

Evaluating Best-of-Class Web Service APIs for Today's
Multi-platform Video Management Solutions

By Alan Ramaley, CTO, and Nick Rossi, VP Engineering
thePlatform for Media, Inc.

ABSTRACT

 Video management and publishing
platforms are evolving to meet the market’s
need for reaching consumers with reliable,
high-capacity services – anytime, anywhere,
on any device. As such, solution providers
have to integrate their technology with a
vast set of devices, systems, and
environments—includingauthenticated
syndication, third-party websites, mobile
devices with vastly differing specs, set-
topboxes, connectedTVs, smart over-the-top
devices, andthird-party services, such as ad
networks and content discovery engines.

Web service application programming
interfaces (APIs) play an integral role in
enabling content providers and distributors
to succeed in a consumer driven market
that’s in constant flux. Developers at media
companies and TV service providersneed
flexibility and open APIs to adapt to
changes in TV, online, and mobile video
publishing.

This paper provides an in-depth evaluation
of the most important features web service
APIs should offer and explains why those
features are important. It also examines the
evolution of APIs and recommends best
practices for a flexible, reliable and easily
managed API set.

 Several areasfor evaluation are
examined and explained, all with an eye
towards how APIs informed by service-
oriented architecture (SOA) can be used to
decoupleand safeguard business-critical

services in a deployment and scale them
independently.

Areas of focus will include:

 Breadth – an API should expose all
the functionality in the underlying
service

 Cohesion– a given service should
have a single area of responsibility

 Security – we will compare and
contrast five common models

 Web standards– support for
REST,Atom, RSS, and JSON for data
services, and REST and SOAP for
business services.

 Data access – APIs should provide
very flexible read and write access to
service data

 Notifications – with a comparison of
push vs. pull notification models.

 Extending the schema– what to look
for to make sure a service can
support your custom data.

 Scalability– how to build scalability
into an API at the core, to allow for
a 99.99% read SLA

Lastly, the paper focuses on some of the best
developer support practices, including API
clients and documentation.

INTRODUCTION

 The recent introduction of Time Warner
Cable’s iPad application is just one example
of the kind of services and applications that
service providers and media companies can
develop in-house by taking advantage of
open web service APIs.

 Going forward, web service APIs will
continue to play a crucial role in enabling
developers at content companies and TV
service providers the flexibility to develop
new services and respond to the changes in
multi-platform video publishing.

 When video management systems were
in their infancy, few offered a set ofAPIs
that anybody could use to build a media
business.Most solution providers
incorporated user interfaces on top of
proprietary systems that could only expand
when in-house developers felt like adding
features. If anoutside user wanted to conduct
their own development on top of such
systems, they were out of luck.

 The industry has since learned that web
service APIs are a critical component for
content providers and distributors, as it
enables them to adapt to a fluid marketplace
where consumer demand and IP-connected
technologies are in constant flux. For this
reason, APIs are now a standard part of
every video management system. But
despite the widespread adoption of APIs, not
every system is equal. It begs the question:
How good are a given system’s APIs, and
willthey continue to meet the needs of a
media business as it grows?

 This paper explores the most
importantcapabilities to consider when
evaluating the effectiveness of a system’s
APIs.

BREADTH

First, APIs should expose as much of the
video management system’s functionality as
possible. It’s very hard to predict what parts
of your system you’ll need to automate,
based on where customer needs take your
business. So,the more elements are available
via the API, the more flexibility you have to
respond to a changing marketplace.

Verification Process

A good ad-hocapproach to testing an API’s
breadth is to go to the management console
or user interface and ascertain whether the
technology vendor uses its own published
API. If the vendor is not using it, not only is
that a sign that they haven’t built their
system for maximum adaptability, but it also
demonstrates that thevendordoesn’t rely on
its own APIs to support its product.

 This can often be checkedby watching a
network trace while using the
system’smanagement console. If there
areprivate protocols or undocumented
payloads going back and forth, then it’s
likely the public APIs aren’t complete
enough or powerful enough for general
usage.

