

COOPERATIVE LOAD SHARING AMONG LOOSELY COUPLED OR
INDEPENDENT VIDEO SERVERS

Xavier Denis
Robert Duzett

ARRIS

Abstract

 As video delivery systems are tasked with
larger and larger content libraries,
significantly larger streaming loads across
increasingly broader geographies, and a wide
diversity of client devices, the need for more
dynamic scaling and virtualized provisioning
of large on-demand resource pools is
apparent.

 This paper examines strategies and
policies for enabling a logically-shared video
delivery load across multiple independent but
networked video servers, and provides insight
into practical applications such as efficient
and scalable models for the origin, mid-tier,
or edge caching points of a Content Delivery
Network (CDN).

INTRODUCTION

 The fast growth of video traffic to
computers, tablets and other mobile devices
illustrates the profound changes affecting the
ways in which people access video content.
To compete with an increasing array of
entertainment options, MSOs must harness the
strength of their programming and work to
facilitate access to it across the wide array of
devices used by consumers.

 These market forces are bound to have a
significant impact on infrastructure and
operations. Content providers have more
options today to reach their target audiences.
To keep the upper hand, MSOs need more
efficient content ingest / packaging operations
to enable fast capacity growth and quickly
turn around assets that can be consumed on
multiple platforms and client devices. As
content continues to proliferate, consumption
will increase, driving networks to near
capacity. In fact, experts predict managed IP
video traffic will quadruple over the next 4
years.

 Instead of locally-dedicated servers and
storage systems with bounded growth limits
and limited load sharing, today’s video loads
call out for networked resource pools
(processing, storage, and streaming resources)
that can be easily deployed at discrete
locations within a Content Delivery Network
(CDN) architecture. These networked resource
pools respond to changes in load levels and
format mixes with agility, provisioning the
resources of semi-independent and loosely-
coupled servers and systems in an organic and
efficient way.

 This paper first discusses the requirements
associated with next generation video
delivery. After introducing a server pool
architecture enabling multiple loosely-coupled

independent video servers to operate as one
virtual load sharing system, we study the
central issues of this proposed approach,
including content allocation, load balancing
and asymmetric load behaviors. Analysis is
supported by simulations driven by real-world
field data. In addition, we discuss the
advantages of the proposed server pool
architecture in terms of scaling / upgrading
and review a practical application of the
architecture to caching. Conclusions and key
findings as well as topics suggested for further
research are found in the final section.

VIDEO DELIVERY APPLICATION
REQUIREMENTS

 The challenges highlighted in the previous
section imply new requirements to ensure
efficient and scalable video delivery:

 Cost-Efficiency – The need for cost-
efficient scalability puts unsustainable
pressure on proprietary platform design
models. Instead, video delivery solutions
must leverage commoditized hardware to
exploit the advantages of Moore’s Law.

 Low latency and reduced network load –
CDN network demands must be
minimized to enable high quality
delivery, especially for live video
applications. Employed as a cache, the
video delivery system has a role to play
in ensuring low latency and reduced
network load.

 Modular and agile scaling – There are
multiple dimensions of resource scaling,
including streaming capacity, content
storage capacity, and ingest capacity.
Streaming and storage provisioning

requirements vary widely across different
deployments and even across different
hierarchical levels within a given
network. For instance, the two core
elements of a CDN, the origin and the
cache, dictate nearly opposite sets of
provisioning requirements, the former
needing lots of inexpensive storage, the
latter requiring high I/O performance and
streaming density, but reduced storage
overhead costs. In other words, the video
delivery system architecture needs to
support a provisioning model that is
flexible while consistently/uniformly
efficient, even for fairly asymmetric
deployments and upgrades.

 Maintenance / upgrade agility – Upgrades
must be straightforward, simple, and
quick as possible, having as little impact
on the existing system as possible, i.e.
modular. Re-building, re-loading, or
replacing elements of the existing
configuration, in order to perform an
upgrade, should be avoided.

 High Availability – The video delivery
infrastructure must maintain constant
service uptime. This implies redundancy
and load balancing across separate
resources with fail-over policies.

