
principle, we conceived of the infrastructure
as a layered architecture, with a set of HTTP
intermediaries tackling the different issues.
Internally, the request is routed (through a
combination of Layer 3 and Layer 7
mechanisms) through a small set of
specialized HTTP intermediaries. Scalability
and high-availability are the responsibility of
an initial load-bearing layer, implemented
through a Content Distribution Network
(leveraging its very-large-scale edge topology,
caching services, and high-availability and
failover mechanisms). This outermost layer
also acts as a Policy Agent, enforcing policy
decisions made by a second layer, the Policy
Decision Point, to which the request is further

routed, and which is responsible for
authenticating the client, determining whether
it has access to the requested resource,
applying business policies (such as rate
limiting), and logging detailed information
about the request for reporting and
monitoring. If the request is valid, it is finally
routed to the API origin. The response from
the origin traverses back downstream though
the intermediaries, which may decorate it, and
finally back to the client that initiated the
request. Figure 1 illustrates this flow.

 An important requirement while designing
this infrastructure (reflected in the fifth
guiding principle) was that developers should
be able to “plug” an API and start offering it
to others in less than 30 minutes –the
underlying assumption being that longer setup
times would discourage developers from
trying out the platform and would therefore
reduce the levels of adoption throughout the
organization. This requirement led to the
creation of two almost identical but separate
environments on top of the platform: a
Sandbox environment, with an almost self-
service model of API provisioning and where
developers can test their APIs in development
and QA scenarios, and a Production
environment, with SLAs and complete
branding for operationally ready APIs --but
with a necessarily slower and more involved
setup procedure.

 The internal structure and functioning of
the two environments is almost identical. The
major difference resides in the fact that
sandbox APIs are exposed with unbranded
public URLs (e.g., as a sub-domain of a

generic api_plaform.example.com/), whereas
production APIs get their own branded
hostnames (e.g. voice.example.com/). This is
due to the fact that the procedures for
establishing new DNS domains and acquiring
SSL certificates for them are much more
involved than simply creating a sub-domain
for an existing domain (and, in particular,
require lengthier setup procedures with the
load-bearing CDN partner). But beyond that
distinction, there are no other differences.
This combination of environments allows API
owners to get started very quickly (simply by
filling out a form with data about the desired
edge URL and the location of the origin
server and waiting a few minutes for
operations staff to initialize an endpoint and
turn the API on), while at the same time
retaining the ability to easily migrate to a
production environment when the APIs and
their owners are ready.

 The following sub-sections detail different
communications protocols imposed on top of
the layered architecture in order to guarantee
security and offer scalability. Since the
differences between the two environments are
minimal and have already been detailed
above, no further distinctions between them
will be made.

Internal Security

 The API infrastructure allows API origins
to delegate decisions of security. This means
that when an API origin receives an incoming
request, it should be free to assume that the
security and access control policies have
already been enforced, and that it may
therefore process the request without having
to concern itself with those issues. Because
API resources are offered via public URLs
accessible through the open Internet, however,
the API origin must ensure that the request is
indeed arriving from a component in the
shared infrastructure --otherwise, a malicious
client could access it directly and effectively
bypass all the security restrictions. For that

reason, all layers in the architecture, including
the API origins and the Policy Decision Point,
are asked to implement what we have called
the "Intermediary Authentication Protocol".
In simple terms, the protocol requests
a) that all intermediaries attach HTTP headers
to their requests with a message
authentication code (MAC) (Federal
Information Processing Standards, 1985)
signed using shared keys, and b) that both
intermediaries and origins verify the existence
and the validity of the code in all incoming
requests. (The outermost layer receives
requests directly from clients, not
intermediaries, and is therefore not expected
to verify incoming headers, but it should, on
the other hand, provide headers identifying
itself as an intermediary before forwarding the
request upstream to the next layer).

 The protocol requires intermediaries and
origins to maintain a list of well-known
Intermediary IDs and their corresponding
secret keys. Two internal HTTP headers are
attached and verified by all intermediaries and
origins involved in the upstream processing of
a request. The first header provides
information about the request from the
intermediary (an ID for the intermediary, a
timestamp, and a nonce). The second header
provides a hashed MAC (HMAC) computed
by concatenating the information from the
first header with details about the request (e.g.
the base URL), and signing it with a shared
key in order to ensure that the information in
the other header cannot be tampered with.