COHESION

Each API endpoint should focus on a single
area of responsibility within the system and
use consistent operations and serialization
methods for everyobjecttype. With one set
of rules to interact with the system,
developers can more easily integrate with it.

Multiple Services Versus a Single
Monolithic Service

In a provider’s API, if every call goes
against a single “api.provider.com” or
“services.provider.com” endpoint, with
some kind of “command” or “service”
parameter as a switchboard, that means the
API provider has implemented a single
monolithic endpoint that contains all APIs.

For example, you might see calls like this in
a monolithic API:

 http://api.provider.com/index.php?
service=baseentry&action=list

 http://api.provider.com/index.php?
service=multirequest&action=null

 http://api.provider.com/index.php?
service=flavorparams&action=list

 http://api.provider.com/index.php?
service=accesscontrol&action=list

 http://api.provider.com/index.php?
service=partner&action=getInfo

A monolithic API has several drawbacks:

First, it makes federated deployments very
difficult,where some data is local to the
content or service provider while other data
is in the cloud. For example, youmight want
to use an API cloud for most services, but
store end-user transaction data locally for
securitypurposes. A single, monolithic API
endpoint does not have this capability.

Second, it puts a limiter on how fast the
provider can extend the service. As the
feature set grows, provider development will
lag as internal teamsare encumbered with
the increasing overhead ofcoordinating
feature work and deployments in a single
code base.

Finally, there’s no single scalability strategy
that works for all APIs: some get orders of

magnitude more traffic than others, and the
mix of read vs. write traffic varies, but the
deployment of a single switchboard API is
limited to an unhappy compromise between
traffic capacity and cost.

 One must be rigorous about dividing
services into areas of responsibility to avoid
these pitfalls. A good system will split its
APIs into separate, focused services in
which each API endpoint has a single job.
This ensures that other services aren’t
affected if unexpected load hits one piece of
the service, and the deploymentcan scale
each endpoint as appropriate. For example,
if there is an abundance of feed requests,
administrators can simply add another feeds
server instead of spinning up another
instance of the entire API stack.

Data Services versus Business Services

 There are two basic types of web
services:

1. Data services, which handle stateful
persistence of metadata.

2. Business services, which are
stateless services with business logic
that interactswith the data in data
services.

 The best approach is to look for a web-
service framework that follows the
principles of service-oriented architecture
(SOA), which decouples data persistence
from business logic so that services of each
kindcan be deployed and optimized
independently.

Base Objects

Optimally, every data service object has a
base object with identically named
properties for identifiers, modification
history, and other common settings.

Properties such as title, id, guid, added,
updated, and lockedshould beconsistent
across all services. Consistently identified
properties are beneficial, especially when
querying for data objects, since the same
kinds of queries can be used across all
implementations.

If a framework implements these core
properties, you can use similar queries
across various services. For example, if
“updated” is a base property, here’s an
example of a query you could use
inanyservice to get items updated in the
month of September 2010:

http://<service>/data/<objectType>?byU
pdated=2010-09-01T00:00:00Z~2010-
10-01T00:00:00Z

If “id” is common, the following query
could be performed in order to get object
IDs sorted by when they were added:

http://<service>/data/<objectType>?fiel
ds=id&sort=added

Finally, if “title” is common, in order to
search for the first five items that have a title

starting with “Test”,one could execute the
following query:

http://<service>/data/<objectType>?byT
itlePrefix=Test&range=1-5

 In a system that implements base objects
and base queries, the only things that need to
change in order to perform the queries in
these examples are the host name and the
object name. Because the pattern repeats
across services, once you’ve learned how
one service works, you’ve learned how all of
them work.

SECURITY

APIs must be secure, and calls to APIs from
end-user services (such as web form
comments) must be completely separated
from admin services (such as video
publishing).

Admin Security

The level of admin security that is needed
depends on what the user is trying to
accomplish. Web service API authentication
methods tend to fall into one of five models.
See the table on the following page, which
outlines each security type:

Security
Type

When You’d Use It Drawbacks

API freely
available to
any user

There are some cases where no security
is desired. For example, read-only,
highly constrained RSS feeds that are
exposed to end users.

Not secure enough for admin
authentication.