 Client device independence – modern
video delivery platforms must offer
flexible and dynamic resource
provisioning mechanisms to transparently
accommodate different delivery formats
and varying workloads to a wide array of
devices.

 Today’s video delivery applications
demand increased IO performance,
provisioning flexibility, scalability and
reliability in addition to accommodating a

wide array of content access patterns and
diverse file formats and sizes, all of which
must be achieved with greater cost-
effectiveness. In the following section, we
define a flexible framework fulfilling the
above requirements while offering great
design freedom, including the ability to
leverage commoditized hardware and standard
networking protocols for optimal cost-
performance.

ARCHITECTURAL SCOPE

 The architectural scope of this paper
encompasses a “server pool” approach to
video delivery, in which the server pool is
defined as a collection of loosely-coupled,
semi-independent servers in a common
network, with common reach-ability to video
subscribers. Each server is a “node” of the
interconnected delivery system. Both the
available video content and the streaming load
are distributed across the nodes.

 The server pool architecture borrows the
following key principles from Cloud
Computing [1]:

 Shared resource pooling for increased
utilization and efficiency

 Reliability by distributing load across
multiple hardware instances and
eliminating single points of failure

 Scalability by enabling capacity
expansions through server instance
additions without service disruption

 Maintainability by enabling upgrades
and hardware maintenance without
service disruption

 While the descriptions and analysis in the
sections below refer to “content” in general
and thus seem to imply a stand-alone content
library, a la CDN origin server, these concepts
are equally applicable to a pool of cache
content nodes. The scalability, redundancy,
storage efficiency, and load-balancing
efficiency of this solution can serve to
optimize the cost-performance and operational
efficiency of any appropriate location of a
CDN, including the origin server, caching
edge sites, or mid-tier caching or library sites.
For simplicity of description and analysis,
generic references to “content” and “objects”
are used, with little mention of caching.
However, near the end of the paper, after the
core analysis sections, a “Caching Model”
section describes methods for mapping these
concepts onto a pull-thru cache pool.

 Some general principles that are imbued in
this architecture include:

 Virtualization – multiple nodes appear,
and work together, as one. This applies
to the content, whether as a library or
as an aggregated cache, as well as the
streaming resources and the node pool
network as a whole. The pool concept
is especially well-suited for exploiting
shared end-user connectivity and
pooled resources to efficiently
aggregate and amplify the unified
cache performance. All nodes in the
pool have shared affinity with, or
common reach-ability to, the video
end-user. Policies designed to ensure
maximum content heterogeneity across
multiple servers’ caches drastically
increase effectiveness of the aggregate
cache, thus positively affecting cache

hit performance at the edge and
reducing traffic in the network [2].
Once the algorithms are in place that
enable the servers in the pool to
organically manage their respective
resources, the aforementioned policies
are easy to implement.

 Network and storage tradeoffs – inter-
node communication, hierarchical
network loads, and content
propagation can all be reduced by
judicial provisioning of additional
content storage; and vice-versa.

 COTS – in support of the need for easy
and large-scale modular resource
scaling, using inexpensive and
ubiquitous modules, the hardware
server platform and underlying system
software elements (OS) are assumed to
be COTS and the network elements are
standard commodity Ethernet devices.
Furthermore, this COTS foundation
encourages and enables the
development of hardware-independent
value-add software to implement the
concepts introduced in this paper.

Architectural Objectives

 Balance - Balance streaming loads
efficiently according to the capacities
(content and streaming) of the various
nodes. Establish rules and algorithms for
provisioning nodes and resources,
allocating content objects to nodes, and
directing streams to nodes. Inter-node
content movement to correct imbalances
should be kept to a minimum.

 Scaling - Configure, scale-up, and
upgrade overall capacities with minimum
disruption to system operation, and

asymmetrically (capacities of the various
nodes may differ) if necessary. Establish
policies and guidelines for adding nodes
& capacity.

 Redundancy - Maintain services at rated
capacities even in the face of a full node
failure. Establish redundancy methods to
fail-over lost content & streaming.
Ensure:

o Continued accessibility to all
content titles

o Continued full rated streaming
capacity

o In the case of a failed node in a
caching pool, minimal network
traffic devoted to content re-
acquisition from the CDN origin
server

 With these objectives in mind, some key
architectural elements are proposed to enable
pool-based video delivery.

