
APPROACHES TO INTEGRATING CDN TECHNOLOGIES INTO CLASSICAL CABLE
VOD PLATFORMS

Charles Hasek Santosh Krishnan

 Principal Architect Vice President, Product Strategy
 Time Warner Cable Verivue

Abstract

 Classical cable video on-demand (VOD)
systems have been based on traditional client-
server architectures, in which content is
replicated on several streaming servers in
each geographical location. More recently,
cable operators have turned their attention to
distributed content delivery networks (CDN)
as a solution for expanded content libraries
that can no longer be economically addressed
by replicated client-server systems. In this
paper, we provide justifications for embracing
an open standard-based CDN architecture,
based on a foundation of HTTP and caching,
i.e., technologies that are now widely
recognized to have scaled content delivery
over IP-based networks. A challenge that
remains for classical VOD delivery is to adopt
the benefits of such CDN technologies without
fork-lift upgrades of the entire existing
ecosystem. Here we enumerate a few key
modifications to existing components that can
enable the creation of hierarchical cache-
based architectures. In summary, the
proposed modifications can be used as a
practical recipe for integrating existing VOD
ecosystems into an HTTP-based CDN.

INTRODUCTION

 Classical cable video on-demand (VOD)
systems were constructed using a traditional
client-server approach. In essence, this
paradigm consisted of silos of content storage
and streaming within each geographical area,
typically defined as a head-end. The VOD
ecosystem, broadly consisting of streaming
servers, storage, back-office software and

application portals, would then be replicated
from head-end to head-end, essentially
replicating content libraries at each location.
As content offerings have grown, so has the
amount of storage at the edge of the networks.

 Because of such a silo-based approach,
content is propagated (or “pushed”) and
replicated at each location, regardless of the
number of views or popularity. Such
replication consumes an inordinate amount of
storage, power and space to store very low-
use such as unpopular content and long-tail
catalogs. Hierarchical storage architectures
would allow for much more content to be
stored in very inexpensive storage at
centralized locations and only moved to
servers at the edge when needed, i.e., based
“on demand.”

 A couple of key technology drivers in the
content delivery network (CDN) space are
now being utilized in the classical VOD space
to enable efficient growth of storage and
streaming capacities (e.g., see [1], [2]). The
first key component is the usage of standard
HTTP for content requests and propagation
[3]. In fact, in recent years, HTTP-based
protocols are already being used to deliver
video content end-to-end, in both real-time
streaming (e.g., HTTP live streaming [4]) and
progressive download fashions. Such
capabilities can be applied towards classical
VOD delivery as well. A second key
component is use of hierarchical caching
components and models to efficiently store
and move content. This capability can, once
and for all, end the storage proliferation issue
associated with traditional architectures.

Figure 1: Example of a two-tier hierarchical content delivery network

 The adoption of CDN technologies in
classical VOD itself is not new. However, as
cable companies look to deploy this
technology, one has to consider the trade-offs
between a complete re-architecture of the
network to build a best-of-breed HTTP CDN
from scratch and building less-than-standard
VOD-specific distribution networks with no
leverage beyond classical VOD. In order to
resolve such trade-offs, it is important to look
at existing components that may be modified
to be integrated into hierarchical cache-based
architectures. Components such as the back-
office and streaming servers will need
minimal but critical modifications to support
such an architecture.

 The purpose of this paper is to discuss use-
cases and architectures where the above
technologies, namely HTTP and caching, can
be utilized to create a highly scalable VOD
platform. As part of the discussion, the paper
will explore advantages that can be gained
with very little modification to existing
platforms. The proposed modifications may
then be used as a practical recipe for

integrating existing VOD platforms into a
HTTP CDN.

 In the rest of the paper, we first discuss the
underlying technology drivers, namely HTTP
and caching, and the VOD ecosystem
components that need modifications to benefit
from those drivers. The, we will discuss
details and use-cases of how such enhanced
VOD ecosystems interface with an HTTP-
based CDN, as well as the enhancements
themselves.

In the following section, we describe the
VOD-specific design considerations, i.e., how
to bring the well-known classical VOD
application into the CDN model.