User name
and clear-
text
password on
every URL

Never Credentials shouldn’t get passed
around on calls, as they can be
intercepted and used indefinitely in
ways that can't be controlled.

Vendor-
provided
API key

This is typically a random keybound to
an organization with a particular set of
rights. In many ways, this is similar to a
user name and password on URLs, with
the token acting as an obfuscated
password.

If it's compromised, it can be used
indefinitely to make additional calls
until one discovers the breach and
revokes the key.Revoking this key
will typically disable legitimate uses
as well, which will need to get
updated with a new key.

Non-expiring
API keyplus
a signature
on every
URL

The signature is generated by hashing
the URL parameters with a
private/secret key. The hash is checked
on the server before allowing the call.
This works fairly well for server-to-
server traffic or trusted clients: the URL
can be used forever, but cannot be used
to create different calls.

To do client-side end-user AJAX-
style UI, one needs to push
theprivate secret to the client to
create this hash for each call, which
makes the secreteasy to
compromise.

Expiring
token

This approach involves making a call to
a secure API to generate an expiring
token tied to a particular user’s
permissions, and then including that
token on subsequent calls.

These can be captured via “man-in-
the-middle” attacks, but this is
mitigated by the expiration date.

 While none of these options are
impenetrable, the best approach is to use an
expiring token. This solves the problem of
tokens never expiring, so even if the user or
system doesn’t realize that a token is
compromised, it can’t be used after the
expiration time specified when it’s
requested. And because the token is reusable
across calls while it’s still valid, there is no
need to push signature secrets to the client.

API Types

There are three kinds of APIs that a video
service should provide:

1. An admin read/write API that
requires admin permissions to work
with. For example, service providers
would use an admin media API to
publish or edit premiumvideos.

2. An audience read/write API that
might also allow anonymous access.
For example, viewers would use an
audience API to add or edit
comments or ratings.

3. A read-only, highly cached feed API
for end-user guide data. For
example, viewers would use a
feedAPI through a video playerto
retrieve lists of content or play
videos.

 All of these APIs must be separated.
Audience users or viewers cannot be
allowed to make admin API calls. For
scalability, audience users must access
different services altogether.

The primary concern is resource contention:
if audience members are allowed into a
service or content provider’s admin APIs,
even with an “audience-only” read-only
token, they’re competing with the provider’s
admin requests for API resources. This
means that service providers run the risk of
having a massive spike of audience-
originating requests disrupt video
publishing. Or, vice versa: the consumer
experience could be degraded by admin API
activity. Either situation can negatively
impact your business with complaints of
perceived outages.

Also, each type of API has a different usage
pattern and should betuned separately.
Admin APIs are used by a relatively small
set of users, and get a relatively high volume
of writes, while end-user APIs need to
support a massive scale of read traffic with
relatively few writes They all need to be
configured differently to run optimally.

 It’s important to evaluate how a system
implements a secure wall between these
three kinds of services. One effective
method is to have separate authentication

services for administrators vs. audience
members and configure a given API to run
against the appropriate one. Another method
is to physically separate the deployment of
such services so that traffic on one cannot
affect the others.

WEB STANDARDS

 Avoiding any web service with a
proprietary serialization format is preferred.
When services support web standards, it’s
easier for developers to find clients and tools
that can consume those services.

Data Services: REST withAtom, RSS, and
JSON

It’s imperative that any platformsupport a
diverse set of Web standards, to increase the
chance of interoperability with existing
solutions. The following are specific
examples from thePlatform’s web services,
but it should be straightforward to determine
the pattern that any web service follows to
deliver standards-based serializations:

Atom:

http://feed.theplatform.com/f/ZlTfSB/
wAeAAAKTtr_L?form=atom

RSS:

http://feed.theplatform.com/f/ZlTfSB/
wAeAAAKTtr_L?form=rss

JSON:

http://feed.theplatform.com/f/ZlTfSB/
wAeAAAKTtr_L?form=json

JSON should alsosupport “callback” and
“context” parameters for JSONP-style
usage:

http://feed.theplatform.com/f/ZlTfSB/
wAeAAAKTtr_L?form=json&callback
=parseFeed&context=sample

Business Services: SOAP and RESTful
XML /JSON

The service provider should support SOAP
APIs for business services, including WSDL
URLs for discovery of method signatures.