General Approach

 The redundancy requirement calls for full
rated streaming capacity and continued access
to all content in the face of one off-line node,
i.e. n+1 redundancy. In this, the architecture
shares many of the goals of other RAIN
(Redundant Array of Independent Nodes)
architectures. This requirement is the most
visible driver of the architecture’s general
methods, briefly described here:

 Store at least two copies of every video
content object, with the copies on
different nodes. Provision storage for this
extra content. Dual-copy content
allocation strategies are further described
in the next section below, “Allocating
Content”. It should be recognized here

that, in the case of a caching pool,
policies may be applied that dynamically
vary the level of redundancy across the
objects, some with no copies or 1 copy
(relying on the origin server for backup)
and some with 2 or more, depending on
the popularity or streaming load of the
object (see the Caching Model section
later in this paper).

 Provision video streaming capacity
across the system in such a way as to
absorb one node going totally off-line.
De-rate the streaming capacity of a node
to account for the failover streaming
capacity that must be reserved in case
one of the other nodes fails. In other
words, to cover the potential loss of one
node, the system will ideally require no
more than the streaming capacity of n+1
nodes to ensure an effective streaming
capacity of n nodes. Capacity de-rating
strategies and equations will be described
in a later section, “Directing Streams”.

 When a stream is requested, direct it to
one of the nodes that has a copy of the
requested object. Provisionally reserve
an equivalent streaming load at one of
the other copies, for possible node
failover coverage. Selection of the
streaming and failover nodes must
consider the current streaming loads and
provisional failover streaming
reservations of the set of nodes with
copies of the object. Stream-direction
(node-selection) algorithms will be
discussed below.

ALLOCATING CONTENT

 In this architecture, content allocation
entails replicating each content object on two
nodes, being prepared to add a third copy
dynamically as needed. This approach is in
essence a heterogeneous distribution with
limited (the minimum) replication, forming a
judicial synergy of network and storage
resources. Total provisioned storage is
effectively 2 * rated content size, the
minimum to meet the node failover
redundancy requirement. One could extend
this to the extreme and put a copy of all
objects on all nodes, i.e. full content
replication. This would maximize flexibility
and simplicity in stream allocation and
failover, as well as the ability to absorb
streaming load asymmetries by stream
direction only, but at the cost of significantly
more storage, especially as the pool’s node
count increases.

 So, again assuming only two copies per
object, every object will belong to a specific
content node pairing or “object group”, which
consists of all the objects whose two copies
are allocated to the same pair of nodes. An
object will belong to only one object group,
but a node will intersect multiple object
groups, one for each of the other nodes in the
system. In a system of n nodes, there will be
n(n-1)/2 object groups. In a graph of nodes, if
one were to draw an arc between every pair of
nodes, those arcs correspond to the object
groups. This is illustrated in the diagrams
here:

Node 1

Node 3

Node 2

O
b
je

c
t
G

ro
u
p
 A

O
b
je

c
t G

ro
u
p
 C

Object Group B

Node 1

Node 4

Node 2

O
b
ject G

ro
u
p
 C

Object Group B

Node 3Object Group D

O
b
je

ct
 G

ro
u
p
 A

 Object Group E

 O

bje
ct
Gro

up
 F

Figure 1 - Object group definitions for 3-
node and 4-node server pools

 Note that this object group concept can be
extended to encompass a variety of node
group sizings in the same system (see the
“Exceptional Asymmetries” section for a
description of 3-copy object groups). For now,
the focus will remain on two-node object
groups.

 Content should be allocated across the
nodes in as balanced a way as possible.

