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 Abstract 
 
     This paper describes a layered HTTP 
infrastructure designed to support web-based 
APIs in a standard, secure, scalable, and 
highly available fashion. The efforts described 
here are based on the observation that large 
scale distributed systems exhibit greater 
robustness, flexibility, and extensibility when 
they are conceived, built, and operated as a 
set of small independent but interconnected 
components. Leveraging the power of DNS 
routing and the HTTP protocol, we have built 
a platform that makes it easy for engineering 
teams within the organization to expose their 
services to other teams as HTTP APIs, and in 
turn to build their solutions based on other 
teams' APIs. The adoption of the API platform 
has reduced duplicate efforts, increased the 
overall security of our systems, provided 
greater control and visibility of how 
components are being used, and ultimately 
helped us innovate more quickly. 
  
 

INTRODUCTION 
  
    It is by now a widely accepted tenet of 
web-based application development that de-
coupling application logic and core data 
services from presentation layers enables the 
independent development of the two pieces 
and therefore reduces development cycles, 
increases the maintainability of the code, and 
allows for the quick migration to new 
platforms and devices (Burbeck, 1987). More 
general software engineering principles, such 
as decomposition (Parnas, 1972) and 
separation of concerns (Dijkstra, 1982), 
enhance overall architectural robustness, 
reduce the duplication of efforts, facilitate 

systems integration, and encourage the sense 
of ownership and responsibility over an 
individual component. The benefits of these 
practices go beyond pure engineering and into 
the business realm, as the same mechanisms 
that encourage the sharing of solutions across 
engineering teams and subsidiaries may also 
enable partners to further extend a company’s 
core offerings through syndication 
arrangements, encouraging development of 
new, unforeseen solutions based on the 
existing, highly focused components 
(Benslimane, Dustdar, & Sheth, 2008). 
Ultimately, these strategies enable companies 
to innovate quickly in a technological 
landscape constantly in flux (Papazoglou & 
Georgakopoulos, 2003). 
 
     In the world of Internet applications and 
services, reusable solutions are most 
commonly implemented as components that 
expose an Application Programming 
Interface, or API, which other components 
(internal or external) may invoke in order to 
extend their own functionality. An API is a 
well-defined contract that specifies how a 
consumer should exchange information with a 
service provider in order to access and use its 
services (Papazoglou & Georgakopoulos, 
2003). In the case of the web, the particular 
set of rules and data formats specified by the 
API usually rely on general communications 
and architectural patterns, such as the SOAP 
(W3C, 2007) and REST (Fielding, 2000) 
styles, to specify how the actual messages 
should be exchanged and interpreted (e.g., 
how to represent the space of possible actions, 
how to encode the messages, how to report 
errors, etc.). Ultimately, all of these 
architectural styles use HTTP as the 
underlying communications protocol. 



 
     This paper describes a platform to 
encourage and support, within an 
organization, the creation and use of web 
APIs. The starting point for this work was the 
question: "What are best ways to encourage 
the creation, operation, documentation, 
maintenance, and use of APIs in a large 
organization, where tens of engineering 
groups and hundreds of developers are 
working on their own problems and 
solutions?" In other words, if we believe that 
this particular engineering practice can 
improve our agility, robustness, and time-to-
market, then how can we encourage its 
adoption in a large organization with 
multitudes of product lines, deadlines, 
engineering practices, and goals? 
 
     To guide our work, we established five 
core principles, and then sought to provide 
answers and solutions to address them: 
 
     1. Exposing APIs should not impose a 
big burden on the owner of the service -- 
and, in fact, it should have obvious benefits. 
To address this issue, we built shared 
infrastructure that solves the common 
difficulties involved in supporting APIs 
(security, access policies, and scalability), and 
established standard protocols and procedures 
for incorporating an API onto the 
infrastructure. By simply "plugging in", API 
providers get all those issues solved and are 
freed to focus on their core competencies.  
 
     2. Leveraging existing APIs should not 
impose a big burden on developers --the 
ultimate goal being that a developer who 
learns how to use one API will immediately 
also know how to access all other internal 
APIs. To address this issue, we established 
well-known protocols for making calls 
through the infrastructure onto the APIs, and 
based them on widely used open standards. 
Furthermore, we created and distributed 
libraries for several programming languages 
to take care of the details of making HTTP 

requests according to the infrastructure's 
requirements. 
 