SOAP can be a heavy protocol to work with,
so the service should also support some
XML-RPC variant.For cases where you
want the smallest serialization possible, the
service should support JSON as well.

Finally, for cases where business service
calls need to be made cross-domain in web
browsers, the service should support a
RESTful interface with JSONP responses.

REST Verbs (HTTP methods) and Just GET

 Many REST implementations just
support HTTP GET. Even when creating,
updating, or deleting objects, one has to do a
GET with parameters embedded in the URL.

However, following REST to the letter, this
is incorrect. HTTP GET is supposed to be
idempotent, so no matter how many times
you call the same GET URL, it should make
no change to the server state. Other verbs
like POST, PUT, and DELETE are intended
for state changes. That’s why there is a
prompt by browsers when refreshing a
POST, but not when refreshing a GET.

 If your code is making JSONP calls in a
browser, the nature of cross-site scripting
security requires that every request to a
remote domain use a GET, and a good API
should make an exception to idempotence in
this case. But in less constrained clients, it’s

cleaner and more standards-based to use the
available HTTP verbs with their typical
interpretation: POST to create, PUT to
update, and DELETE to delete.

For example, to delete a media with an ID of
1586532611, the following HTTP call
would be made:

DELETE
http://mps.theplatform.com/data/Medi
a/1586532611?schema=1.2.0&token=...

One could also delete everything with a
particular title prefix:

DELETE
http://mps.theplatform.com/data/Medi
a?byTitlePrefix=Old+Media&schema=
1.2.0&token=...

If a given URL is too long for server
gateways to handle, it’s possible to convert
this to a POST using the application/x-

www-form-urlencodedcontent type header,
and put the parameters in the POST body,
along with a method override:

POST
http://mps.theplatform.com/data/Media
Content-Type: application/x-www-
form-urlencoded

method=delete&byTitlePrefix=Old+Me
dia&schema=1.2.0&method=delete&tok
en=...

Finally, if GET must be used for calls from a
browser to avoid cross-domain issues, one
can do a GET with a method parameter
override to delete:

GET
http://mps.theplatform.com/data/Media
/1586532611?method=delete&schema=1
.2.0&token=...

DATA ACCESS

The ways in which solutions consume data
are as varied as the data itself, so a service
provider should offer flexible APIs for
updating, querying, searching, sorting and
paging lists of data, similar to what is
possible withdatabase or search queries.

Combining Queries

Many web services don’t let you combine
queries: if you see method names like
findByCategory or findByRating, that
means you’ll never be able to do a query
that searches for both category and rating.

Any given API should implement a set of
base queries and then additional queries, and
you should be able to use them in any
combination. For example, our media API
supports over 20 different queries. Here’s a
query for objects in the “Action” category:

http://feed.theplatform.com/f/ZlTfSB/w
AeAAAKTtr_L?byCategories=Action

And here’s a query for anything in Action
OR Comedy:

http://feed.theplatform.com/f/ZlTfSB/w
AeAAAKTtr_L?byCategories=Action|
Comedy

And here’s a query for anything in Action
AND Comedy:

http://feed.theplatform.com/f/ZlTfSB/w
AeAAAKTtr_L?byCategories=Action,
Comedy

You can combine a category query with a
content rating query:

http://feed.theplatform.com/f/ZlTfSB/
wAeAAAKTtr_L?byCategories=Com
edy&byRatings=G

And you can further combine these with a
custom data query:

http://feed.theplatform.com/f/ZlTfSB/
wAeAAAKTtr_L?byCategories=Com
edy&byRatings=G&byCustomValue=
{year}{2010}

 In a flexible API, there should be no limit
to the number of queries you can combine.

API Queries Across Multiple Accounts

A larger organization often needsmultiple
accounts in the web service for different
groups. Optimally, these organizations will
want the APIs to be able to fetch from
multiple accounts at once, instead of having
to switch users or tokens for each account.

