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Abstract 

     As video delivery systems are tasked with 
larger and larger content libraries, 
significantly larger streaming loads across 
increasingly broader geographies, and a wide 
diversity of client devices, the need for more 
dynamic scaling and virtualized provisioning 
of large on-demand resource pools is 
apparent. 

     This paper examines strategies and 
policies for enabling a logically-shared video 
delivery load across multiple independent but 
networked video servers, and provides insight 
into practical applications such as efficient 
and scalable models for the origin, mid-tier, 
or edge caching points of a Content Delivery 
Network (CDN). 

 

INTRODUCTION 

     The fast growth of video traffic to 
computers, tablets and other mobile devices 
illustrates the profound changes affecting the 
ways in which people access video content. 
To compete with an increasing array of 
entertainment options, MSOs must harness the 
strength of their programming and work to 
facilitate access to it across the wide array of 
devices used by consumers. 

     These market forces are bound to have a 
significant impact on infrastructure and 
operations. Content providers have more 
options today to reach their target audiences.  
To keep the upper hand, MSOs need more 
efficient content ingest / packaging operations 
to enable fast capacity growth and quickly 
turn around assets that can be consumed on 
multiple platforms and client devices. As 
content continues to proliferate, consumption 
will increase, driving networks to near 
capacity. In fact, experts predict managed IP 
video traffic will quadruple over the next 4 
years. 

     Instead of locally-dedicated servers and 
storage systems with bounded growth limits 
and limited load sharing, today’s video loads 
call out for networked resource pools 
(processing, storage, and streaming resources) 
that can be easily deployed at discrete 
locations within a Content Delivery Network 
(CDN) architecture. These networked resource 
pools respond to changes in load levels and 
format mixes with agility, provisioning the 
resources of semi-independent and loosely-
coupled servers and systems in an organic and 
efficient way. 

     This paper first discusses the requirements 
associated with next generation video 
delivery. After introducing a server pool 
architecture enabling multiple loosely-coupled 



 

 
 

independent video servers to operate as one 
virtual load sharing system, we study the 
central issues of this proposed approach, 
including content allocation, load balancing 
and asymmetric load behaviors.  Analysis is 
supported by simulations driven by real-world 
field data.  In addition, we discuss the 
advantages of the proposed server pool 
architecture in terms of scaling / upgrading 
and review a practical application of the 
architecture to caching. Conclusions and key 
findings as well as topics suggested for further 
research are found in the final section. 

 

VIDEO DELIVERY APPLICATION 
REQUIREMENTS 

     The challenges highlighted in the previous 
section imply new requirements to ensure 
efficient and scalable video delivery: 

 Cost-Efficiency – The need for cost-
efficient scalability puts unsustainable 
pressure on proprietary platform design 
models.  Instead, video delivery solutions 
must leverage commoditized hardware to 
exploit the advantages of Moore’s Law. 

 Low latency and reduced network load – 
CDN network demands must be 
minimized to enable high quality 
delivery, especially for live video 
applications.  Employed as a cache, the 
video delivery system has a role to play 
in ensuring low latency and reduced 
network load. 

 Modular and agile scaling – There are 
multiple dimensions of resource scaling, 
including streaming capacity, content 
storage capacity, and ingest capacity. 
Streaming and storage provisioning 

requirements vary widely across different 
deployments and even across different 
hierarchical levels within a given 
network.  For instance, the two core 
elements of a CDN, the origin and the 
cache, dictate nearly opposite sets of 
provisioning requirements, the former 
needing lots of inexpensive storage, the 
latter requiring high I/O performance and 
streaming density, but reduced storage 
overhead costs.  In other words, the video 
delivery system architecture needs to 
support a provisioning model that is 
flexible while consistently/uniformly 
efficient, even for fairly asymmetric 
deployments and upgrades. 

 Maintenance / upgrade agility – Upgrades 
must be straightforward, simple, and 
quick as possible, having as little impact 
on the existing system as possible, i.e. 
modular. Re-building, re-loading, or 
replacing elements of the existing 
configuration, in order to perform an 
upgrade, should be avoided.   

 High Availability – The video delivery 
infrastructure must maintain constant 
service uptime.  This implies redundancy 
and load balancing across separate 
resources with fail-over policies. 