     3. API owners should not lose control of 
their services --and, in particular, they should 
be able to make all the choices afforded by the 
HTTP protocol, as long as those decisions do 
not interfere with the core security 
requirements. To address this issue, we chose 
a highly distributed operations and control 
structure. We ensured that the API 
infrastructure imposes as few demands as 
possible (and that those demands are based on 
open standards), placed the operational 
responsibilities on API owners, and gave them 
complete freedom on issues such as data 
formats, URL patterns, cache control 
directives, etc. 
 
     4. The use of APIs should not introduce 
unnecessary obscurity in the underlying 
communication channels --and, in particular, 
the API infrastructure should preserve as 
much as possible the transparency and ease- 
of-use of HTTP and of the architectural styles 
built on top of it. To address that issue, we 
introduced HTTP headers that trace the 
processing of requests as they travel through 
the infrastructure, and built tools to test and 
debug APIs from a web browser. 
 
     5. Delays for getting on board, either as 
an API provider or a consumer, should be 
minimal --because people lose interest very 
quickly when faced with too many hurdles to 
test a new technology. To address this issue 
for API providers, we created a sandbox 
version of the infrastructure --with very few 
limitations compared with the production 
environment-- where it's possible to get a new 
API up and running in less than 30 minutes. 
For API consumers, on the other end, we built 
a Developer Portal where they can find an 
API catalog, read detailed documentation, and 
even access live versions of APIs directly 
from their web browser, so they can quickly 
learn about the inputs and outputs of an API 
without writing a single line of code. 



     The remainder of the paper describes in 
more detail the shared API infrastructure that 
we built, the communications protocols that 
we imposed on it, and the Developer Portal 
where we centralize the documentation of 
existing APIs. 
 
 

API INFRASTRUCTURE AND 
ENVIRONMENTS 

 
     The most common issues that engineering 
teams have to face when exposing APIs are 
security, access control policies, and 
scalability. In order to address these issues, 
we built an API infrastructure that        
enables service providers to simply "plug in 
their APIs" (following some basic protocols) 
and effectively delegate those responsibilities 
to the shared platform. 
 
     An API integrated with this infrastructure 
offers its resources via public URLs that bind 
(via Layer 3 / DNS routing) to the platform 
infrastructure. Through this level of 
indirection, an HTTP request from an API 
client is first routed through the platform so 
that, by the time it reaches the API’s origin 
servers, most of the scalability and security 
decisions have been made.  
 
     Following the separation of concerns 
principle, we conceived of the infrastructure 
as a layered architecture, with a set of HTTP 
intermediaries tackling the different issues. 
Internally, the request is routed (through a 
combination of Layer 3 and Layer 7 
mechanisms) through a small set of 
specialized HTTP intermediaries. Scalability 
and high-availability are the responsibility of 
an initial load-bearing layer, implemented 
through a Content Distribution Network 
(leveraging its very-large-scale edge topology, 
caching services, and high-availability and 
failover mechanisms). This outermost layer 
also acts as a Policy Agent, enforcing policy 
decisions made by a second layer, the Policy 
Decision Point, to which the request is further  

routed, and which is responsible for 
authenticating the client, determining whether 
it has access to the requested resource, 
applying business policies (such as rate 
limiting), and logging detailed information 
about the request for reporting and 
monitoring. If the request is valid, it is finally 
routed to the API origin. The response from 
the origin traverses back downstream though 
the intermediaries, which may decorate it, and 
finally back to the client that initiated the 
request. Figure 1 illustrates this flow. 
 

 
 
     An important requirement while designing 
this infrastructure (reflected in the fifth 
guiding principle) was that developers should 
be able to “plug” an API and start offering it 
to others in less than 30 minutes –the 
underlying assumption being that longer setup 
times would discourage developers from 
trying out the platform and would therefore 
reduce the levels of adoption throughout the 
organization. This requirement led to the 
creation of two almost identical but separate 
environments on top of the platform: a 
Sandbox environment, with an almost self- 
service model of API provisioning and where 
developers can test their APIs in development 
and QA scenarios, and a Production 
environment, with SLAs and complete 
branding for operationally ready APIs --but 
with a necessarily slower and more involved 
setup procedure. 
  