Ideally, all the nodes will end up with very
near the same amount of stored content
(weighted for relative capacities), and all the
object groups will also be nearly equal in their
storage allocation. A careful, even allocation
of content objects across the nodes will lay a
smooth, flat foundation for stream allocation –
a sea of object copy pairs spread randomly
across the array of nodes, ready for a
streaming load and failover reserve to be
carefully mapped onto it in as balanced a way
as possible. Content should be allocated in a
way that distributes objects to storage in an
apparently random way, without regard to
expected popularity, thus naturally mixing
popular and less-popular objects within and
among the object groups, maximizing the
opportunity to absorb streaming hot spots and
balance loads using the redundant resources
provided (redundancy expands choice and
flexibility). In effect, randomized but even
content allocation tends to flatten the apparent
content usage profile from the perspective of
node and network utilization.

 Another aspect of content allocation is
content pre-placement. For the case of caching
pools, pre-positioning of content may or may
not be desirable or practical, depending on the
specific implementation. Significant
reductions in network loading have been
shown for metadata-directed pre-placement of
cache content. Regardless, one can pre-place
none, some, or all of the content while
following the allocation scheme mentioned
above; and then place new content as it arrives
in the same manner; or direct/re-direct streams
for pull-thru to result in the same desired
placements (more details on pull-thru
approaches are given in the “Caching Model”
section further below).

DIRECTING STREAMS

 Stream requests should be directed to
nodes in such a way as to minimize the de-
rating of system streaming capacity,
absorbing in an optimal way the failover
streaming load of any off-line node as well
as asymmetries in streaming demand
(popularity hot spots). See examples of
streaming load asymmetries in the table and
diagram below. The streaming load
asymmetries are expressed as the largest
fraction of total system streams sourced from
any object group (multiple “trials” are
shown, in which the random elements of the
content allocation mechanism are re-seeded).
The data in the table was generated with
simulations driven by real-world field data.
More details on “absorbing asymmetries” are
given in a section further below.

Asymmetry
- Largest
streaming
load on an
object
group

3
nodes

4
nodes

8
nodes

16
nodes

Ideal
(perfectly
balanced)

.333 .167 .036 .0083

Trial #1 .363 .210 .103 .059
#2 .416 .224 .116 .059
#3 .383 .208 .085 .056
#4 .359 .215 .113 .075
#5 .423 .211 .086 .073

Figure 2 - Asymmetric streaming loads
across object groups

 When a new stream request occurs, a node
must be selected to source the stream.
Actually, two nodes are selected for every
stream request – one to stream and one to
provisionally reserve failover resources for the
stream. Both of these nodes must have access
to the content object requested and must be
able to reach the appropriate transport network
with the stream. If content has been allocated
in the manner described in the section above,
there will be exactly two nodes with copies of
the desired object, so selecting one node
automatically selects the other. Effectively,
the object picks the node pair and the “stream
director” merely decides which node of the
pair will source the stream and which will
shadow the stream for possible fail-over.
These two nodes together uniquely describe
the identity of the “object group” containing
this object and others with their two copies on
these same two nodes.

Node 1

5k hrs

Node 2

5k hrs

Node 3

5k hrs

Object Group A stream

contribution: 42.3%

Object Group B stream

contribution: 31.6%

Object Group C stream

contribution: 26.1%

 Since every object is uniquely assigned to
an object group, the streaming load allocated
to the object group at any given time is the
aggregated streaming load at that time of all
the objects of the group. In addition, an
equivalent failover load is also allocated to the
group. More specifically, a portion of the
object group’s streaming load is assigned to
one of its associated nodes while the other
portion is assigned to the other node in the
pairing. The associated failover loads are
apportioned to the opposite nodes of the
pairing, so the total streaming-plus-potential-
failover loads assigned from this object group
to each of the two nodes hosting it are always
equal.

 Every node intersects a number of object
groups, each of those groups being uniquely
associated with this node and one of the other
nodes. Therefore, the set of object groups of
one node will overlap exactly one group
belonging to another node, but each node’s set
is unique. Therefore, the total collection of
object copies of one node are never the same
as that of any other node. Likewise, the
streaming loads and provisional failover loads
of one node are unlikely to match those of
another node.