TECHNOLOGY DRIVERS: HTTP AND
CACHING

 A primary goal of a content delivery
network is to scale content libraries by
utilizing distributed caching as opposed to
replicating entire libraries at each serving
location. Figure 1 illustrates a two-tier

hierarchical CDN for reference. The intent of
such a CDN is to enable caching of the most
popular objects in the edge servers, using
optimum caching techniques, and to enable
the transfer of content between the origin
server and edge server, as popularity changes,
utilizing well-chosen transfer techniques.

 We posit that content delivery networks
represent a strategic infrastructure investment
for operators, a layer 7 interconnect for
transfer of objects akin to a layer 3
interconnect for transfer of IP packets.
Therefore, a careful choice needs to be made
on transfer and caching techniques, a choice
that lays the foundation for multiple content
delivery applications. From that viewpoint,
bringing CDN technologies to address
classical cable VOD applications is more
about bringing VOD ecosystems to a well-
chosen CDN infrastructure than the other way
around. In other words, it makes economical
sense to avoid designing content delivery
networks specifically for VOD.

Content Transfer

 We propose a standard HTTP-based [5]
content delivery network as the foundation for
integrating VOD ecosystems, in accordance
with principles of Representational State
Transfer (REST) [6]. In other words, we
narrow down on a standard usage of HTTP
for our choice-of-content transfer technique, a
choice that has been proven to scale the
internet across various content delivery
applications. Existing VOD ecosystems form
the periphery of a core HTTP CDN. For
example, in the figure above, edge servers are
VOD streamers, repurposed as caches that
employ HTTP to fetch content from multiple
tiers of HTTP caches (only one tier, the origin
server, is shown in the figure). Object ingest
and object request commands are repurposed
VOD back-office commands. The following
summarizes some aspects of the choice-of-
standard HTTP for content transfer:

• Naming: VOD objects (media files,
metadata) are named using universal
resource identifiers (URI)

• Client intelligence: The client of the

CDN, i.e., the VOD streamer, retains
all intelligence regarding when (e.g.,
cache miss, background fill) and how
(e.g., entire files, blocks) to make
HTTP requests

• Media awareness: All media

awareness is encompassed at the
peripheries of the CDN. For example,
random-access, trick-modes and other
rich-media operations are facilitated
by the client and the origin. Manifest
or index files may be used by clients
to make HTTP requests in such a
fashion that the core of the CDN
remains media unaware.

• Limited use of extended headers:

Extended HTTP headers should not be
used as object modifiers, but may be
used in a limited fashion to facilitate
auxiliary tasks, such as authentication
and bandwidth allocation.

• Standard DNS/HTTP-based request

routing: Request routing, i.e.,
determining which specific node in the
CDN responds to a VOD streamer
request for objects, is a natural
consequence of resolving a virtual host
name.

 REST, in essence, denotes an architectural
style that imposes a set of constraints (on the
usage of HTTP in this case) to induce desired
architectural properties. The desired
properties here include keeping the core CDN
unencumbered by VOD media specifics to
allow unrestricted scale and extensibility, and
to maintain cacheability of generic named
objects without the need for special
application logic. Some of the key REST

constraints most applicable to integrating
VOD ecosystems include:

• State: VOD streamers, i.e., clients of
the CDN, maintain session state, while
server nodes within the CDN remain
stateless. To enable such statelessness,
all requests into the CDN are self-
describing (using merely the URI of
the desired object) and idempotent,
i.e., the order of requests does not
modify the identity of the returned
objects.

• Layering: Components interact only

with their immediate neighbors, thus
virtualizing the rest of the network.
For example, VOD streamers only
interact with their immediate parents
in the CDN. This kind of layering
enables all kinds of clustering, load
balancing, redirection, and hierarchies
to be hidden from the client.

Caching Techniques

 HTTP-based content delivery networks
primarily employ distributed caching nodes
that pull content on a cache miss, directly
from origin servers or from intermediate
caches en route to the origin server (multi-
tiered cache architectures). This allows
caching intelligence to be retained in the
clients (the requesting entity) as opposed to
centralized tracking systems that may have
difficulty scaling as the same CDN is
employed for multiple applications. The
centralized origin servers provide a “single
point of ingest” to push or place content into
the CDN. The rest of the CDN then leverages
pull-based distributed caching, with
algorithms in each node determining the
subset of the content library that finds itself in
the cache at each given point in time.