     The internal structure and functioning of 
the two environments is almost identical. The 
major difference resides in the fact that 
sandbox APIs are exposed with unbranded 
public URLs (e.g., as a sub-domain of a 



generic api_plaform.example.com/), whereas 
production APIs get their own branded 
hostnames (e.g. voice.example.com/). This is 
due to the fact that the procedures for 
establishing new DNS domains and acquiring 
SSL certificates for them are much more 
involved than simply creating a sub-domain 
for an existing domain (and, in particular, 
require lengthier setup procedures with the 
load-bearing CDN partner). But beyond that 
distinction, there are no other differences. 
This combination of environments allows API 
owners to get started very quickly (simply by 
filling out a form with data about the desired 
edge URL and the location of the origin 
server and waiting a few minutes for 
operations staff to initialize an endpoint and 
turn the API on), while at the same time 
retaining the ability to easily migrate to a 
production environment when the APIs and 
their owners are ready. 
 
     The following sub-sections detail different 
communications protocols imposed on top of 
the layered architecture in order to guarantee 
security and offer scalability. Since the 
differences between the two environments are 
minimal and have already been detailed 
above, no further distinctions between them 
will be made. 
  
Internal Security 
 
     The API infrastructure allows API origins 
to delegate decisions of security. This means 
that when an API origin receives an incoming 
request, it should be free to assume that the 
security and access control policies have 
already been enforced, and that it may 
therefore process the request without having 
to concern itself with those issues. Because 
API resources are offered via public URLs 
accessible through the open Internet, however, 
the API origin must ensure that the request is 
indeed arriving from a component in the 
shared infrastructure --otherwise, a malicious 
client could access it directly and effectively 
bypass all the security restrictions. For that 

reason, all layers in the architecture, including 
the API origins and the Policy Decision Point, 
are asked to implement what we have called 
the "Intermediary Authentication Protocol". 
In simple terms, the protocol requests 
a) that all intermediaries attach HTTP headers 
to their requests with a message 
authentication code (MAC) (Federal 
Information Processing Standards, 1985) 
signed using shared keys, and b) that both 
intermediaries and origins verify the existence 
and the validity of the code in all incoming 
requests. (The outermost layer receives 
requests directly from clients, not 
intermediaries, and is therefore not expected 
to verify incoming headers, but it should, on 
the other hand, provide headers identifying 
itself as an intermediary before forwarding the 
request upstream to the next layer). 
 
     The protocol requires intermediaries and 
origins to maintain a list of well-known 
Intermediary IDs and their corresponding 
secret keys. Two internal HTTP headers are 
attached and verified by all intermediaries and 
origins involved in the upstream processing of 
a request. The first header provides 
information about the request from the 
intermediary (an ID for the intermediary, a 
timestamp, and a nonce). The second header 
provides a hashed MAC (HMAC) computed 
by concatenating the information from the 
first header with details about the request (e.g. 
the base URL), and signing it with a shared 
key in order to ensure that the information in 
the other header cannot be tampered with. 
 
     Each intermediary should validate an 
incoming request by 1) making sure that the 
headers exist and are in the right format, 2) 
retrieving the secret key that corresponds to 
the Intermediary ID, 3) creating a signature 
using the same function as above, 4) 
comparing the new signature to the value of 
the signature received in the second header, 5) 
retrieving the timestamp and ensuring it falls 
within a certain window (past & future), and 
finally 6) retrieving the nonce and ensuring 



that the request is unique (within that 
window). If any of these steps fails, the 
intermediary or origin should immediately 
return an HTTP 403 response, with a body 
detailing the reason (e.g. “signature invalid”). 
Otherwise, it should continue the processing 
of the request in regular fashion, but 
previously replacing the Intermediary 
Authentication headers that it received with 
new values, so as to identify itself to the next 
layer upstream. 
 