 Client device independence – modern 
video delivery platforms must offer 
flexible and dynamic resource 
provisioning mechanisms to transparently 
accommodate different delivery formats 
and varying workloads to a wide array of 
devices. 

     Today’s video delivery applications 
demand increased IO performance, 
provisioning flexibility, scalability and 
reliability in addition to accommodating a 



 

 
 

wide array of content access patterns and 
diverse file formats and sizes, all of which 
must be achieved with greater cost-
effectiveness.  In the following section, we 
define a flexible framework fulfilling the 
above requirements while offering great 
design freedom, including the ability to 
leverage commoditized hardware and standard 
networking protocols for optimal cost-
performance. 

 

ARCHITECTURAL SCOPE 

     The architectural scope of this paper 
encompasses a “server pool” approach to 
video delivery, in which the server pool is 
defined as a collection of loosely-coupled, 
semi-independent servers in a common 
network, with common reach-ability to video 
subscribers. Each server is a “node” of the 
interconnected delivery system. Both the 
available video content and the streaming load 
are distributed across the nodes.  

     The server pool architecture borrows the 
following key principles from Cloud 
Computing [1]: 

 Shared resource pooling for increased 
utilization and efficiency 

 Reliability by distributing load across 
multiple hardware instances and 
eliminating single points of failure 

 Scalability by enabling capacity 
expansions through server instance 
additions without service disruption 

 Maintainability by enabling upgrades 
and hardware maintenance without 
service disruption 

     While the descriptions and analysis in the 
sections below refer to “content” in general 
and thus seem to imply a stand-alone content 
library, a la CDN origin server, these concepts 
are equally applicable to a pool of cache 
content nodes. The scalability, redundancy, 
storage efficiency, and load-balancing 
efficiency of this solution can serve to 
optimize the cost-performance and operational 
efficiency of any appropriate location of a 
CDN, including the origin server, caching 
edge sites, or mid-tier caching or library sites. 
For simplicity of description and analysis, 
generic references to “content” and “objects” 
are used, with little mention of caching. 
However, near the end of the paper, after the 
core analysis sections, a “Caching Model” 
section describes methods for mapping these 
concepts onto a pull-thru cache pool. 

     Some general principles that are imbued in 
this architecture include: 

 Virtualization – multiple nodes appear, 
and work together, as one. This applies 
to the content, whether as a library or 
as an aggregated cache, as well as the 
streaming resources and the node pool 
network as a whole. The pool concept 
is especially well-suited for exploiting 
shared end-user connectivity and 
pooled resources to efficiently 
aggregate and amplify the unified 
cache performance. All nodes in the 
pool have shared affinity with, or 
common reach-ability to, the video 
end-user.  Policies designed to ensure 
maximum content heterogeneity across 
multiple servers’ caches drastically 
increase effectiveness of the aggregate 
cache, thus positively affecting cache 



 

 
 

hit performance at the edge and 
reducing traffic in the network [2].  
Once the algorithms are in place that 
enable the servers in the pool to 
organically manage their respective 
resources, the aforementioned policies 
are easy to implement. 

 Network and storage tradeoffs – inter-
node communication, hierarchical 
network loads, and content 
propagation can all be reduced by 
judicial provisioning of additional 
content storage; and vice-versa. 

 COTS – in support of the need for easy 
and large-scale modular resource 
scaling, using inexpensive and 
ubiquitous modules, the hardware 
server platform and underlying system 
software elements (OS) are assumed to 
be COTS and the network elements are 
standard commodity Ethernet devices. 
Furthermore, this COTS foundation 
encourages and enables the 
development of hardware-independent 
value-add software to implement the 
concepts introduced in this paper. 

Architectural Objectives 

 Balance - Balance streaming loads 
efficiently according to the capacities 
(content and streaming) of the various 
nodes. Establish rules and algorithms for 
provisioning nodes and resources, 
allocating content objects to nodes, and 
directing streams to nodes. Inter-node 
content movement to correct imbalances  
should be kept to a minimum.  