 A pull-based approach does not restrict the
specific caching algorithm that a node may

employ to optimize its cache-hit ratio. Some
broad examples include:

U
sa

ge
 D

en
si

ty

Time

Measured
Content
Usage

Expected
Content
Usage

Past Future

Other algorithms
• Direct replacement
• Threshold-based

U
sa

ge
 D

en
si

ty

Time

Measured
Content
Usage

Expected
Content
Usage

Past Future

Other algorithms
• Direct replacement
• Threshold-based

Figure 2: Trend analysis based
caching

• Direct replacement: Every cache-miss
leads to filling the cache with the
requested object and the eviction of a
well-chosen object already in the
cache. Examples of eviction policies
include the well-known least-recently-
used (LRU), least-frequently-used
(LFU), and adaptive replacement
caching (ARC), which combines
aspects of both. Since every request
goes through the cache, this is purely a
“stream-through” scheme.

• Threshold-based replacement: The N-

th cache-miss for an object within a
fixed interval of time leads to filling
the cache with the requested object
and the eviction of another. The first
N – 1 cache misses just result in a
proxy (“stream-through”) or redirect
(“stream-around”), on each occasion,
to a parent node.

• Background replacement using trend

analysis: Based on local access
patterns and trend analysis, as
illustrated in Figure 2 (a content
popularity curve for each object in the
library), a cache may request content
in the background. In this case, all
cache misses result in a proxy or
redirect to a parent node.

 Irrespective of the caching algorithm used,
the actual content transfer (and subsequent
cache fill if applicable) may occur in one of
several modes. A caching node may request
content as continuous portions of files
(including entire files), e.g., using byte ranges.
Alternatively, it may request content on a
segment-by-segment basis, where a segment
is defined as any well-defined range of the
file. In order to let the client exercise its
intelligence so as to optimize its local goals,
the CDN itself must not restrict either the
caching algorithm or the mode of transfer.
The analysis of such algorithms themselves is
a rich area of research and is outside the scope
of this paper.

 We propose that while the content transfer
methodology must adhere to industry-wide
open standards, caching techniques, including
the replacement algorithm and mode of
transfer, must be left to specific node
implementations so as to promote vendor
innovation.

VOD Ecosystems and HTTP Caching

 In order to utilize a best-of-breed CDN, in
accordance with the guiding principles
described above, legacy VOD ecosystems will
typically require these key enhancements:

• Back-office modifications: Many
existing back-office systems have
typically presumed a replicated model
of deployment, i.e., one back-office
instance controls one or more
replicated sites that contain the entire
content library. Due to this
assumption, the back-office carefully
orchestrates the ingestion of content to
specific servers and the subsequent
request of content to the respective
servers. This link between content
ingestion and delivery, which made
sense in classical client-server
ecosystems, must be decoupled. For

example, instead of explicitly
ingesting content on each VOD
streamer, the back-office may now
provide the URI for the ingested asset.
A second set of enhancements may be
related to the centralization of the
back-office functions, which can allow
a complete virtualization of the CDN
from the point of view of the back-
office.

• VOD streamers as caches: Legacy

VOD streamers have typically been
based on the same presumption as
above, i.e., content is explicitly pushed
into such streamers prior to delivery.
VOD streamers which now form the
edge ecosystem to the core HTTP-
based CDN must be enhanced to
include the content transfer and
caching techniques described above.

• Media-related operations: Operations

such as random-access (based on time
or chapter numbers) and trick-mode s
must now be supported in the context
of a CDN. Typically, this is
accomplished by generating the
necessary meta-data, e.g., manifest
files or index files, which can be used
by the entire base of VOD streamers.
This in essence may require additional
elements to generate such meta-data,
and enhancements to VOD streamers
in order to use it.

 Now, we turn to a discussion of how such
enhanced VOD ecosystems interface with an
HTTP-based CDN and the enhancements
themselves.