Access Policies - Consumers 
 
     Once it is guaranteed that origins will only 
accept requests coming from the shared API 
infrastructure, it is easier to model and apply 
security and access control guarantees to 
APIs. In the most basic model, which we call 
the "Consumer Authentication Protocol", API 
owners are able to choose who gets access to 
their services, and under which circumstances. 
The enforcement of these restrictions (i.e., the 
guarantee that only authorized users are 
allowed to access the API) is the 
responsibility of the Policy Decision Point 
component of the platform. Through 
configuration dashboards and out-of-band 
operations, API owners can grant Consumer 
Keys and Secrets to individual consumers, 
and specify the set of policies (e.g., 
rate limits, time and geographic restrictions, 
etc.) that must be respected when each of 
those consumers issues a request against their 
API. API consumers, in turn, are asked to sign 
their requests using those credentials, 
following in particular the 2-legged 
version of the widely adopted OAuth 1.0a 
standard (Internet Engineering Task Force, 
2010). 
 
     The original OAuth specification should be 
consulted for full details, but in summary the 
protocol requires that HTTP requests be 
decorated with an authorization string 
provided in the Authorization HTTP 
header. The authorization string includes 
the consumer’s key along with a hashed 

message authentication code (based on the 
method, the hostname, the path, and the 
GET/POST parameters of the request) signed 
with a concatenation of the consumer’s key 
and its secret (not to be confused with the 
Intermediary's key and secret as described in 
the previous section). The protocol also 
requires a timestamp and a nonce, to avoid 
replay attacks. 
 
     To authenticate an incoming request, the 
Policy Decision Point retrieves the shared 
secret corresponding to the consumer's key 
provided in the Authorization HTTP Header, 
and uses it to build the OAuth signature that it 
should expect given the request that it is 
actually processing (its hostname, method, 
path, and parameters). If the expected and 
received signatures don’t match (or if the 
authorization string is missing or incomplete, 
the timestamp is older than a certain allowed 
time window, or the nonce parameter has 
already been received within that window), 
the Policy Decision Point instructs the outer 
layer in the infrastructure (the Policy 
Enforcement Point) to DENY the request, 
with an HTTP 403 code and an explanation in 
the body of the response (e.g., "Missing 
Consumer Key", "Invalid Signature", etc.), 
without forwarding the request on to the API 
origin. If the signature is correct, on the other 
hand, the Policy Decision Point considers the 
consumer properly authenticated, and then 
proceeds to apply business authorization rules 
such as rate limiting. Eventually, if the request 
is fully authorized (i.e., if it's coming from an 
authorized consumer, and all the access 
policies for that consumer are successfully 
passed), then it is forwarded to the API origin 
with an internal header that reveals the 
identity of the consumer, should the origin 
need it for tracking or logging purposes. 
  
Access Policies - Resources 
 
     The Consumer Authentication protocol 
ensures that only requests from authorized 
consumers are allowed, and is an effective 



solution when the consumer can be trusted to 
keep its credentials securely. For cases when 
the security of the credentials cannot be 
guaranteed (e.g., when the consumer is an 
application running on a mobile device), our 
platform also supports a "Resource 
Authorization Protocol", which gives a 
particular instance of that consumer access to 
a single resource (e.g., a single user account). 
With this protocol, if an instance of a 
consumer application gets compromised (e.g., 
a particular mobile device gets hacked), then 
only the particular resource for which that 
device had been authorized is compromised. 
 
     The protocol is identical to the 3-legged 
version of the OAuth 1.0a standard (Internet 
Engineering Task Force, 2010), and a slight 
variation over the Consumer Authentication 
Protocol. In summary, in addition to 
Consumer Keys and Secrets, valid requests 
must be signed with an Access Token and 
Secret as well. The protocol defines a set of 
flows that enable a consumer to acquire an 
Access Token and Secret for a particular 
resource (for example, if the resource in 
question is a user account, the protocol 
defines a flow by which the consumer 
application should redirect the user's web 
browser to an endpoint where the API 
platform will issue a Request Token 
-- potentially, but not necessarily, first 
redirecting to a login page and requiring that 
the user for whose account access will be 
granted explicitly authorizes the access--, 
which the consumer application then 
exchanges for an Access Token and Secret via 
a backend call to the API platform). 
Regardless of the flow chosen, the API 
platform internally correlates the Access 
Token to the identity of the particular user or 
resource to which access is being granted. 
Once the authorization tokens have been 
acquired, the consumer application will 
submit API requests signed using a similar 
mechanism to the one required by the 
Consumer Authentication protocol, with 
the additional requirement that the Access 

Token be also provided in the Authorization 
string, and that the signature be computed 
using both the Consumer Secret and the 
Access Token Secret. 
 