 Scaling - Configure, scale-up, and 
upgrade overall capacities with minimum 
disruption to system operation, and 

asymmetrically (capacities of the various 
nodes may differ) if necessary. Establish 
policies and guidelines for adding nodes 
& capacity. 

 Redundancy - Maintain services at rated 
capacities even in the face of a full node 
failure. Establish redundancy methods to 
fail-over lost content & streaming. 
Ensure: 

o Continued accessibility to all 
content titles 

o Continued full rated streaming 
capacity 

o In the case of a failed node in a 
caching pool, minimal network 
traffic devoted to content re-
acquisition from the CDN origin 
server 

     With these objectives in mind, some key 
architectural elements are proposed to enable 
pool-based video delivery. 

General Approach 

     The redundancy requirement calls for full 
rated streaming capacity and continued access 
to all content in the face of one off-line node, 
i.e. n+1 redundancy. In this, the architecture 
shares many of the goals of other RAIN 
(Redundant Array of Independent Nodes) 
architectures. This requirement is the most 
visible driver of the architecture’s general 
methods, briefly described here: 

 Store at least two copies of every video 
content object, with the copies on 
different nodes. Provision storage for this 
extra content. Dual-copy content 
allocation strategies are further described 
in the next section below, “Allocating 
Content”. It should be recognized here 



 

 
 

that, in the case of a caching pool, 
policies may be applied that dynamically 
vary the level of redundancy across the 
objects, some with no copies or 1 copy 
(relying on the origin server for backup) 
and some with 2 or more, depending on 
the popularity or streaming load of the 
object (see the Caching Model section 
later in this paper). 

 Provision video streaming capacity 
across the system in such a way as to 
absorb one node going totally off-line. 
De-rate the streaming capacity of a node 
to account for the failover streaming 
capacity that must be reserved in case 
one of the other nodes fails. In other 
words, to cover the potential loss of one 
node, the system will ideally require no 
more than the streaming capacity of n+1 
nodes to ensure an effective streaming 
capacity of n nodes. Capacity de-rating 
strategies and equations will be described 
in a later section, “Directing Streams”. 

 When a stream is requested, direct it to 
one of the nodes that has a copy of the 
requested object. Provisionally reserve 
an equivalent streaming load at one of 
the other copies, for possible node 
failover coverage. Selection of the 
streaming and failover nodes must 
consider the current streaming loads and 
provisional failover streaming 
reservations of the set of nodes with 
copies of the object. Stream-direction 
(node-selection) algorithms will be 
discussed below.  

 

 

ALLOCATING CONTENT 

     In this architecture, content allocation 
entails replicating each content object on two 
nodes, being prepared to add a third copy 
dynamically as needed. This approach is in 
essence a heterogeneous distribution with 
limited (the minimum) replication, forming a 
judicial synergy of network and storage 
resources. Total provisioned storage is 
effectively 2 * rated content size, the 
minimum to meet the node failover 
redundancy requirement. One could extend 
this to the extreme and put a copy of all 
objects on all nodes, i.e. full content 
replication. This would maximize flexibility 
and simplicity in stream allocation and 
failover, as well as the ability to absorb 
streaming load asymmetries by stream 
direction only, but at the cost of significantly 
more storage, especially as the pool’s node 
count increases.  

     So, again assuming only two copies per 
object, every object will belong to a specific 
content node pairing or “object group”, which 
consists of all the objects whose two copies 
are allocated to the same pair of nodes. An 
object will belong to only one object group, 
but a node will intersect multiple object 
groups, one for each of the other nodes in the 
system. In a system of n nodes, there will be 
n(n-1)/2 object groups. In a graph of nodes, if 
one were to draw an arc between every pair of 
nodes, those arcs correspond to the object 
groups. This is illustrated in the diagrams 
here: 
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Figure 1 - Object group definitions for 3-
node and 4-node server pools 

     Note that this object group concept can be 
extended to encompass a variety of node 
group sizings in the same system (see the 
“Exceptional Asymmetries” section for a 
description of 3-copy object groups). For now, 
the focus will remain on two-node object 
groups. 

     Content should be allocated across the 
nodes in as balanced a way as possible. 