 Each intermediary should validate an
incoming request by 1) making sure that the
headers exist and are in the right format, 2)
retrieving the secret key that corresponds to
the Intermediary ID, 3) creating a signature
using the same function as above, 4)
comparing the new signature to the value of
the signature received in the second header, 5)
retrieving the timestamp and ensuring it falls
within a certain window (past & future), and
finally 6) retrieving the nonce and ensuring

that the request is unique (within that
window). If any of these steps fails, the
intermediary or origin should immediately
return an HTTP 403 response, with a body
detailing the reason (e.g. “signature invalid”).
Otherwise, it should continue the processing
of the request in regular fashion, but
previously replacing the Intermediary
Authentication headers that it received with
new values, so as to identify itself to the next
layer upstream.

Access Policies - Consumers

 Once it is guaranteed that origins will only
accept requests coming from the shared API
infrastructure, it is easier to model and apply
security and access control guarantees to
APIs. In the most basic model, which we call
the "Consumer Authentication Protocol", API
owners are able to choose who gets access to
their services, and under which circumstances.
The enforcement of these restrictions (i.e., the
guarantee that only authorized users are
allowed to access the API) is the
responsibility of the Policy Decision Point
component of the platform. Through
configuration dashboards and out-of-band
operations, API owners can grant Consumer
Keys and Secrets to individual consumers,
and specify the set of policies (e.g.,
rate limits, time and geographic restrictions,
etc.) that must be respected when each of
those consumers issues a request against their
API. API consumers, in turn, are asked to sign
their requests using those credentials,
following in particular the 2-legged
version of the widely adopted OAuth 1.0a
standard (Internet Engineering Task Force,
2010).

 The original OAuth specification should be
consulted for full details, but in summary the
protocol requires that HTTP requests be
decorated with an authorization string
provided in the Authorization HTTP
header. The authorization string includes
the consumer’s key along with a hashed

message authentication code (based on the
method, the hostname, the path, and the
GET/POST parameters of the request) signed
with a concatenation of the consumer’s key
and its secret (not to be confused with the
Intermediary's key and secret as described in
the previous section). The protocol also
requires a timestamp and a nonce, to avoid
replay attacks.

 To authenticate an incoming request, the
Policy Decision Point retrieves the shared
secret corresponding to the consumer's key
provided in the Authorization HTTP Header,
and uses it to build the OAuth signature that it
should expect given the request that it is
actually processing (its hostname, method,
path, and parameters). If the expected and
received signatures don’t match (or if the
authorization string is missing or incomplete,
the timestamp is older than a certain allowed
time window, or the nonce parameter has
already been received within that window),
the Policy Decision Point instructs the outer
layer in the infrastructure (the Policy
Enforcement Point) to DENY the request,
with an HTTP 403 code and an explanation in
the body of the response (e.g., "Missing
Consumer Key", "Invalid Signature", etc.),
without forwarding the request on to the API
origin. If the signature is correct, on the other
hand, the Policy Decision Point considers the
consumer properly authenticated, and then
proceeds to apply business authorization rules
such as rate limiting. Eventually, if the request
is fully authorized (i.e., if it's coming from an
authorized consumer, and all the access
policies for that consumer are successfully
passed), then it is forwarded to the API origin
with an internal header that reveals the
identity of the consumer, should the origin
need it for tracking or logging purposes.

Access Policies - Resources

 The Consumer Authentication protocol
ensures that only requests from authorized
consumers are allowed, and is an effective

solution when the consumer can be trusted to
keep its credentials securely. For cases when
the security of the credentials cannot be
guaranteed (e.g., when the consumer is an
application running on a mobile device), our
platform also supports a "Resource
Authorization Protocol", which gives a
particular instance of that consumer access to
a single resource (e.g., a single user account).
With this protocol, if an instance of a
consumer application gets compromised (e.g.,
a particular mobile device gets hacked), then
only the particular resource for which that
device had been authorized is compromised.