 The streaming capacity of a node must be
sufficient to cover both its expected nominal
streaming load and its worst-case allocated
failover streaming load. At a given node and a
given point in time, each of the object groups
associated with that node contribute to the
node a portion of the current streaming load of
the object group and a complementary
(corresponding to the other portion of the
object group’s streaming load) potential
failover load. The same object group

contributes the opposite loads to the other
node associated with the object group. The
worst-case total potential streaming load of a
node at a given time is the sum of the actual
streaming loads allocated to that node from all
the object groups for that node, plus the
maximum of the potential failover streaming
loads allocated to that node from its set of
object groups. The maximum failover load
from among the object groups is used instead
of the sum because only one of the nodes in
the system is expected to be off-line at any
one time and the worst-case scenario for this
node is the failure of the complementary node
of the object group that contributes the largest
potential failover load to this node. So, for
time t, the potential load l(t) at a node is given
by:

l(t) = total_allocated_streaming(t) +
max_allocated_failover(t)

and the required minimum streaming capacity
that must be provisioned for that node is the
maximum l(t) over the lifetime of the node’s
current configuration. A simple formula
relating node capacity with the peak system
streaming load and system size (node count) is
given in the “Absorbing Asymmetries” section
further below.

 The objective in choosing one node over
another to source a new stream is to maintain
a balanced maximum streaming load across
the nodes of the system, i.e. to match a node’s
worst-case load against its relative streaming
capacity in the system. Since the worst-case
streaming load, and thus the required capacity,
of a node, is the total current streaming load
plus the maximum current potential failover
reserve, this is the metric that should be
compared when selecting one node over

another to direct a stream. Selecting a node to
source a stream based solely on the current
actual streaming load of the candidate nodes
will NOT result in a balanced system but will
in fact lead to an extremely off-balance system
that will not be able to fully fail-over the
streaming load of a lost node. Nominal
streaming loads will be balanced, but not the
maximum potential load (i.e. after failover).

 The graphs below compare two approaches
to balancing loads, one based solely on the
nodes’ current streaming loads and one based
on both streaming and maximum failover
loads. Results are shown for a 3-node system,
showing maximum streams and maximum
streams+failover for all 3 nodes. The data was
generated from simulations driven by actual
field data.

Figure 3 – Comparing load distributions with different direction algorithms

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Node 0 Node 1 Node 2

Stream direction algorithm based solely on streaming loads

Fail-Over Load

Streaming Load

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Node 0 Node 1 Node 2

Stream direction algorithm based on streaming + fail-over loads

Fail-Over Load

Streaming Load

 When only streaming loads are considered,
the resulting maximum streaming loads are
very well balanced, but total possible loads
including failover are unbalanced and worst-
case is quite high. When streaming+failover
loads are considered, however, the streaming
loads alone are unbalanced but the total load is
well-balanced and lower. Streaming load
alone means nothing when maximum potential
failover streaming must also be reserved.

 When an object is identified to source a
new stream, that stream will be assigned to
one of the nodes of the pair associated with
the requested object’s two copies. The node
selected should generally be the one with the
lowest current potential load, i.e. total
streaming load plus maximum potential
failover load. This is because the incremental
streaming load will always translate
completely to additional load on a node, while
the incremental potential failover load may or
may not add to a node’s maximum failover
load (a node’s potential failover load from this
object group may not be the current maximum
for the node). So, the stream is directed to the
node, of the pair, that has the lowest
[streaming plus maximum failover] load, and
the failover role for the stream is assigned to
the other node.

ABSORBING ASYMMETRIES

 The asymmetry introduced by node
failover has been addressed by the object
storage and stream load redundancies
described above. By storing two copies of an
object on different nodes and accounting for
failover streaming loads when de-rating a
node’s capacity and when assigning a stream,

the possibility of a node failure is anticipated
and provisioned for.

 Note that the architecture’s provisioning
for content and streaming redundancy to cover
a node failure also provides natural flexibility
in stream allocation that will support efforts to
balance uneven streaming loads across the
nodes and object groups. Under most
conditions, rules guiding content replication
and the over-provisioning of streaming
capacity will be sufficient to maintain balance
in the face of dynamic load asymmetries
(shifting popularity profiles) as well as to
absorb a node fail-over, without having to
move or adjust content. This has been verified
by analysis and by simulation driven by real-
world field data (just one example is shown in
the graphs above).