Getting All Objects at Once

Often there is a scenario where the user
wants to get every object in one call. For
example, you might be synchronizing with a
new content management system (CMS),
and youwant to get every video in the
account(s).

Most web services can’t handle this, so they
restrict the maximum “page” size a given
API call can return, typically to 20 or 100
items. This puts the burden on client code to
retrieve successive pages and deal with any
errors that come up between them. It also
means that the server keeps invoking larger
and larger internal queries to skip over the
results that were in previous pages, and each
subsequent page will therefore be slower to
fetch.

 A more effective system avoids this by
allowing unbounded result sets that stream

out to the client. To get every item available
in an API, you might make a call like this:

http://feed.theplatform.com/f/ZlTfSB/
wAeAAAKTtr_L?range=1-*

Control Over the Sorting of Result Sets

Most web services allow control over API
result sorting, but almost all put tight
restrictions on what can be sorted and only
allow one level of sorting. A more effective
API allows sorting on any combination of
fields. Here’s an example of a sort by title:

http://feed.theplatform.com/f/ZlTfSB/w
AeAAAKTtr_L?sort=title

Here’s the same sort, but flipped to be in
descending order:

http://feed.theplatform.com/f/ZlTfSB/
wAeAAAKTtr_L?sort=title|desc

And here’s a four-level sort, by locked, then
approved (descending), then the year custom
field, and finally publication date:

http://feed.theplatform.com/f/ZlTfSB/
wAeAAAKTtr_L?sort=locked,approv
ed|desc,:year,pubDate

NOTIFICATIONS

There are many cases where a client process
needs to know when data changes in a
service, such as when synchronizing
datawith another content management
system, invalidatinga customized caching
layer, or keeping an audit trail of edits.

Notifications are the optimal way to keep
things in sync. Suppose there is the need to
synchronize a list of feeds between the
provider’s web service and the content
management systemthat is being used for a

provider’s web site. When a feed changes,
the provider’s web service would create a
notification that thesynchronization
logiccould pick up. Thelogicwould then
usethat notification to update thecontent
management system. This wouldn’t be a
human-readable notification like an email,
but a special payload designed to be
consumed by an API client.

Support for Notifications

Some APIs don’t support notifications, and
their only mechanism for synchronizing
with other systems is to use a polling
approach against the actual objects. These
APIs require you to check for changes every
few minutes, typically with a modifiedSince
query or something similar. If data has been
modified, you have to figure out if the
change matters to theclient.

This is an inferior approach when objects
aren’t constantly changing, becauseit forces
you to make many pointless calls when
there’s no change just to make sure there is a
timely update if something does. This
polling taxes the client, the server, and the
network.

The better approach is to supporttrue
notifications that clients can register for. An
API without notifications hasn’t taken third-
party integrations seriously.

Notifications for All Objects

Many web services are stingy with their
notifications. They’ll support notifications
on some objects but not others, or they’ll
only send a notification when a video
finishes processing, or they’ll only notify on
add and delete, but not update.

 A more effective APIsupports a complete
set of notifications. It should notify users on

create, update, and delete for every object,
and provides updates within seconds of the
change being committed.

Notifications through a Firewall

A common but naïve approach to
notifications isto let users register a
“notification URL”, and whenever
something changes, the system sends an
HTTP message to that URL.

 There are limitations to this approach. If
there are any hiccups at all between the
notificationserver and the customer’s server
(e.g., network glitch, the customer’s server
is down for maintenance, exception in the
customer’s notification handler, etc.),
notifications get lost. Most customers that
use this approach have to run a monthly
“resync everything” process to deal with
these lost messages.

This method also requires the user to expose
a public URL that anybody could hit. It
could be locked down with passwords and
IP exclusions, but it providesa vector for
attack if hackers found out about it.

A better approach is to store all notifications
on the server and serve them with a Comet-
style “push” model. A typical exchange
starts with a call like this from a client:

http://mps.theplatform.com/notify?tok
en=...

This returns a payload with the ID of the
most recent notification available. The
programmer then uses this ID and makes
another call to open up an HTTP request,
which stays open until there arechanges to
report:

http://mps.theplatform.com/notify?sin
ce=668017728&block=true&token=...