 The protocol is identical to the 3-legged
version of the OAuth 1.0a standard (Internet
Engineering Task Force, 2010), and a slight
variation over the Consumer Authentication
Protocol. In summary, in addition to
Consumer Keys and Secrets, valid requests
must be signed with an Access Token and
Secret as well. The protocol defines a set of
flows that enable a consumer to acquire an
Access Token and Secret for a particular
resource (for example, if the resource in
question is a user account, the protocol
defines a flow by which the consumer
application should redirect the user's web
browser to an endpoint where the API
platform will issue a Request Token
-- potentially, but not necessarily, first
redirecting to a login page and requiring that
the user for whose account access will be
granted explicitly authorizes the access--,
which the consumer application then
exchanges for an Access Token and Secret via
a backend call to the API platform).
Regardless of the flow chosen, the API
platform internally correlates the Access
Token to the identity of the particular user or
resource to which access is being granted.
Once the authorization tokens have been
acquired, the consumer application will
submit API requests signed using a similar
mechanism to the one required by the
Consumer Authentication protocol, with
the additional requirement that the Access

Token be also provided in the Authorization
string, and that the signature be computed
using both the Consumer Secret and the
Access Token Secret.

 The Policy Decision Point, in turn, will
receive the request, verify the identity of the
consumer, validate the signature, and apply
access policies to the consumer, just like in
the Consumer Authentication Protocol.
Additionally, the Policy Decision Point will
retrieve the identity of the resource that
corresponds to the Access Token in the
Authorization HTTP Header, and apply
access policies that apply specifically to that
resource. Finally, if all checks pass, the Policy
Decision Point will forward the request to the
API origin, modifying the original URL to
include the identity of the requested resource.
For example, if the consumer makes a request
to www.example.com/myaccount with a given
Access Token, and the Access Token
corresponds to a user with GUID 123, then
the request to the API origin will be
api_origin.example.com/accounts/123 (the
details of URL re-writing can be configured
on a per-API basis, of course).

 Because access permissions are attached to
a single resource, and because it effectively
hides the actual identity of the resource, the
"Resource Authorization" protocol is also
useful in cases where the API owners want to
give access to the API to an external partner,
without having to reveal internal resource
identifiers such as UIDs. It is also useful when
business policies demand the explicit approval
of the user on whose behalf the consumer
application will be issuing requests.

Scalability

 In addition to the issues of security and
access controls described above, API owners
also have to address problems of scalability
when they choose to expose their services for

access beyond the applications for which they
were originally intended. Fortunately,
scalability is another issue that may be well
addressed by a common API infrastructure. In
particular, our API platform contains a load-
bearing tier, implemented on top of a
commercially available CDN, which is setup
to be the first layer to handle incoming
requests (and the last to process outgoing
responses). Responses from API origins may
be temporarily stored at this layer, which may
later choose to respond to subsequent requests
directly from its cache, without the need to
first forward the requests to the Policy
Decision Point and the API origin.

 Serving content directly from the outer
load-bearing tier, however, introduces a new
security issue: if new requests don't have to
travel to the Policy Decision Point, then how
can the platform guarantee that only
authorized consumers will be allowed to
access the protected services? The "Edge
Authorization Protocol" addresses that
problem, effectively offering the option of
trading fine grain policy decisions for massive
scale, high availability, and optimal
performance. In this model, the Policy
Decision Point is allowed to optionally issue
cryptographically secure authorization
assertions in the response to requests from a
consumer. Those assertions act as logically
sessioned tokens: if and only if the consumer
replays that authorization token in subsequent
requests may the load-bearing edge network
assume that the consumer has already been
authorized, and that therefore the request may
be processed without further engaging the
Policy Decision Point.

 In terms of actual implementation, the
Edge Authorization protocol specifies that the
Policy Decision point may decorate the
downstream response with a cookie that
encodes the IP of the consumer for which
authorization should be assumed, the duration
of the authorization, a list of paths for which
the authorization should be valid, and a

signature. Before sending the final response to
the client, the edge tier will check for the
existence of the cookie and, if found, it will
encrypt its value using its own secret key (to
make it opaque). The client may then issue
another request to the same API. On its end,
all the standard rules apply; in particular, the
request must still be signed using the
Consumer Authentication protocol, through
which the consumer identifies itself to the API
infrastructure. However, the client may also
replay the Edge Authorization cookie that it
received in the previous response; in that case,
the edge processor will decrypt its value,
validate it (IP address, expiration time, path,
and signature) and, if all checks pass, return
content directly from its cache. It is also
possible that the edge tier does not find the
desired content in its cache (or that the stored
response has expired); in that case, the edge
tier will have to forward the request all the
way to the origin, but it will be allowed to
bypass the Policy Decision Point and engage
the Service Provider interface directly, since
the request has already been authorized.