 In a system in which content objects and
streams are allocated as described in the
sections above, and given a peak total
streaming load “S”, the maximum
streaming+failover load experienced by any of
the nodes should nominally be 1/(n-1) * S
(this equation simply represents the system
streaming load spread across all the nodes but
one, possibly failed, node; this is the de-rated
capacity of a node). This per-node maximum
will hold for a range of streaming load
asymmetries described as follows: if each
node of a system is provisioned to support at
least 1/(n-1) * S streams, and the worst-case
streaming demand on any object group of the
system is less than 1/(n-1) * S, the nodes will
fully absorb the streaming load as well as the
failover load of any node failure. The
determination of this upper limit to object
group streaming load is based on the
observation that each node of a pair must be

able to absorb the full streaming load of their
associated object group because the group’s
streaming+provisional_failover load is double
the streaming load and is evenly allocated to
the two nodes. A streaming load, on an object
group, greater than the capacity of either of its
paired nodes is thus guaranteed not to be
absorbable by the nodes. Note that a perfectly
even distribution of streaming load would

allocate 2/(n(n-1)) * S streams to each object
group (there are n(n-1)/2 object groups (node
pairings) in a system of n nodes). This means
the maximum absorbable object group load is
n/2 times the perfectly even (ideally balanced)
load. See the table and diagrams below for
streaming load asymmetry ranges for various
node counts.

#nodes (n) #object groups
(arcs connecting
node pairs)
2/(n(n-1))

Minimum
Rated Node
Capacity –
fraction of
system streams
1/(n-1)

Range of
allowable max
streaming load
per object group
n(n-1)/2 – 1/(n-1)

Allowable/Ideal
ratio n/2

3 3 1/2 1/3-1/2 1.5
4 6 1/3 1/6-1/3 2.0
6 15 1/5 1/15-1/5 3.0
8 28 1/7 1/28-1/7 4.0
12 66 1/11 1/66-1/11 6.0
16 120 1/15 1/120-1/15 8.0

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

3 4 6 8 12 16

Fr
ac

ti
o

n
 o

f
to

ta
l s

tr
e

am
s

Number of nodes

Allowable vs Ideal streaming loads per object group

Ideal Load

Allowable

Figure 4 – Headroom for streaming load asymmetries

0

1

2

3

4

5

6

7

8

9

3 4 6 8 12 16

Number of nodes

Load Absorption Range as a function of number of nodes

Allowable / Ideal Ratio

 Simple n+1 provisioning, combined with
2-copy content provisioning and efficient
allocation, is sufficient to absorb most
practical asymmetrical situations if the stream
direction algorithm is also effective (balance
streams + max-failover, NOT just streams).

 Given this most basic provisioning, a smart
content allocator, and a smart stream director,
how much asymmetry can be absorbed? The

table and graphs above show the theoretical
bounds of asymmetry for various system sizes.
Below is a graph containing some examples of
various load asymmetries, from simulation
models driven by actual field data. Shown are
the streaming loads of the object groups of a
4-node system, these loads all clustered
around the ideal balanced load level and all
below the absorbable limit calculated above.

Figure 5 – Absorption of asymmetric streaming loads

 Normal everyday hot spots are generally
exhibited by a group of popular objects that
are scattered randomly across the object
groups and so tend to exhibit themselves as
minor imbalances in demand. These migrate
over time, exhibiting normal fluctuations in
user demand but staying within the absorption
range defined above. However, shorter-term,

faster-ramp and higher-magnitude spikes in
demand for isolated objects can also occur. If
these are not too severe and/or they occur
while no nodes are off-line, they are also
generally absorbed successfully.

 The exceptional scenario is the sudden
demand for an uber-popular object that soaks

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0 1 2 3 4 5 6 7

fr
ac

ti
o

n
 o

f
to

ta
l s

tr
e

am
s

6 trials (different random seeds)

Four nodes: streaming loads on 6 object groups

Object group 1

Object group 2

Object group 3

Object group 4

Object group 5

Object group 6

Allowable streaming load per object group

Ideal streaming load per object group

up a significant fraction of total streaming
capacity for some period of time, i.e. the so-
called “super bowl” scenario, especially if,
unlike the Super Bowl, it’s unplanned and
unpredictable. Depending on the number of
nodes in the system, an object group that
suddenly accounts for 1/4th, 1/3rd, or ½ of all
streams because of one or two super-hot
objects could easily exceed the bounds given
in the table above. This is when dynamic
propagation of extra object copies to other
nodes becomes important.