When an object changes, the response gets
returned along with the latest notification
ID, and the cycle continues. Because the
client always initiates this exchange, it can
function safely behind a firewall.

Notification Delivery

Another advantage of client-initiated,
Comet-style notifications is that this
approachcan guarantee that the client never
misses a notification.

If clients go offline, for example, they can
use their last remembered notification ID
and request all notifications since that ID.
For example, if the server
storesnotificationsfor seven days (or
whatever period of time is deemed
acceptable), thenas long as the client does
not go offline for longerthan that, there’s no
chance of any notification getting lost.

 Notifications can also be delivered in the
exact order they were committed to the data
store, so they are always received in the
proper order.

EXTENDING THE SCHEMA

Because a web service rarely has the exact
schema needed for a solution, APIs must
allow the providerto extend the object
schema with custom fields and data types.

Custom Fields for All Objects

Many videoservices only support adding
custom fields to the main media or video
object. It’s important to have the ability to
add custom fields to as many objects as
possible in the API. This ensures that in
addition to adding custom fields to media,
customers can also add them to players,
feeds, categories, servers, etc.

Some technology vendors require you to
contact their support organization to add
custom fields. Others enable only a small
number of custom fields to be added. Based
on our experience with real-world schemas,
a good upper limit is 100 custom fields per
object type. It is important to allow users to
administer custom fields themselves, so the
vendor is never standing in the way of
solution development.

Support for Custom Data Types

Many web services don’t support the idea of
typed custom fields. Instead, custom fields
are always strings or string arrays. But typed
custom fields are important in all layers of
an application for the same reason they’re
important for native fields:

 The ability to do queries that take
advantage of the data type (e.g., date
range queries or numeric queries).

 Sorting that works correctly [e.g.,
the numbers 1, 2, and 11 would sort
incorrectly as strings (1, 11, 2), but
sort correctly as numbers].

 Data that is correctly serialized. This
means that the user doesn’t have to
write any toString() and
parseString() functions in their code.

 The ability to choose the right
control types in the console UI (e.g.,
date types get a date picker).

For video services, it’s important to look for
an API that supports at least these custom
data types:

 Boolean (true, false)
 Date (9/19/2010, 2/7/2011, etc.)
 DateTime (9/19/2010 3:27 PM, etc.)
 Decimal (1.01, 2.02, etc.)
 Duration (0:01.5, 1:34:23, etc.)
 Image (an object with an image URL

and a hyperlink URL)
 Integer (-3, 5, 10000, etc.)
 Link (an object with a hyperlink

URL and a title)
 String (“hello!”, etc.)
 Time (9:15 AM, 3:27 PM, etc.)
 URI (any well-formed URI)

It’s also important that an API support
arrays and maps of anyof these types.

Serialization of Custom Data

Often, web services won’t allow control
over the namespace, namespace prefix, or
tag name for custom data. Instead, they’ll
use a proprietary serialization.

But if you aredesigning a solution around
web standards that require fields in a
particular XML namespace, you need to be
able to control all these aspects.

For example, suppose you want to add a
“Latitude” custom field to media. If using
Geo XML, then the custom field needs to be
serialized as follows:

<feed
xmlns:geo="http://www.w3.org/2003/
01/geo/wgs84_pos#">
<item>

<title>My Media</title>
<geo:lat>51.51</geo:lat>

</item>
</feed>

 Ultimately, custom data serialization
should match the consuming client’sneeds:
if you have an existing solution that’s
expecting custom data in a particular
namespace, you don’t have to change that
solution.

Searching by Custom Data

It’s also important that the API offers the
ability to search by custom data. Otherwise,
you would need to implementsolutions
where the client pullsback more data than
itneeds in order to filter the results, which is
inefficient.