Ideally, all the nodes will end up with very 
near the same amount of stored content 
(weighted for relative capacities), and all the 
object groups will also be nearly equal in their 
storage allocation. A careful, even allocation 
of content objects across the nodes will lay a 
smooth, flat foundation for stream allocation – 
a sea of object copy pairs spread randomly 
across the array of nodes, ready for a 
streaming load and failover reserve to be 
carefully mapped onto it in as balanced a way 
as possible.  Content should be allocated in a 
way that distributes objects to storage in an 
apparently random way, without regard to 
expected popularity, thus naturally mixing 
popular and less-popular objects within and 
among the object groups, maximizing the 
opportunity to absorb streaming hot spots and 
balance loads using the redundant resources 
provided (redundancy expands choice and 
flexibility). In effect, randomized but even 
content allocation tends to flatten the apparent 
content usage profile from the perspective of 
node and network utilization. 

     Another aspect of content allocation is 
content pre-placement. For the case of caching 
pools, pre-positioning of content may or may 
not be desirable or practical, depending on the 
specific implementation. Significant 
reductions in network loading have been 
shown for metadata-directed pre-placement of 
cache content. Regardless, one can pre-place 
none, some, or all of the content while 
following the allocation scheme mentioned 
above; and then place new content as it arrives 
in the same manner; or direct/re-direct streams 
for pull-thru to result in the same desired 
placements (more details on pull-thru 
approaches are given in the “Caching Model” 
section further below). 



 

 
 

 

DIRECTING STREAMS 

     Stream requests should be directed to 
nodes in such a way as to minimize the de-
rating of system streaming capacity, 
absorbing in an optimal way the failover 
streaming load of any off-line node as well 
as asymmetries in streaming demand 
(popularity hot spots).  See examples of 
streaming load asymmetries in the table and 
diagram below. The streaming load 
asymmetries are expressed as the largest 
fraction of total system streams sourced from 
any object group (multiple “trials” are 
shown, in which the random elements of the 
content allocation mechanism are re-seeded).  
The data in the table was generated with 
simulations driven by real-world field data. 
More details on “absorbing asymmetries” are 
given in a section further below. 

 

Asymmetry 
- Largest 
streaming 
load on an 
object 
group 

3 
nodes 

4 
nodes 

8 
nodes 

16 
nodes 

Ideal 
(perfectly 
balanced) 

.333 .167 .036 .0083 

Trial #1 .363 .210 .103 .059 
#2 .416 .224 .116 .059 
#3 .383 .208 .085 .056 
#4 .359 .215 .113 .075 
#5 .423 .211 .086 .073 

 

 

 

 

 

Figure 2 - Asymmetric streaming loads 
across object groups 

     When a new stream request occurs, a node 
must be selected to source the stream. 
Actually, two nodes are selected for every 
stream request – one to stream and one to 
provisionally reserve failover resources for the 
stream. Both of these nodes must have access 
to the content object requested and must be 
able to reach the appropriate transport network 
with the stream. If content has been allocated 
in the manner described in the section above, 
there will be exactly two nodes with copies of 
the desired object, so selecting one node 
automatically selects the other. Effectively, 
the object picks the node pair and the “stream 
director” merely decides which node of the 
pair will source the stream and which will 
shadow the stream for possible fail-over. 
These two nodes together uniquely describe 
the identity of the “object group” containing 
this object and others with their two copies on 
these same two nodes.  

Node 1

5k hrs

Node 2

5k hrs

Node 3

5k hrs

Object Group A stream 

contribution: 42.3%

Object Group B stream 

contribution: 31.6%

Object Group C stream 

contribution: 26.1%



 

 
 

     Since every object is uniquely assigned to 
an object group, the streaming load allocated 
to the object group at any given time is the 
aggregated streaming load at that time of all 
the objects of the group. In addition, an 
equivalent failover load is also allocated to the 
group. More specifically, a portion of the 
object group’s streaming load is assigned to 
one of its associated nodes while the other 
portion is assigned to the other node in the 
pairing. The associated failover loads are 
apportioned to the opposite nodes of the 
pairing, so the total streaming-plus-potential-
failover loads assigned from this object group 
to each of the two nodes hosting it are always 
equal. 