     The Policy Decision Point, in turn, will 
receive the request, verify the identity of the 
consumer, validate the signature, and apply 
access policies to the consumer, just like in 
the Consumer Authentication Protocol. 
Additionally, the Policy Decision Point will 
retrieve the identity of the resource that 
corresponds to the Access Token in the 
Authorization HTTP Header, and apply 
access policies that apply specifically to that 
resource. Finally, if all checks pass, the Policy 
Decision Point will forward the request to the 
API origin, modifying the original URL to 
include the identity of the requested resource. 
For example, if the consumer makes a request 
to www.example.com/myaccount with a given 
Access Token, and the Access Token 
corresponds to a user with GUID 123, then 
the request to the API origin will be 
api_origin.example.com/accounts/123 (the 
details of URL re-writing can be configured 
on a per-API basis, of course). 
 
     Because access permissions are attached to 
a single resource, and because it effectively 
hides the actual identity of the resource, the 
"Resource Authorization" protocol is also 
useful in cases where the API owners want to 
give access to the API to an external partner, 
without having to reveal internal resource 
identifiers such as UIDs. It is also useful when 
business policies demand the explicit approval 
of the user on whose behalf the consumer 
application will be issuing requests. 
 
 
 
Scalability 
 
     In addition to the issues of security and 
access controls described above, API owners 
also have to address problems of scalability 
when they choose to expose their services for 



access beyond the applications for which they 
were originally intended. Fortunately, 
scalability is another issue that may be well 
addressed by a common API infrastructure. In 
particular, our API platform contains a load- 
bearing tier, implemented on top of a 
commercially available CDN, which is setup 
to be the first layer to handle incoming 
requests (and the last to process outgoing 
responses). Responses from API origins may 
be temporarily stored at this layer, which may 
later choose to respond to subsequent requests 
directly from its cache, without the need to 
first forward the requests to the Policy 
Decision Point and the API origin. 
 
     Serving content directly from the outer 
load-bearing tier, however, introduces a new 
security issue: if new requests don't have to 
travel to the Policy Decision Point, then how 
can the platform guarantee that only 
authorized consumers will be allowed to 
access the protected services? The "Edge 
Authorization Protocol" addresses that 
problem, effectively offering the option of 
trading fine grain policy decisions for massive 
scale, high availability, and optimal 
performance. In this model, the Policy 
Decision Point is allowed to optionally issue 
cryptographically secure authorization 
assertions in the response to requests from a 
consumer. Those assertions act as logically 
sessioned tokens: if and only if the consumer 
replays that authorization token in subsequent 
requests may the load-bearing edge network 
assume that the consumer has already been 
authorized, and that therefore the request may 
be processed without further engaging the 
Policy Decision Point. 
 
     In terms of actual implementation, the 
Edge Authorization protocol specifies that the 
Policy Decision point may decorate the 
downstream response with a cookie that 
encodes the IP of the consumer for which 
authorization should be assumed, the duration 
of the authorization, a list of paths for which 
the authorization should be valid, and a 

signature. Before sending the final response to 
the client, the edge tier will check for the 
existence of the cookie and, if found, it will 
encrypt its value using its own secret key (to 
make it opaque). The client may then issue 
another request to the same API. On its end, 
all the standard rules apply; in particular, the 
request must still be signed using the 
Consumer Authentication protocol, through 
which the consumer identifies itself to the API 
infrastructure. However, the client may also 
replay the Edge Authorization cookie that it 
received in the previous response; in that case, 
the edge processor will decrypt its value, 
validate it (IP address, expiration time, path, 
and signature) and, if all checks pass, return 
content directly from its cache. It is also 
possible that the edge tier does not find the 
desired content in its cache (or that the stored 
response has expired); in that case, the edge 
tier will have to forward the request all the 
way to the origin, but it will be allowed to 
bypass the Policy Decision Point and engage 
the Service Provider interface directly, since 
the request has already been authorized. 
 