 From the point of view of the client, there
shouldn’t be any difference in the way that it
issues the request (with the exception of the
extra cookie) or the way it receives a response
(again, with the exception of the cookie). The
same is true for API origins: how the request
is routed through the API infrastructure is of
no concern to them. With minimal effort,
then, the shared caching and high-availability
layer (along with the Edge Authorization
protocol) enables API owners to take
advantage of infrastructure that may be too
expensive or too complicated to maintain for a
single API (thereby reducing the burden of
exposing their services, per the first principle)
while, at the same time, giving them full
control, through the well established HTTP
cache control directives, to decide which
sections of their APIs should be cached,
which ones require refreshes, which ones may
be served in a stale state in the case of origin
downtimes, etc. (following the third

principle).

 It must be noted that the Edge
Authorization protocol introduces an obvious
trade-off, in which scalability and
performance are gained at the expense of fine-
grained security decisions. If responses are
served directly from the cache or the origin,
bypassing the Policy Decision Point, one loses
the ability to immediately revoke access to a
consumer (i.e., the edge will continue to grant
access until the edge authorization cookie
expires). The rate limiting and usage reporting
capabilities afforded by the Policy Decision
are also lost for requests that are edge
authorized. For these reasons, API owners
must retain control about which consumers
may participate in this Edge Authorization
protocol, and for how long the authorizations
should be granted. In practice, the Edge
Authorization protocol is only used with
selected APIs and consumers, and the
expiration times for the edge authorization
cookie usually set to no more than 1 or 2
minutes.

Traceability

 For purposes of traceability and
operational awareness, necessary given the
various layers involved in the processing of a
request through the API platform,
intermediaries (including the API origins) are
asked to decorate upstream requests (that they
process themselves or forward to other layers)
and downstream responses (that they return to
upper layers) with values that they append to
an internal HTTP header. The details of the
header are specified by our "Message
Exchange Fingerprint Protocol".

 Specifically, an HTTP header is added by
all systems that participate in the handling of
a request. Values from different components
are separated by a single space, and each
value in turn consists of a dash-separated set
of a) a direction prefix, either UPSTREAM

("u") or DOWNSTREAM ("d"), b) a
component identifier, granular enough to
provide uniqueness to the fingerprint (e.g., in
a Java system this could some arbitrary
"system ID" plus a "process ID" plus a "thread
ID", and c) a timestamp, recorded in Unix
time (milliseconds since the UTC epoch).

 An example value for the internal header,
as received by the consumer with the full
HTTP response, is shown below (pretty-
printed to show processing brackets):

u-cdn75209+72.246.30.14+138036545-1287680639000
 u-proxyworkeri6866f301.pdp.com8735-1287680639532
 u-t24005274509060@API-QA-1287680639596
 d-t24005274509060@API-QA-1287680639597
 d-proxyworkeri6866f301.pdp.com8735-1287680639591
d-cdn75209+72.246.30.14+138036545-1287680639800

 This shows which components participated
in the processing of the request (a CDN server
at 72.246.30.14, a Policy Decision Point
worker with the ID 6866f301, and thread ID
t24005274509060 on the API-QA origin).
The header is also useful to show the time
each bracket took in processing the request
(including the calls to the lower layers): 1ms
at the origin, 59ms on the Policy Decision
Point, and 800ms total at the edge layer
(including the time spent waiting for a
response from the next layer down).

DEVELOPER PORTAL

 The multi-layered architecture of the API
infrastructure, along with its protocols and the
procedures that providers and consumers must
follow, address the first four principles that
guided our efforts to encourage the creation of
APIs throughout the organization: minimize
effort for API providers, minimize effort for
API users, leave as much control as possible
with API providers, and do not obscure the
communication protocols. The sandbox
platform, a copy of the production
environment but running under a default edge
URL, tackles the fifth principle of minimizing
unnecessary delays for API owners. In order

to increase the adoption of existing APIs and
address the fifth principle for API
consumers, we created a Developer Portal, a
central place where service providers
advertise and document their APIs, and where
potential users quickly find out about the APIs
offerings and learn how to use them.

 Access to the Developer Portal is limited
to employees within the organization, and
their access credentials tied to the
organization's LDAP servers, to minimize the
effort required to participate in the portal.
Once logged in, visitors can access
Wiki pages that explain the inner functioning
of the API platform and its protocols, and in
particular provide detailed instruction for
signing requests using the Consumer
Authentication and Resource Authorization
protocols (libraries for several programming
libraries are also provided here).