     Every node intersects a number of object 
groups, each of those groups being uniquely 
associated with this node and one of the other 
nodes. Therefore, the set of object groups of 
one node will overlap exactly one group 
belonging to another node, but each node’s set 
is unique. Therefore, the total collection of 
object copies of one node are never the same 
as that of any other node. Likewise, the 
streaming loads and provisional failover loads 
of one node are unlikely to match those of 
another node.  

     The streaming capacity of a node must be 
sufficient to cover both its expected nominal 
streaming load and its worst-case allocated 
failover streaming load. At a given node and a 
given point in time, each of the object groups 
associated with that node contribute to the 
node a portion of the current streaming load of 
the object group and a complementary 
(corresponding to the other portion of the 
object group’s streaming load) potential 
failover load. The same object group 

contributes the opposite loads to the other 
node associated with the object group. The 
worst-case total potential streaming load of a 
node at a given time is the sum of the actual 
streaming loads allocated to that node from all 
the object groups for that node, plus the 
maximum of the potential failover streaming 
loads allocated to that node from its set of 
object groups. The maximum failover load 
from among the object groups is used instead 
of the sum because only one of the nodes in 
the system is expected to be off-line at any 
one time and the worst-case scenario for this 
node is the failure of the complementary node 
of the object group that contributes the largest 
potential failover load to this node. So, for 
time t, the potential load l(t) at a node is given 
by: 

l(t) = total_allocated_streaming(t) + 
max_allocated_failover(t) 

and the required minimum streaming capacity 
that must be provisioned for that node is the 
maximum l(t) over the lifetime of the node’s 
current configuration. A simple formula 
relating node capacity with the peak system 
streaming load and system size (node count) is 
given in the “Absorbing Asymmetries” section 
further below. 

     The objective in choosing one node over 
another to source a new stream is to maintain 
a balanced maximum streaming load across 
the nodes of the system, i.e. to match a node’s 
worst-case load against its relative streaming 
capacity in the system. Since the worst-case 
streaming load, and thus the required capacity, 
of a node, is the total current streaming load 
plus the maximum current potential failover 
reserve, this is the metric that should be 
compared when selecting one node over 



 

 
 

another to direct a stream. Selecting a node to 
source a stream based solely on the current 
actual streaming load of the candidate nodes 
will NOT result in a balanced system but will 
in fact lead to an extremely off-balance system 
that will not be able to fully fail-over the 
streaming load of a lost node.  Nominal 
streaming loads will be balanced, but not the 
maximum potential load (i.e. after failover). 

     The graphs below compare two approaches 
to balancing loads, one based solely on the 
nodes’ current streaming loads and one based 
on both streaming and maximum failover 
loads. Results are shown for a 3-node system, 
showing maximum streams and maximum 
streams+failover for all 3 nodes. The data was 
generated from simulations driven by actual 
field data.

 

 

Figure 3 – Comparing load distributions with different direction algorithms 
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     When only streaming loads are considered, 
the resulting maximum streaming loads are 
very well balanced, but total possible loads 
including failover are unbalanced and worst-
case is quite high. When streaming+failover 
loads are considered, however, the streaming 
loads alone are unbalanced but the total load is 
well-balanced and lower. Streaming load 
alone means nothing when maximum potential 
failover streaming must also be reserved. 

     When an object is identified to source a 
new stream, that stream will be assigned to 
one of the nodes of the pair associated with 
the requested object’s two copies. The node 
selected should generally be the one with the 
lowest current potential load, i.e. total 
streaming load plus maximum potential 
failover load. This is because the incremental 
streaming load will always translate 
completely to additional load on a node, while 
the incremental potential failover load may or 
may not add to a node’s maximum failover 
load (a node’s potential failover load from this 
object group may not be the current maximum 
for the node). So, the stream is directed to the 
node, of the pair, that has the lowest 
[streaming plus maximum failover] load, and 
the failover role for the stream is assigned to 
the other node.  

 

ABSORBING ASYMMETRIES 

     The asymmetry introduced by node 
failover has been addressed by the object 
storage and stream load redundancies 
described above. By storing two copies of an 
object on different nodes and accounting for 
failover streaming loads when de-rating a 
node’s capacity and when assigning a stream, 

the possibility of a node failure is anticipated 
and provisioned for. 