     From the point of view of the client, there 
shouldn’t be any difference in the way that it 
issues the request (with the exception of the 
extra cookie) or the way it receives a response 
(again, with the exception of the cookie). The 
same is true for API origins: how the request 
is routed through the API infrastructure is of 
no concern to them. With minimal effort, 
then, the shared caching and high-availability 
layer (along with the Edge Authorization 
protocol) enables API owners to take 
advantage of infrastructure that may be too 
expensive or too complicated to maintain for a 
single API (thereby reducing the burden of 
exposing their services, per the first principle) 
while, at the same time, giving them full 
control, through the well established HTTP 
cache control directives, to decide which 
sections of their APIs should be cached, 
which ones require refreshes, which ones may 
be served in a stale state in the case of origin 
downtimes, etc. (following the third 



principle). 
 
     It must be noted that the Edge 
Authorization protocol introduces an obvious 
trade-off, in which scalability and 
performance are gained at the expense of fine- 
grained security decisions. If responses are 
served directly from the cache or the origin, 
bypassing the Policy Decision Point, one loses 
the ability to immediately revoke access to a 
consumer (i.e., the edge will continue to grant 
access until the edge authorization cookie 
expires). The rate limiting and usage reporting 
capabilities afforded by the Policy Decision 
are also lost for requests that are edge 
authorized. For these reasons, API owners 
must retain control about which consumers 
may participate in this Edge Authorization 
protocol, and for how long the authorizations 
should be granted. In practice, the Edge 
Authorization protocol is only used with 
selected APIs and consumers, and the 
expiration times for the edge authorization 
cookie usually set to no more than 1 or 2 
minutes. 
 
 
Traceability 
 
     For purposes of traceability and 
operational awareness, necessary given the 
various layers involved in the processing of a 
request through the API platform, 
intermediaries (including the API origins) are 
asked to decorate upstream requests (that they 
process themselves or forward to other layers) 
and downstream responses (that they return to 
upper layers) with values that they append to 
an internal HTTP header. The details of the 
header are specified by our "Message 
Exchange Fingerprint Protocol". 
 
     Specifically, an HTTP header is added by 
all systems that participate in the handling of 
a request. Values from different components 
are separated by a single space, and each 
value in turn consists of a dash-separated set 
of a) a direction prefix, either UPSTREAM 

("u") or DOWNSTREAM ("d"), b) a 
component identifier, granular enough to 
provide uniqueness to the fingerprint (e.g., in 
a Java system this could some arbitrary 
"system ID" plus a "process ID" plus a "thread 
ID", and c) a timestamp, recorded in Unix 
time (milliseconds since the UTC epoch). 
 
     An example value for the internal header, 
as received by the consumer with the full 
HTTP response, is shown below (pretty- 
printed to show processing brackets): 
  
u-cdn75209+72.246.30.14+138036545-1287680639000 
   u-proxyworkeri6866f301.pdp.com8735-1287680639532 
      u-t24005274509060@API-QA-1287680639596 
      d-t24005274509060@API-QA-1287680639597 
    d-proxyworkeri6866f301.pdp.com8735-1287680639591 
d-cdn75209+72.246.30.14+138036545-1287680639800 
  
     This shows which components participated 
in the processing of the request (a CDN server 
at 72.246.30.14, a Policy Decision Point 
worker with the ID 6866f301, and thread ID 
t24005274509060 on the API-QA origin). 
The header is also useful to show the time 
each bracket took in processing the request 
(including the calls to the lower layers): 1ms 
at the origin, 59ms on the Policy Decision 
Point, and 800ms total at the edge layer 
(including the time spent waiting for a 
response from the next layer down). 
 