 Note from the tables and graphs above that,
although the ranges of relative allowable
streaming asymmetry is much higher for large
node-count systems, the absolute maximum
loads are much smaller than for small node-
count systems. Thus, as systems grow to
higher and higher node counts, they are
actually more vulnerable to isolated uber-
popular objects.

 Be aware that the inherent absorption range
of the node pool can be expanded to virtually
any reasonable level by further de-rating the
streaming capacity of the nodes. This is an
alternative that can be traded-off against more
content redundancy (more copies to begin
with or more extra-copy dynamic object
propagations). Another alternative is to go the
other direction and simply plan on absorbing a
fixed but reduced level of asymmetric and/or
failover loads, as one’s risk tolerance dictates,
and accept that some capacity may be
unavoidably curtailed (or provisioned as extra
load on the origin server and the intervening
network).

Exceptional Asymmetries

 The system must be able to handle
asymmetries that exceed de-rated capacities.
As indicated above, the streaming load on an
object group should not approach or exceed
1/(n-1) * S. When imbalances or load
fluctuations overtax an element of the existing
configuration, dynamic adjustments must be
made to rebalance the load. The approach
taken by the proposed architecture is to
dynamically propagate or pull-thru additional
copies of the problematic object to nodes with
unused content & streaming capacities.

 Adding a third copy of an object creates an
effective triangle of nodes and thus three
node-pairings to which the object’s streaming
and provisional failover assignments can be
made. This in effect creates a new object
group of 3 nodes tiered above the two-node
object groups triangulated by those nodes. It
gives the stream director three possible node
pairings from which to choose when assigning
a new stream, rather than just one. The
additional node pairs are available to absorb
the excess loads being experienced by the
original 2-copy object group.

 To accommodate a reasonable 3rd-copy
capability, the nodes of the pool must be
provisioned with a fractional increment of
unallocated content storage. Exceptional
asymmetries are generally caused by just a
few objects, so the required incremental
capacity is relatively small.

SCALING AND UPGRADING

 A prominent feature of a networked server
pool architecture is its promise of easily

scaling up or scaling down the pool’s
resources by adding or removing nodes or
modules. This eases the operational load and
costs of system capacity upgrades &
maintenance, all with minimum disruption to
active operations.

 Adding new content objects to the system,
when there remains existing storage capacity,
is straight forward. The content allocation
method described earlier in this paper should
continue to work as long as no node fills its
storage nor steals from 3rd-copy reserve. If,
however, storage is full or near full, additional
storage should be added to the system. One
could add incremental storage, i.e.
independent storage volumes or shelves, to
each (or some) of the nodes, or one could add
additional node(s) to the existing ones. Either
way, the new storage capacity should be
evenly and smoothly integrated into the
system by, for example, randomly selecting
existing object copies to be migrated to the
new storage, and disabling the old copy from
further stream allocation and ultimately
deleting it. This should continue at an
acceptable pace until the storage utilization is
once again even (by weight) across the
volumes.

 To add streaming capacity, it is generally
easier to add standard nodes to the pool than
to add CPU and IO capacity to a node.

 While arbitrary resource asymmetries
cannot always be well-balanced or efficiently
exploited, systems can be incrementally
scaled-up with nodes that are provisioned with
resource capacities different from those of the
original nodes.

CACHING MODEL

 This node pooling architecture can be
applied to a cache pool as well as it can to a
content library pool. In a pool of pull-thru
cache nodes, for example, cache content could
be provisionally allocated by directing a
primary stream pull-through at one node and a
secondary pull-through (for potential failover
coverage) at another, letting the cache logic
and state of the individual nodes determine
whether and how long the content stays in the
cache. The stream’s failover node does
everything the streaming node does, including
provisionally reserving the streaming
bandwidth, except it doesn’t actually stream
the content. Future stream requests for the
same object are directed at the same pair of
nodes with both nodes hitting and/or updating
their caches accordingly and one being chosen
to stream while the other provisionally
reserves bandwidth for failover.