     Note that the architecture’s provisioning 
for content and streaming redundancy to cover 
a node failure also provides natural flexibility 
in stream allocation that will support efforts to 
balance uneven streaming loads across the 
nodes and object groups. Under most 
conditions, rules guiding content replication 
and the over-provisioning of streaming 
capacity will be sufficient to maintain balance 
in the face of dynamic load asymmetries 
(shifting popularity profiles) as well as to 
absorb a node fail-over, without having to 
move or adjust content. This has been verified 
by analysis and by simulation driven by real-
world field data (just one example is shown in 
the graphs above). 

     In a system in which content objects and 
streams are allocated as described in the 
sections above, and given a peak total 
streaming load “S”, the maximum 
streaming+failover load experienced by any of 
the nodes should nominally be 1/(n-1) * S 
(this equation simply represents the system 
streaming load spread across all the nodes but 
one, possibly failed, node; this is the de-rated 
capacity of a node). This per-node maximum 
will hold for a range of streaming load 
asymmetries described as follows: if each 
node of a system is provisioned to support at 
least 1/(n-1) * S streams, and the worst-case 
streaming demand on any object group of the 
system is less than 1/(n-1) * S, the nodes will 
fully absorb the streaming load as well as the 
failover load of any node failure. The 
determination of this upper limit to object 
group streaming load is based on the 
observation that each node of a pair must be 



 

 
 

able to absorb the full streaming load of their 
associated object group because the group’s 
streaming+provisional_failover load is double 
the streaming load and is evenly allocated to 
the two nodes. A streaming load, on an object 
group, greater than the capacity of either of its 
paired nodes is thus guaranteed not to be 
absorbable by the nodes. Note that a perfectly 
even distribution of streaming load would 

allocate 2/(n(n-1)) * S streams to each object 
group (there are n(n-1)/2 object groups (node 
pairings) in a system of n nodes). This means 
the maximum absorbable object group load is 
n/2 times the perfectly even (ideally balanced) 
load. See the table and diagrams below for 
streaming load asymmetry ranges for various 
node counts. 

 

#nodes (n) #object groups 
(arcs connecting 
node pairs)  
2/(n(n-1))  

Minimum 
Rated Node 
Capacity – 
fraction of 
system streams 
1/(n-1) 

Range of 
allowable max 
streaming load 
per object group 
n(n-1)/2 – 1/(n-1) 

Allowable/Ideal 
ratio n/2 

3 3 1/2 1/3-1/2 1.5 
4 6 1/3 1/6-1/3 2.0 
6 15 1/5 1/15-1/5 3.0 
8 28 1/7 1/28-1/7 4.0 
12 66 1/11 1/66-1/11 6.0 
16 120 1/15 1/120-1/15 8.0 

 

 

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

3 4 6 8 12 16

Fr
ac

ti
o

n
 o

f 
to

ta
l s

tr
e

am
s

Number of nodes

Allowable vs Ideal streaming loads per object group

Ideal Load

Allowable



 

 
 

 

Figure 4 – Headroom for streaming load asymmetries  
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     Simple n+1 provisioning, combined with 
2-copy content provisioning and efficient 
allocation, is sufficient to absorb most 
practical asymmetrical situations if the stream 
direction algorithm is also effective  (balance 
streams + max-failover, NOT just streams). 

     Given this most basic provisioning, a smart 
content allocator, and a smart stream director, 
how much asymmetry can be absorbed? The 

table and graphs above show the theoretical 
bounds of asymmetry for various system sizes. 
Below is a graph containing some examples of 
various load asymmetries, from simulation 
models driven by actual field data. Shown are 
the streaming loads of the object groups of a 
4-node system, these loads all clustered 
around the ideal balanced load level and all 
below the absorbable limit calculated above.

 

  

Figure 5 – Absorption of asymmetric streaming loads 
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up a significant fraction of total streaming 
capacity for some period of time, i.e. the so-
called “super bowl” scenario, especially if, 
unlike the Super Bowl, it’s unplanned and 
unpredictable. Depending on the number of 
nodes in the system, an object group that 
suddenly accounts for 1/4th, 1/3rd, or ½ of all 
streams because of one or two super-hot 
objects could easily exceed the bounds given 
in the table above. This is when dynamic 
propagation of extra object copies to other 
nodes becomes important. 