 More importantly, visitors to the
Developer Portal have access to a full API
Catalog, listing all the available APIs
categorized by group or function, and with
links to find further information about each.
This is where developers learn about the APIs
that they can use to solve the problems they
are working on. Each API, in turn, has its own
set of documentation pages (which are carved
out from the Developer Portal's URL
namespace when the API is first exposed
through the infrastructure), and where we
encourage API owners to provide extensive
documentation. Most commonly, the
documentation includes the basic definition of
endpoints, URLs, path structures, and query
parameters, along with the kinds of responses
that API consumers should expect (and the
error codes that might be returned).

 So that future consumers may get as real a
taste for what the API can do, moreover, we
allow API owners to attach what we call
"LiveDocs" to their API's pages. LiveDocs are
small, inline boxed forms that can be easily
embedded in documentation pages, and

through which potential consumers may
specify parameters and issue live calls (from
the browser only) to the corresponding API,
without having to worry about getting API
keys or having to learn how to sign and issue
HTTP requests (a responsibility delegated to
the LiveDocs plugins). In addition to
displaying the responses returned by the APIs,
LiveDocs also present detailed information
about how the request was issued (so that
potential users can learn about how to sign
their requests), the headers that were returned
(so they can learn about special protocols such
as Edge Authorization), and the
intermediaries that participated in the
handling of the request (so that they can learn
to use the Message Exchange Fingerprints
protocol and explore the inner workings of the
platform). In this way, general documentation
and LiveDocs allow potential consumers to
learn as much as possible, and with very little
effort, about the set of APIs that are available
through the platform, and how they can use
them.

 The LiveDocs boxes are limited to the
parts of the API that owners want to bring
attention to in their documentation pages (e.g.,
they only allow for a small subset of
parameters, or provide closed choices for a
parameter in the form of a drop-down list).
Sometimes developers need more than that.
For that purpose, and once they have
requested and acquired credentials to access
those APIs, developers can access a more
powerful on-line tool (also available from the
Developer Portal), which we call "codebug".
Through codebug, developers have full
control over all the details of their request:
they can specify the full URL of the request,
use HTTP verbs other than GET, provide
specific headers, add Pragma directives that
control the behavior of the platform, and even
change signature methods. The codebug
console takes care of signing the requests
using the developer's credentials for the API,
and then presents the same information
returned by LiveDocs: the request and

response headers and parameters, the actual
response body returned by the API origin, and
tracing information showing how the request
was handled by the platform.

 We believe that being able to interact
directly and issue live calls to the API,
changing parameters and observing the XML
or JSON that the API returns, makes a big
difference in terms of the adoption of APIs.
Developers can effectively interact with an
API without having to write a single line of
code, and therefore are able to explore and
adopt existing APIs quicker (and based on
first-hand experience).

LESSONS LEARNED - FUTURE WORK

 Since the release of the API platform
within the organization, we have seen an
important increase both in the number of APIs
offered (for services which would have
normally remained closed), and in the
adoption of APIs across organizational
boundaries (to reuse solutions created by
teams from very different groups). More APIs
are being incorporated every month, and we
may be getting close to a tipping point, from
which all (or most) teams will be expected to
have solutions running on the platform.
Ultimately, this is enabling us to reduce the
duplication of efforts, increase the security of
our applications, gain deeper understanding
and control of who accesses each service, and
innovate with shorter development cycles and
reduced time to market.

 The experience of building and operating
the API infrastructure has also given us data
to verify our assumptions about what was
required to encourage the production and use
of APIs, and to discover ways in which we
could improve. In particular, we sense the
need for improvement in the following areas:

 1. Intra data-center calls need to be
treated differently. The API platform, as

detailed in previous sections, consists of an
initial CDN layer followed by a Policy
Decision Point. In our initial implementation,
these two layers are implemented and
operated by existing commercial offerings,
outside of our internal data-centers. This
architecture imposes a significant (and
unnecessary) latency overhead when both the
API consumer and the API origin are located
within the same data-center: requests from the
consumer have to travel all the way out of the
data-center into the CDN, and then to the
Policy Decision Point somewhere in the open
Internet, before coming back to the data-
center to the processed by the API origin (and
the responses need to follow the inverse path).

 To address this issue, we are evaluating
solutions to bring these layers in-house.