CDN Standards

 As mentioned above, we strongly espouse
the usage of industry-wide open standards for
content transfer. Standardization in this area
will help with interoperability and an ability
to leverage already deployed systems. While

many of the foundational items of such a
CDN, namely protocols such as HTTP [5] and
DNS [7], have long been standardized, the
industry has been lacking in the wider
adoption of VOD CDN standards.

 A promising new standard specification by
the IPTV Interoperability Forum (IIF) may
address that gap. The IIF Content on Demand
specification [8] defines several reference
points between components of an HTTP-
based video on-demand CDN. For our
purposes, the C2 reference point in the
specification provides a template for the
content transfer interface between edge
streamers and an HTTP CDN. Also relevant is
the C2 index file specification that aids
streamers to perform media-related
operations, such as trick mode. While
specification of interfaces is out of the scope
of this paper, we note here that C2 is an HTTP
interface, including URI and header
conventions, to pull content from a network.
In line with our goals, the specification allows
streamers to exercise any caching algorithm
or mode of their choosing.

VOD CDN: DESIGN CONSIDERATIONS

 The goal of integrating CDN technologies
into classical VOD platforms is to leverage
the capabilities of a best-of-breed HTTP-
based CDN architecture for content library
expansion, while at the same time,
maintaining as much of the current VOD
infrastructure as possible. In addition to
maintaining infrastructure components, such
as streamers and the VOD back-office, media-
related functions commonly offered in
classical VOD, such as trick mode, must be
maintained. Similarly, critical back-office
functions such as session management,
catalogs and billing support must also be
maintained.

 Figure 3 illustrates how existing VOD
platforms may be migrated to the new

architecture. HereVOD streamers accustomed
to explicit asset ingest (at each head-end) are
repurposed as caches that use HTTP (e.g., IIF
C2 reference point) to pull content on-demand
from the CDN. The back-office ingest and
delivery commands are essentially decoupled
by centralizing asset ingest. As part of asset
ingest, a centralized asset preparation server
generates the necessary metadata and media
files required to support media-related
operations, such as trick mode. Both media
and metadata are ingested into a centralized
origin server. Instead of explicit asset ingest
into the streamer, the streamer is merely
notified of the URI of the ingested asset to be
used on a cache miss.

Streamers as Caches

 In traditional VOD deployment scenarios,
storage and streaming have been tightly
integrated at each head-end, as shown at the
top of Figure 3. With the advent of offerings
such as network DVR and Start-Over, highly
scalable ingest mechanisms were added to
these systems to allow for many linear
channels to be ingested into the VOD
streamers. Each such ecosystem then grows
atomically and separately from other VOD
ecosystems in the network. As such, with
growing storage and ingest capacity
requirements, replicated expansion becomes
expensive and cumbersome. Consequently,
the best use of the current VOD ecosystems is
to tie them into a larger CDN network,
allowing for expansion of content, as shown
at the bottom of Figure 3.

 Wherever possible, the best option for an
operator is to upgrade (e.g., via software
update) the standalone VOD clusters so as to
enable them to pull files (or fragments of
files) from a hierarchical CDN network using
HTTP, e.g., using a protocol such as IIF C2.
The existing disk subsystems of the
standalone cluster would now function as an
efficient caching element at the edge. In some

Head End 1

Streamer

Ingest
Logic

Session
Logic

Ingest Asset

Session setup

Head End 2

Streamer

Ingest
Logic

Session
Logic

Ingest Asset

Session setup

Head End 1

Streamer

Ingest
Logic

Session
Logic

Asset URI

Session setup

Streamer

Ingest
Logic

Session
Logic

Asset URI

Session setup

Backoffice Backoffice

BackofficeBackoffice Head End 2

Ingest
Logic

Backoffice

Asset
Preparation

Server

Origin
Server

Data Center

Ingest Asset Media

HTTP Caching CDN

C
2C

2

C
2

BEFORE

AFTER

Figure 3: Classical VOD ecosystem modified for CDN integration

Cases, depending upon the design of the
existing system, storage previously located at
the edge may be able to be repurposed
towards a central library.