     Note from the tables and graphs above that, 
although the ranges of relative allowable 
streaming asymmetry is much higher for large 
node-count systems, the absolute maximum 
loads are much smaller than for small node-
count systems. Thus, as systems grow to 
higher and higher node counts, they are 
actually more vulnerable to isolated uber-
popular objects.  

     Be aware that the inherent absorption range 
of the node pool can be expanded to virtually 
any reasonable level by further de-rating the 
streaming capacity of the nodes. This is an 
alternative that can be traded-off against more 
content redundancy (more copies to begin 
with or more extra-copy dynamic object 
propagations). Another alternative is to go the 
other direction and simply plan on absorbing a 
fixed but reduced level of asymmetric and/or 
failover loads, as one’s risk tolerance dictates, 
and accept that some capacity may be 
unavoidably curtailed (or provisioned as extra 
load on the origin server and the intervening 
network). 

 

 

Exceptional Asymmetries  

     The system must be able to handle 
asymmetries that exceed de-rated capacities. 
As indicated above, the streaming load on an 
object group should not approach or exceed 
1/(n-1) * S. When imbalances or load 
fluctuations overtax an element of the existing 
configuration, dynamic adjustments must be 
made to rebalance the load. The approach 
taken by the proposed architecture is to 
dynamically propagate or pull-thru additional 
copies of the problematic object to nodes with 
unused content & streaming capacities. 

     Adding a third copy of an object creates an 
effective triangle of nodes and thus three 
node-pairings to which the object’s streaming 
and provisional failover assignments can be 
made. This in effect creates a new object 
group of 3 nodes tiered above the two-node 
object groups triangulated by those nodes. It 
gives the stream director three possible node 
pairings from which to choose when assigning 
a new stream, rather than just one. The 
additional node pairs are available to absorb 
the excess loads being experienced by the 
original 2-copy object group.  

     To accommodate a reasonable 3rd-copy 
capability, the nodes of the pool must be 
provisioned with a fractional increment of 
unallocated content storage. Exceptional 
asymmetries are generally caused by just a 
few objects, so the required incremental 
capacity is relatively small.  

 

SCALING AND UPGRADING 

     A prominent feature of a networked server 
pool architecture is its promise of easily 



 

 
 

scaling up or scaling down the pool’s 
resources by adding or removing nodes or 
modules. This eases the operational load and 
costs of system capacity upgrades & 
maintenance, all with minimum disruption to 
active operations.  

     Adding new content objects to the system, 
when there remains existing storage capacity, 
is straight forward. The content allocation 
method described earlier in this paper should 
continue to work as long as no node fills its 
storage nor steals from 3rd-copy reserve. If, 
however, storage is full or near full, additional 
storage should be added to the system. One 
could add incremental storage, i.e. 
independent storage volumes or shelves, to 
each (or some) of the nodes, or one could add 
additional node(s) to the existing ones. Either 
way, the new storage capacity should be 
evenly and smoothly integrated into the 
system by, for example, randomly selecting 
existing object copies to be migrated to the 
new storage, and disabling the old copy from 
further stream allocation and ultimately 
deleting it. This should continue at an 
acceptable pace until the storage utilization is 
once again even (by weight) across the 
volumes. 

     To add streaming capacity, it is generally 
easier to add standard nodes to the pool than 
to add CPU and IO capacity to a node.  

     While arbitrary resource asymmetries 
cannot always be well-balanced or efficiently 
exploited, systems can be incrementally 
scaled-up with nodes that are provisioned with 
resource capacities different from those of the 
original nodes.  

 

CACHING MODEL 

     This node pooling architecture can be 
applied to a cache pool as well as it can to a 
content library pool. In a pool of pull-thru 
cache nodes, for example, cache content could 
be provisionally allocated by directing a 
primary stream pull-through at one node and a 
secondary pull-through (for potential failover 
coverage) at another, letting the cache logic 
and state of the individual nodes determine 
whether and how long the content stays in the 
cache. The stream’s failover node does 
everything the streaming node does, including 
provisionally reserving the streaming 
bandwidth, except it doesn’t actually stream 
the content. Future stream requests for the 
same object are directed at the same pair of 
nodes with both nodes hitting and/or updating 
their caches accordingly and one being chosen 
to stream while the other provisionally 
reserves bandwidth for failover.  