 2. Intermediary Authentication is
sometimes hard to deploy. As we engaged
internal teams to incorporate APIs onto the
platform, we discovered that some of those
services are owned and/or operated by third
parties, and it is either difficult or expensive
to access their source code. As a consequence,
adding the necessary filters so that the origins
conform to the Intermediary Authentication
protocol is a non-trivial exercise.

 To address this issue, we deployed an
internal gateway whose sole purpose is to
front those closed systems: the gateway
handles Intermediary Authentication, and the
API origins sit behind a firewall that only
enables requests from the gateway. While
adding (minimal) latency, this enables us to
expose services that otherwise would have to
remain closed (or would be very expensive to
open up without security risks).

 3. API owners need to have complete
access to traffic logs. When an API origin
sits behind the API platform, its web server
access logs lose richness. For example, it is no
longer possible (or easy) to find our which IP
addresses are hitting it (since they are all

coming from the Policy Decision Point), or
filter out requests that had to be dropped
because of security violations (since they are
dropped by the Policy Decision Point), or
which ones resulted in cache hits (since
caching is handled by the CDN layer). This is
useful data that API owners should not lose
access to.

 To address this issue, we are currently
working on a prototype solution that fetches
and combines log files from the three
infrastructure layers (the CDN, the Policy
Decision Point, and the API origin) and
makes them available to API owners. In the
future we will consider integrating this tool
with the existing API management
dashboards.

 4. Exposing APIs implies a cultural shift,
which takes time and education. Early
adopters of the API platform were easy to get
on board: they were already interested in
exposing their APIs, they felt comfortable
with the security implications, they
understood the details of layered HTTP
architectures, and they were able and willing
to use low-level tools (and cumbersome
procedures) to configure their endpoint. As
we push for adoption beyond this initial
group, however, it is becoming more
important to be able to explain in less
technical terms the advantages of opening up
APIs, to detail more explicitly the security
guarantees that the platform provides, and in
general to provide more guidance about the
best ways to go about doing it.

 To address these issues, we are working on
Best Practices documents, open security
reports and assessments, easier to use (and
more accessible) forms and procedures for
creating API endpoints in the sandbox, and
simplified key management policies. We are
discovering that, in order to gain wide
acceptance and adoption, the existence of
these materials is as important as the technical
merits of the platform.

ACKNOWLEDGEMENTS

 This API project was initiated at Comcast
by Matt Stevens, who produced the original
design of the architecture and core protocols.
It was later maintained and expanded by
Benjamin Schmaus, with further help from
Peter Cline, Michajlo Matijkiw, and Matt
Hawthorne.

 During the implementation phase, we got
invaluable help from Philip Grabner, Satish
Narayanan, and Cory Sakakeeny from
Akamai, and Bill Lim and Peter Nehrer from
Mashery. Also fundamental were the
contributions of Bahar Limaye, from Software
Security Consultants, who performed in-depth
reviews of the security of the platform.

 Many people within Comcast pushed for
the adoption of the infrastructure throughout
the organization, and I’d like to thank in
particular Rich Woundy, Rich Ferrise, and
Hai Thai.

REFERENCES

W3C. (2007). SOAP version 1.2. Retrieved
from W3C: http://www.w3.org/TR/soap/

Burbeck, S. (1987). How to use Model-View-
Controller (MVC). Retrieved from http://st-
www.cs.illinois.edu/users/smarch/st-
docs/mvc.html

Benslimane, D., Dustdar, S., & Sheth, A.
(2008). Services Mashups: The New
Generation of Web Applications. IEEE
Internet Computing , 12 (5), 13-15.

Dijkstra, E. W. (1982). On the role of
scientific thought. In Selected writings on
Computing: A Personal Perspective (pp. 60–
66). New York, NY: Springer-Verlag New
York, Inc.

Federal Information Processing Standards.
(1985). Publication 113 - Computer
DataAuthentication. Federal Information
Processing Standards.

Fielding, R. T. (2000). Architectural Styles
and the Design of Network-based Software
Architectures. Irvine, CA: University of
California, Irvine.

Internet Engineering Task Force. (2010). RFC
5849: The OAuth 1.0 Protocol. (E. E.
Hammer-Lahav, Ed.)

Papazoglou, M., & Georgakopoulos, D.
(2003, October). Service-Oriented
Computing. Communications of the ACM , 46
(10), pp. 24-28.

Parnas, D. (1972). On the criteria to be used
in decomposing systems into modules.
Communications of the ACM , 15(12), pp.
1053-1058.