 

DEVELOPER PORTAL 
 
     The multi-layered architecture of the API 
infrastructure, along with its protocols and the 
procedures that providers and consumers must 
follow, address the first four principles that 
guided our efforts to encourage the creation of 
APIs throughout the organization: minimize 
effort for API providers, minimize effort for 
API users, leave as much control as possible 
with API providers, and do not obscure the 
communication protocols. The sandbox 
platform, a copy of the production 
environment but running under a default edge 
URL, tackles the fifth principle of minimizing 
unnecessary delays for API owners. In order 



to increase the adoption of existing APIs and 
address the fifth principle for API 
consumers, we created a Developer Portal, a 
central place where service providers 
advertise and document their APIs, and where 
potential users quickly find out about the APIs 
offerings and learn how to use them. 
 
     Access to the Developer Portal is limited 
to employees within the organization, and 
their access credentials tied to the 
organization's LDAP servers, to minimize the 
effort required to participate in the portal. 
Once logged in, visitors can access 
Wiki pages that explain the inner functioning 
of the API platform and its protocols, and in 
particular provide detailed instruction for 
signing requests using the Consumer 
Authentication and Resource Authorization 
protocols (libraries for several programming 
libraries are also provided here). 
 
     More importantly, visitors to the 
Developer Portal have access to a full API 
Catalog, listing all the available APIs 
categorized by group or function, and with 
links to find further information about each. 
This is where developers learn about the APIs 
that they can use to solve the problems they 
are working on. Each API, in turn, has its own 
set of documentation pages (which are carved 
out from the Developer Portal's URL 
namespace when the API is first exposed 
through the infrastructure), and where we 
encourage API owners to provide extensive 
documentation. Most commonly, the 
documentation includes the basic definition of 
endpoints, URLs, path structures, and query 
parameters, along with the kinds of responses 
that API consumers should expect (and the 
error codes that might be returned). 
 
     So that future consumers may get as real a 
taste for what the API can do, moreover, we 
allow API owners to attach what we call 
"LiveDocs" to their API's pages. LiveDocs are 
small, inline boxed forms that can be easily 
embedded in documentation pages, and 

through which potential consumers may 
specify parameters and issue live calls (from 
the browser only) to the corresponding API, 
without having to worry about getting API 
keys or having to learn how to sign and issue 
HTTP requests (a responsibility delegated to 
the LiveDocs plugins). In addition to 
displaying the responses returned by the APIs, 
LiveDocs also present detailed information 
about how the request was issued (so that 
potential users can learn about how to sign 
their requests), the headers that were returned 
(so they can learn about special protocols such 
as Edge Authorization), and the 
intermediaries that participated in the 
handling of the request (so that they can learn 
to use the Message Exchange Fingerprints 
protocol and explore the inner workings of the 
platform). In this way, general documentation 
and LiveDocs allow potential consumers to 
learn as much as possible, and with very little 
effort, about the set of APIs that are available 
through the platform, and how they can use 
them. 
 
     The LiveDocs boxes are limited to the 
parts of the API that owners want to bring 
attention to in their documentation pages (e.g., 
they only allow for a small subset of 
parameters, or provide closed choices for a 
parameter in the form of a drop-down list). 
Sometimes developers need more than that. 
For that purpose, and once they have 
requested and acquired credentials to access 
those APIs, developers can access a more 
powerful on-line tool (also available from the 
Developer Portal), which we call "codebug". 
Through codebug, developers have full 
control over all the details of their request: 
they can specify the full URL of the request, 
use HTTP verbs other than GET, provide 
specific headers, add Pragma directives that 
control the behavior of the platform, and even 
change signature methods. The codebug 
console takes care of signing the requests 
using the developer's credentials for the API, 
and then presents the same information 
returned by LiveDocs: the request and 



response headers and parameters, the actual 
response body returned by the API origin, and 
tracing information showing how the request 
was handled by the platform. 
 
     We believe that being able to interact 
directly and issue live calls to the API, 
changing parameters and observing the XML 
or JSON that the API returns, makes a big 
difference in terms of the adoption of APIs. 
Developers can effectively interact with an 
API without having to write a single line of 
code, and therefore are able to explore and 
adopt existing APIs quicker (and based on 
first-hand experience). 
 