 While some objects will take up storage
space in two caches, this is a minimum
redundancy ensured by the disciplined content
allocation mechanism. If the streaming
activity of an object is sufficient to cause it to
naturally hold a place in the two caches, the
potential impulse load on the network and
other nodes caused by a failed node will be
reduced, because another copy of the object is
already cached. On the other hand, the limited
redundancy approach of the content allocation
scheme actually maximizes the uniqueness
and heterogeneity of content across the
caches, thus improving the cache efficiency of
the server pool over ad-hoc methods that
allow caches to all pull from the same large
library .

 Note that policies may be applied that vary
the level of redundancy across the objects,
some with no copies or one copy (relying on
the origin server for backup) and some with
two or more, depending on the popularity or
streaming load of the object.

 Another approach would initially assign a
single node (and provisionally its cache) to an
object and its associated streaming load, until
the demand for that object warrants an
additional caching node to offset the load and
provide valuable failover capacity (again,
avoiding an impulse load on the other nodes
and the upstream network if a node fails).

CONCLUSIONS, IMPORTANT FINDINGS

 An efficient server pool architecture can
be effectively applied to optimize the
cost-performance of any location in a
CDN, including the origin server, a
caching edge site, or a caching mid-tier
site.

 Storage costs can be reduced significantly
by provisioning content storage (whether
library or cache) for minimum inter-node
redundancy (i.e. 2 copies). Even this
limited redundancy provides the stream
director with significant headroom and
flexibility for absorption of both failover
demand and asymmetric streaming loads
(hot spots). Exceptional events are then
sufficiently handled by propagating extra
copies of selected objects.

 A careful, even allocation of content
objects across the nodes will ensure a flat
foundation for stream allocation,
minimizing the effects of streaming load

asymmetries occurring on top of the
content pool.

 Provisioning for an off-line node (n+1
redundancy) is not sufficient in itself to
ensure smooth or successful failover.
Load balancing and stream direction logic
must also come into play to anticipate,
and allow for, a worst-case node loss
(instantaneous demand spikes), not just to
balance current streaming loads. Failover
allowances cannot be made arbitrarily at
the system-wide level nor by a fixed
amount applied equally to all nodes
globally. Appropriate allocation levels for
streaming and failover will be node-
specific, dynamic, unpredictable, and
highly variable.

 Re-active content propagation can be
avoided or minimized with smart
provisioning. Relying solely on
intelligent but straight-forward
provisioning guidelines and stream
direction algorithms, a multi-node pool
can be statically configured and
provisioned to maintain optimum balance
while absorbing node failover and/or
significant demand asymmetries, with
minimum redundancy and cost. A
minimum of dynamic churn (e.g. content
propagation, and other dynamic load
balancing methods) is required to handle
exceptional outlier cases.

 The role of a stream director is simply to
decide which node will source a stream
vs which will provisionally reserve fail-
over bandwidth, but this decision has
major impact on load balance and
resource utilization. Significant streaming
load asymmetries are intelligently
absorbed while piggy-backing on the

minimum node failover provisioning
(both content & streaming).

FURTHER RESEARCH

 3rd-copy and 4th-copy dynamics
 Asymmetric upgrades, including >2

different capacities in the server pool
 Command, control, & communications to

enable & support decision-making
 N+2 redundancy
 Other affinities & dimensions thereof,

including network loads & capacities
 Bit-rate striping
 OTT video cache-ability and how to

increase it?
o How much is currently cache-able

on a network?
o How different is it within an

operator’s network?
 Transport & storage cost models

REFERENCES

1. NIST.gov – Information Technology
Laboratory – Cloud Computing
Program
(http://www.nist.gov/itl/cloud/index.cf
m) – Retrieved 5/2/2011

2. Managed CDN – Optimizing the
Behavior of Hierarchical VOD -
Robert Duzett (ARRIS), Jeremy
Craven (ARRIS)