 Here’s how a solution could support this.
For example, to see all movies with a “year”
value of 2008, the query might look like
this:

http://feed.theplatform.com/f/ZlTfSB/
wAeAAAKTtr_L?byCustomValue={y
ear}{2008}&fields=title,:year

To see all movies released between 2008
and 2010, one could perform a ranged
query:

http://feed.theplatform.com/f/ZlTfSB/
wAeAAAKTtr_L?byCustomValue={y
ear}{2008~2010}&fields=title,:year

Ideally, you should be able to invoke range
queries on any numeric or time-based
custom field type, in addition to exact
matches.

Sorting by Custom Data

 Most web service solutions don’t allow
for sorting by custom data, but it’s an
important capability to have. The ability to
sort on the server is usually faster than
trying to sort on the client. It also allows the
ability to page through multiple pages of
results with a consistent sort order.

For example, to see all movies sorted by a
“year” custom field“with a tiebreaker sort on
the native “title” field, the query might look
like this:

http://feed.theplatform.com/f/ZlTfSB/
wAeAAAKTtr_L?sort=:year,title&fiel
ds=:year,title

SCALABILITY

APIs must be able to handle the provider’s
site traffic. They should be like a dial tone:
always on. It’s notoriously hard to support
this with hosted services—especially multi-
tenant services—and it’s a rare organization
that’s been able to do it: that short list
includes Amazon, Google, Salesforce,
Yahoo, and a few others.

 In order to scale hosted services, it’s
important that the system has a minimum of
99.99% guaranteed uptime in which the
service is available for reads. If using a
service with a 99.9% service level
agreement (SLA) on reads, that means that
the user might not be able to do reads for
nearly forty-five minutes each month, and
that’s forty-five minutes a month during
which thesite might be completely dark. A
99.99% read SLA means the service is
guaranteed to have unscheduled read
downtime of less than five minutes each
month.

High Availability

Service reliability depends on a properly
engineered deployment that includes
redundancy, automatic failover, and 24/7
human response when services experience
failures.

 It’s important to ask a service provider
pointed questions about their deployment
architecture and the systems they have in
place to prevent and respond to outages. A
provider should satisfy your questions with
evidence of redundant infrastructure, API
traffic management, quality engineering in
the web services themselves, and a 24/7
support team.

 For example, data service APIs should
automatically failover to a read-only copy of
the data when the primary data source
experiences a failure. Data storage in
general is unreliable enough that such
failover systems are one of the many
requirements for achieving 99.99% uptime.

 Also, in multi-tenant systems, web
services should be designed to prevent
heavy traffic from any one tenant from
interfering with others.

Response Cache

Most solutions involve repetition of a small
set of read-only API calls. Thus, for
performance,APIs should provide a response
cache for read requests. An API call where
the response comes from a cache will
respond in a fraction of the time (often under
10 milliseconds) compared with a call that
invokesqueries to a database or other remote
service.

A good way to check if the API is using a
response cache is to look for the X-

Cacheheader in HTTP GET responses.

Here’s an example from our console data
service:

X-Cache: HIT from
data.mpx.theplatform.com:80

This tells you whether or not the response
came directly from the response cache; there
should either be eitherHIT or MISS.
Another indicator of a response cache is a
Last-Modified and a Cache-Control header.
For example, for GET calls, one should see
headers like the following:

Last-Modified: Tue, 05 Oct 2010
22:54:57 GMT
Cache-Control: max-age=0

Also, watch what happens when you pass in
anIf-Modified-Since header with the Last-

Modified value from a previous call. If the
service has a response cache, there should be
a 304 response:

HTTP/1.1 304 Not Modified

If the API doesn’t show any signs of having
a response cache, it’s not going to hold up
under load.

UI Edits

Some vendors implement their console
application separately from their API. The
result is that when changes happen in their
console, it can take some time—sometimes
up to five minutes—for the changes to
appear in the API response cache.

 This doesn’t occur when every part of the
system is run off of the underlying API,
including the console. If a change is made in
the console, it will show up in the next
admin API call. But if nothing changes, then
the API will hold on to the cached response,

and the console user willexperience
fasterinteraction.

Support for Sparse Objects

A rich object definition will have many
fields on it, but it’s unlikely that youneed
every field when you make a request.
Minimizing the actual set of fields returned
improves performance at the server (less to
query and serialize), over the network (less
to transmit), and on the client (less to parse).