 

LESSONS LEARNED - FUTURE WORK 
 

     Since the release of the API platform 
within the organization, we have seen an 
important increase both in the number of APIs 
offered (for services which would have 
normally remained closed), and in the 
adoption of APIs across organizational 
boundaries (to reuse solutions created by 
teams from very different groups). More APIs 
are being incorporated every month, and we 
may be getting close to a tipping point, from 
which all (or most) teams will be expected to 
have solutions running on the platform. 
Ultimately, this is enabling us to reduce the 
duplication of efforts, increase the security of 
our applications, gain deeper understanding 
and control of who accesses each service, and 
innovate with shorter development cycles and 
reduced time to market. 
 
     The experience of building and operating 
the API infrastructure has also given us data 
to verify our assumptions about what was 
required to encourage the production and use 
of APIs, and to discover ways in which we 
could improve. In particular, we sense the 
need for improvement in the following areas: 
 
     1. Intra data-center calls need to be 
treated differently. The API platform, as 

detailed in previous sections, consists of an 
initial CDN layer followed by a Policy 
Decision Point. In our initial implementation, 
these two layers are implemented and 
operated by existing commercial offerings, 
outside of our internal data-centers. This 
architecture imposes a significant (and 
unnecessary) latency overhead when both the 
API consumer and the API origin are located 
within the same data-center: requests from the 
consumer have to travel all the way out of the 
data-center into the CDN, and then to the 
Policy Decision Point somewhere in the open 
Internet, before coming back to the data- 
center to the processed by the API origin (and 
the responses need to follow the inverse path). 
 
     To address this issue, we are evaluating 
solutions to bring these layers in-house. 
 
     2. Intermediary Authentication is 
sometimes hard to deploy. As we engaged 
internal teams to incorporate APIs onto the 
platform, we discovered that some of those 
services are owned and/or operated by third 
parties, and it is either difficult or expensive 
to access their source code. As a consequence, 
adding the necessary filters so that the origins 
conform to the Intermediary Authentication 
protocol is a non-trivial exercise. 
 
     To address this issue, we deployed an 
internal gateway whose sole purpose is to 
front those closed systems: the gateway 
handles Intermediary Authentication, and the 
API origins sit behind a firewall that only 
enables requests from the gateway. While 
adding (minimal) latency, this enables us to 
expose services that otherwise would have to 
remain closed (or would be very expensive to 
open up without security risks). 
 
     3.  API owners need to have complete 
access to traffic logs. When an API origin 
sits behind the API platform, its web server 
access logs lose richness. For example, it is no 
longer possible (or easy) to find our which IP 
addresses are hitting it (since they are all 



coming from the Policy Decision Point), or 
filter out requests that had to be dropped 
because of security violations (since they are 
dropped by the Policy Decision Point), or 
which ones resulted in cache hits (since 
caching is handled by the CDN layer). This is 
useful data that API owners should not lose 
access to. 
 
     To address this issue, we are currently 
working on a prototype solution that fetches 
and combines log files from the three 
infrastructure layers (the CDN, the Policy 
Decision Point, and the API origin) and 
makes them available to API owners. In the 
future we will consider integrating this tool 
with the existing API management 
dashboards. 
 
     4. Exposing APIs implies a cultural shift, 
which takes time and education. Early 
adopters of the API platform were easy to get 
on board: they were already interested in 
exposing their APIs, they felt comfortable 
with the security implications, they 
understood the details of layered HTTP 
architectures, and they were able and willing 
to use low-level tools (and cumbersome 
procedures) to configure their endpoint. As 
we push for adoption beyond this initial 
group, however, it is becoming more 
important to be able to explain in less 
technical terms the advantages of opening up 
APIs, to detail more explicitly the security 
guarantees that the platform provides, and in 
general to provide more guidance about the 
best ways to go about doing it. 
 
     To address these issues, we are working on 
Best Practices documents, open security 
reports and assessments, easier to use (and 
more accessible) forms and procedures for 
creating API endpoints in the sandbox, and 
simplified key management policies. We are 
discovering that, in order to gain wide 
acceptance and adoption, the existence of 
these materials is as important as the technical 
merits of the platform. 
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