     While some objects will take up storage 
space in two caches, this is a minimum 
redundancy ensured by the disciplined content 
allocation mechanism. If the streaming 
activity of an object is sufficient to cause it to 
naturally hold a place in the two caches, the 
potential impulse load on the network and 
other nodes caused by a failed node will be 
reduced, because another copy of the object is 
already cached. On the other hand, the limited 
redundancy approach of the content allocation 
scheme actually maximizes the uniqueness 
and heterogeneity of content across the 
caches, thus improving the cache efficiency of 
the  server pool over ad-hoc methods that 
allow caches to all pull from the same large 
library . 



 

 
 

     Note that policies may be applied that vary 
the level of redundancy across the objects, 
some with no copies or one copy (relying on 
the origin server for backup) and some with 
two or more, depending on the popularity or 
streaming load of the object. 

     Another approach would initially assign a 
single node (and provisionally its cache) to an 
object and its associated streaming load, until 
the demand for that object warrants an 
additional caching node to offset the load and 
provide valuable failover capacity (again, 
avoiding an impulse load on the other nodes 
and the upstream network if a node fails).  

 

CONCLUSIONS, IMPORTANT FINDINGS 

 An efficient server pool architecture can 
be effectively applied to optimize the 
cost-performance of any location in a 
CDN, including the origin server, a 
caching edge site, or a caching mid-tier 
site.  

 Storage costs can be reduced significantly 
by provisioning content storage (whether 
library or cache) for minimum inter-node 
redundancy (i.e. 2 copies). Even this 
limited redundancy provides the stream 
director with significant headroom and 
flexibility for absorption of both failover 
demand and asymmetric streaming loads 
(hot spots). Exceptional events are then 
sufficiently handled by propagating extra 
copies of selected objects. 

 A careful, even allocation of content 
objects across the nodes will ensure a flat 
foundation for stream allocation, 
minimizing the effects of streaming load 

asymmetries occurring on top of the 
content pool. 

 Provisioning for an off-line node (n+1 
redundancy) is not sufficient in itself to 
ensure smooth or successful failover. 
Load balancing and stream direction logic 
must also come into play to anticipate, 
and allow for, a worst-case node loss 
(instantaneous demand spikes), not just to 
balance current streaming loads. Failover 
allowances cannot be made arbitrarily at 
the system-wide level nor by a fixed 
amount applied equally to all nodes 
globally. Appropriate allocation levels for 
streaming and failover will be node-
specific, dynamic, unpredictable, and 
highly variable.  

 Re-active content propagation can be 
avoided or minimized with smart 
provisioning. Relying solely on 
intelligent but straight-forward 
provisioning guidelines and stream 
direction algorithms, a multi-node pool 
can be statically configured and 
provisioned to maintain optimum balance 
while absorbing node failover and/or 
significant demand asymmetries, with 
minimum redundancy and cost. A 
minimum of dynamic churn (e.g. content 
propagation, and other dynamic load 
balancing methods) is required to handle 
exceptional outlier cases. 

 The role of a stream director is simply to 
decide which node will source a stream 
vs which will provisionally reserve fail-
over bandwidth, but this decision has 
major impact on load balance and 
resource utilization. Significant streaming 
load asymmetries are intelligently 
absorbed while piggy-backing on the 



 

 
 

minimum node failover provisioning 
(both content & streaming). 

 

FURTHER RESEARCH 

 3rd-copy and 4th-copy dynamics 
 Asymmetric upgrades, including >2 

different capacities in the server pool 
 Command, control, & communications to 

enable & support decision-making 
 N+2 redundancy  
 Other affinities & dimensions thereof, 

including network loads & capacities 
 Bit-rate striping 
 OTT video cache-ability and how to 

increase it? 
o How much is currently cache-able 

on a network? 
o How different is it within an 

operator’s network? 
 Transport & storage cost models 
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