 It’s important that APIs support sparse
objects with a fields parameter or something
similar. For example, the following would
just return title and id fields.

http://feed.theplatform.com/f/ZlTfSB/
wAeAAAKTtr_L?fields=title,id

 Asking for all fields in a particular
namespace would return everything in the
media RSS namespace:

http://feed.theplatform.com/f/ZlTfSB/
wAeAAAKTtr_L?fields=media:

If an API supports dependent objects—
objects that are contained in other objects,
like files inside of media—the system
shouldalso support field lists for the
dependent objects:

http://feed.theplatform.com/f/ZlTfSB/w
AeAAAKTtr_L?fields=title,content.url
,content.bitrate

 If these kinds of nested objects are
supported, it means that youcan make fewer
calls to get the data you need.

 Sparse objects are important for create
and update calls as well. An API should
allow you to specify the fields to update in a
call, rather than requirefull objects. Such

sparse updates should be less expensive to
invoke than a full update.

Multi-Item Create, Update and Delete

Many APIs only allow write operations on a
single item at a time. For example, ifyou
want to add 100 media, youneed to make
100 separate calls over the network. So, for
every call, you are penalized for network
transit time as well as the time to do an
individual insertin the data store:

Total Time = (# of items) * ((network
latency) + (time to add 1 item to data
store))

Some APIs try to work around this via
“boxcarring,” where you package multiple
API calls into a single request. However,
this methodonlyreduces the network latency
because each call typically still gets
evaluated separately on the server, with a
separate data store add for each one:

Total Time = (network latency) + ((#
of items) * (time to add 1 item to data
store))

A better solution is to allow for true
multi-item create, update, and delete.
With this method, youcan send
multiple items in a single feed, and the
web service updates them in the data
storein a single atomic operation:

Total Time = (network latency) +
(time to add N items to data store)

Adding 20 items to a data store in a single
operation is significantly faster than
adding20 individual items separately.

DEVELOPER SUPPORT PRACTICES

APIs should be easy to develop against, and
they should make iteasy for you to get help
if youget stuck.

Browser-basedAPI Client

It can be tricky to build a REST URL for an
API call. That’s why companies like Flickr
and Twitter have pages that offer help in
accomplishing this.

It’s best to look for a system where the data
services have a built-in web client to help
the user build your API calls. For example,
in thePlatform’s services, you can go to the
root of anydata service and add /client., This
will return an HTML page that lets a
programmer construct ad hoc REST calls
and test functionality.

Supported API Clients

When you see notes on a technology
vendor’s web site like “API clients are not
maintained or supported and are used at
your own risk,” or documentation that points
you to community forums for support, you
know that API clients have gotten short
shrift. They’ve either been abandoned or
crowd-sourced.Either way, if there are bugs
in them, you’ll need to depend on the
community or fix them yourself.

Instead, you should look for a technology
vendor whose API clients are maintained
and officially supported. Optimally, these
clients should get built as part of the core
services, and not as an add-on by a different
team.

For example, if you’re a Java programmer
using thePlatform’s services, we provide
JAR bundles with Java classes that
implement calls to the service APIs, which

can be downloaded from our Technical
Resource Center. We also provide client
DLLs for .NET.

Finally, if you’re using another framework,
you can use the web client to compose your
particular REST calls and then add the
URLs to your code.

API Documentation and Support

Everything in the system’s APIs should be
documented and available through an online
technical resource center.

 It’s also important that any API have a
team of support engineers who are trained in
the API and capable of resolving even the
most difficult problems.

CONCLUSION

 Today, web service APIs are critical for
enabling content companies and TV service
providers to build systems that can
toleratecontinuous change inIP-connected
technologies and consumer behavior.

 Despite the widespread adoption of APIs
in video management systems, not every
system is equal, and service providers must
evaluate them carefully to ensure
theyaccommodate the needs of developers
working with a wide variety of technologies,
partners, and types of content.This paper
explores a baseline of characteristics that
any robust API should provide, but only
through a detailed evaluation of a system
based on aprovider’s unique requirements
canyou fully determine the suitability of any
technology.