 Careful consideration is needed to ensure
that the repurposed VOD streamer can handle
ingest requirements for an optimized edge
cache. For example, if the content library
yields an 80-20 popularity curve (80% of
requests are of the top 20% of the content
library), the streamers must be able to handle
an ingest bandwidth of 20% during peak
times. Also, the system must be able to
support trick mode operations either through

real-time processing or via support of
common trick mode streams (e.g., as specified
by the IIF C2 index file specification). As a
cache, the repurposed streamers need to be
optimized simultaneously for streaming and
ingest performance.

 As opposed to proactively ingesting
content based upon an ingest command, the
VOD streamers must support the ability to
provision HTTP-locatable content (URI) to be
used to pull content on demand. The VOD
streamer would need to be able to make
requests to a DNS or HTTP-based request
router (e.g., using 302 redirect) to determine

the server location within the CDN
responsible for satisfying each on-demand
content request.

 Well-chosen caching and content life cycle
management techniques must be used by the
VOD streamers to manage the content (files
and file segments) populated as part of the
content playback requests. As we have
described in the previous section, a number of
different caching methods may be used, such
as direct replacement with LRU, LFU or ARC
eviction policies, to maximize the cache hit
ratio. As part of the chosen caching technique,
stream-around or stream-through methods
may be considered.

 The edge VOD complex acts as a
termination system for such protocols as
Session Setup Protocol (SSP) [9] and
Lightweight Stream Control Protocol (LSCP)
[9]. By allowing the VOD complex to
manage these protocols required for classical
VOD, the CDN does not need any awareness
of customers, session or state. All these
components and states are managed by the
edge streamer, thus requiring no changes to
the set-top box (STB) client or the rest of the
VOD ecosystem. The CDN network is also
protected and firewalled from the STB using
such an edge VOD system.

Back-office Modifications

 A number of back–office systems exist in
the cable community today, many of which
are built around the popular Interactive
Services Architecture (ISA) [9] or Next-
Generation On-Demand (NGOD) protocol
suites. With a few modifications to such
back-office systems, a standalone VOD
ecosystem can be integrated into a CDN.

 One initial area that needs to be addressed
is the ability to provision “CDN” content on
the back office and VOD streamers. In the
traditional architecture, content is provisioned
on streamers via the back office (using an

asset ingest command), which immediately
loads the content onto the streamers for
playback. When using a CDN, the back-
office system must instead use indicators
(URI) to the VOD streamers to provision the
availability and authoritative location of
content (e.g., using a modified asset ingest
command). The content itself must not be
proactively loaded.

 One method for achieving this
combination of static provisioning and
subsequent dynamic retrieval is using an
HTTP flag in the asset ingest provisioning
process. The presence of the HTTP flag
conveys the provisioning of a URI to the
VOD streamer for future HTTP-based
retrieval from the CDN. In addition to a
modified provisioning command to the
streamer, the asset management component of
the back office is essentially centralized.
Assets are provisioned into a central HTTP-
based origin server, using either the existing
(e.g., ISA ingest) or a new asset ingest
command. As part of such provisioning, a
central asset preparation server may generate
index and trick files, which are also placed
into the central origin server (as shown in
Figure 3).

 The back-office system must also be able
to manage larger catalogs, even though all
content does not persist at the edge VOD
complexes. A related area of note is the
required presentation mechanisms for large
content catalogs, including a robust
navigation system supporting the larger
catalog. Techniques such as web-based
navigation, play-listing and reservation lists,
and tablet/smart-phone navigation apps could
all be utilized to allow for additional
navigation ease.

 The modified back office must also
provide the necessary content lifecycle
management to ensure that files (or file
segments) are properly accounted for and
removed as needed (e.g., using CDN-wide

purging of content, if necessary). The back-
office must continue to honor updates to
license and offering windows.

 Beyond catalog management, ingest
provisioning and content lifecycle
management, the back office does not need to
have any awareness of where the actual
content files reside. As such, this allows the
operator to minimize the amount of changes
necessary in the back-office system for CDN
integration, thereby simplifying operation and
design.

Trick Mode and Media-related Operations

 One of the popular features of a classical
VOD platform is the ability to fast forward,
pause and rewind content, much as with an in-
home DVD player. When content is pro-
actively ingested into a VOD system, as in the
traditional architecture, there are several
simple and well-known processes for locally
creating trick mode files and/or indexes in
support of such features. With CDN
integration, the edge streamer may not be able
to proactively create trick and index files,
since the content is typically not pre-analyzed.
This may in some cases lead to a failure to
support trick mode features, especially on a
cache miss, e.g., a request for a 32x fast
forward as content is being streamed through
the edge VOD streamer at normal speed.
Therefore, it is critical to explore new
methodologies to supporting trick modes in a
CDN environment.

 One method to support trick modes is to
provide an index file (constructed by the asset
preparation server in Figure 3) that outlines
the structure of the content, such as the
location of I, P and B frames for MPEG-2
content. Such a file can be small enough to be
transferred during the initial phase of the
content transfer, thus giving the edge streamer
a “hint file” to assemble trick mode streams.
The streamer then could pull the appropriate

frames, as needed, to build out the trick mode
stream on the fly.

 Another method relies on pre-generated
trick mode files, created centrally (e.g., by the
asset preparation server in Figure 3) during
the asset ingest process. The edge streamer
would then pull the appropriate pre-generated
trick mode file, based on the selected trick
speed. A companion index file is typically
used to correlate files of different speeds. The
edge streamer may then cache the trick mode
file segments much like the normal-speed
files. When using this approach, it is critical
to support a standardized trick mode file
format for interoperability.

 Another potential method that eliminates
the need for both index and trick mode files
relies on retrieving content faster than real-
time and using the existing local process.
However, if the cache-miss ratios are
expected to be non- trivial, coupled with a
non-uniform arrival of trick mode requests
during cache misses, this method becomes
highly impractical because of a multiplicative
effect on the required cache-miss bandwidth,
as well as the unnecessary retrieval of
portions of files that may never be viewed.
Not to mention, the I/O subsystems of many
VOD systems may have difficulty
maintaining the high ingest rate while
attempting to create a trick mode stream to the
customer. Multiple transfers at this high
ingest rate may cause most disk I/O sub-
systems to perform poorly.

 From a practical standpoint, an operator
should provide as much flexibility as possible
since different VOD streamers may employ
different options for trick mode support in a
CDN. As older servers are aged out and
replaced, it could be an opportunity to
harmonize methodologies and technologies.

CONCLUSIONS

 The ability to support cloud and CDN
technologies for classical VOD delivery
platforms is available now and can be
leveraged to allow for service growth. We
have illustrated how operators can both build
upon a foundation of best-of-breed CDN
technology and, at the same time, retain
existing infrastructure with a few key
modifications. It is critical for operators and
their partners to jointly develop open and
publishable standards to allow for
interoperability and for best-of-breed
technologies to take hold. A modular
approach to design allows the system to grow
organically for expanded content offerings,
new technology adoptions, and rapid
deployment of new products to customers.

REFERENCES

[1] W. Mao, “Building Large VOD Libraries
with Next Generation on Demand
Architecture,” NCTA Technical Papers, 2008

[2] W. Mao, “Key Architecture and Interface
Options for IP Video Over Cable,” SCTE
Conference on Emerging Technologies, 2009

[3] S. Krishnan, W. Mao, “Open Content
Delivery Networks for Managed Video
Delivery to Multiple Screens,” SCTE Cable-
Tec Expo, 2010

[4] R. Pantos, ed., “HTTP Live Streaming,”
draft-pantos-http-live-streaming-01, Internet
Draft (work in progress), Internet Engineering
Task Force, Jun 2009

[5] R. Fielding et al., “HyperText Transfer
Protocol—HTTP/1.1,” Request for Comments
(RFC) 2616, Internet Engineering Task Force,
1999

[6] R. Fielding, “Architectural Styles and the
Design of Network-based Software
Architectures,” Doctoral Dissertation, Chap.
5, UC Irvine, 2000

[7] P. Mockapetris, “Domain Names –
Implementation and Specification,” Request
for Comments (RFC) 1035, Internet
Engineering Task Force, 1989

[8] ATIS IPTV Interoperability Forum,
“ATIS-0800042: IPTV Content on Demand
Service,” Dec 2010

[9] Interactive Services Architecture,
www.interactiveservices.org, Time Warner
Cable

