
THE USE OF SCALABLE VECTOR GRAPHICS IN FLEXIBLE, THIN-CLIENT
ARCHITECTURES FOR TV NAVIGATION

 Michael Adams
 Solution Area TV, Ericsson

 Abstract

Today’s subscribers are demanding more

and more from their service providers:

 Personalization: New behaviors from a
new generation of “digital natives”, (who
expect the service to adapt to them!),
powerful search capabilities, and
recommendations engines.

 Communication: Multitasking, social
networking, and sharing the viewing
experience through chat and instant
messaging

 Interactivity: Polls, games, and enhanced
programming

And subscribers want all the above

services and features to be delivered as a
single, integrated service experience across
any device, anywhere, and at anytime!

The Internet has shown how to deliver all

kinds of services by means of thin-client
approaches using the Representational State
Transfer (REST) model. Meanwhile, most
deployed cable architectures still rely on a
“state-full”, thick-client approach.

Can thin-client architectures really

satisfy large cable system requirements for
performance, scalability, high-availability,
emergency-alert system requirements, and
compatibility with existing interactive
application environments such as EBIF?

This paper will show how a thin-client,

browser-based approach can:

 Support rapid development of new
applications without the need for new
software download to the set-top

 Enable personalization of a service to
each subscriber’s preferences

 Allow full customization of the user-
interface, including branding

 Allow the use of third-party developers,
using Web 2.0 service creation methods

 Provide set-top independence and
multiplatform portability

 Decouple CA/DRM certification from new
features and applications development

INTRODUCTION

Today’s subscribers are demanding more
and more from their service providers. What
they want can be grouped into three main
categories:

 Personalization
 Communication
 Interactivity

Personalization

 I want my service to adapt to my needs.
 I need recommendations to sort my

“wheat” from the “chaff”.
 I want to watch anything, on any device,

at any time, anywhere.

Personalization provides the subscriber

with a better experience, tailored to their
needs, and creates “stickiness” for the
operator.

2010 Spring Technical Forum Proceedings - Page 46

Communication

 I want to share my experience with my
friends in real-time

 I want to interact with social networking
sites

 I want to be notified when I have a phone
call and to be given an option to pause my
movie if I choose to take the call.

Communication is a basic human need.

Many subscribers are already using a laptop
while watching TV to turn viewing into a
social experience. The TV experience can be
extended to allow all subscribers to
communicate while they are watching TV to a
greater or lesser degree, depending on their
preferences.

Interactivity

 I want to request more information about

products when they are advertised.
 I want to be able to go directly to the

movie after I see the promo.
 I want to be able to play along with my

favorite game shows
 I want to be able to vote online about

important issues.

Numerous studies have shown that

interactivity can help to keep subscribers
engaged. Interactive programming includes
such things as play-along game shows,
audience polls, and the like. Interactive
advertising is also an important opportunity.

Interactivity is more natural on devices

like a mobile phone or tablet PC than the TV,
because these devices can allow more natural
user-interfaces through the use of touch
screens.

User Interface Requirements

In summary, subscribers are ready and

willing to extend their TV viewing
experience. There is a new generation of

savvier, more educated subscribers (often
called “Digital Natives” [1]) that desire new
features. Nevertheless, TV is still a living
room experience and pure web-style
navigation doesn’t work.

Personalization, communication, and

interactivity require a dynamic, flexible,
extensible, high-performance user-interface.
Moreover, as the subscriber starts to like, and
take advantage of new features, the
infrastructure that supports them must be
scalable. The system cannot slow to a crawl if
everyone presses the “red button” at the same
time (for example, during a Super Bowl
commercial).

CURRENT USER INTERFACE

Today, most set-top box (STB) “guides”

are limited in their ability to support the
requirements of personalization,
communication, and interactivity because of
the way they are developed:

 The user-interface logic is embedded into

a monolithic “resident application” that is
downloaded to the STB. Because any
changes require extensive testing before
they can be unleashed on unsuspecting
subscribers, each subscriber ends up
getting the same guide as every other
subscriber.

 The user-interface is developed in a low-
level language such as c, c++, or Java.
Highly-paid software developers are
needed to modify the user-interface or to
create new applications. Any changes
must be designed, approved, developed,
tested, certified, and signed-off; a process
that can take 6 months or more. The result
is expensive applications that arrive to
market late or not at all.

Embedded user-interfaces were the only

option when STBs had a small memory
footprint and limited CPU power. For

2010 Spring Technical Forum Proceedings - Page 47

example, in 1998, a typical STB had only 1-2
MB of memory and a 27 MHz CPU [2].

Today, a system on a chip (SOC) can

provide extensive capabilities, and these
limitations no longer apply. For example, the
Broadcom BCM7400 includes a “dual
threaded 350-MHz MIPS32 with FPU class
CPU” [3]. Typical memory footprints are at
least 256 MB. Despite these changes, the
thick-client model has persisted.

USER INTERFACE ALTERNATIVES

Over the past 15 years the user-interface

model has been revolutionized by the Internet
and the World Wide Web, and the thin-client
model has become more and more popular.
Netbooks are now the fastest growing
category of portable computing device,
requiring only a browser on the client while
the “heavy-lifting” is done by servers in the
network.

The advantages of the thin-client model

are:

 Extensible; new user-interface logic can
be introduced at any time merely by
linking in additional web pages.

 Dynamic; changes in the application can
be made without a STB firmware reload
or reboot.

 Rapid authoring of new applications by
graphic designers (not software
developers) with a much faster, shorter
testing cycle. The development cycle of
new features can be reduced from months
to days.

 High availability and horizontal scalability
is achieved by means IP load balancing.

The limitations of the Internet model are:

 Performance – even a small round-trip
latency makes the user-interface

unacceptably slow if a synchronous
execution model is used.

 Reliance on a guaranteed high-bandwidth
communications path between the server
and client. This model cannot continue to
provide basic navigation when the return
path is lost.

 Need for high-performance server “farms”
to keep up with client transactions.

TOWARDS A THIN-CLIENT SOLUTION

The advantages of a thin-client solution

are attractive; however the limitations must be
overcome to make this a viable model for the
TV.

The goal of this paper is to demonstrate

that careful system design can yield a thin-
client solution with all its advantages and
none of its limitations.

The proposed solution is based on the

following:

1. Asynchronous execution model
2. Browser-based STB software environment
3. Scalable vector graphics
4. Sophisticated authoring environments that

support rapid development of new
applications

5. Personalization through different user-
interface styles

6. Multi-level caching for better user-
interface performance and lower-latency

Asynchronous Execution Model

One of the main limitations of early

client-server implementations was that they
were synchronous, waiting for one event to
complete before starting another one. The
effect is that all of the network latencies are
serialized and can add up to a slow user-
experience.

2010 Spring Technical Forum Proceedings - Page 48

This problem has been addressed by the
AJAX (Asynchronous Java script And XML)
client-server model, which supports
asynchronous execution. (See Figure 1)

Client (STB)

Server

Communication (AJAX, JSON)

Client (STB)

Server

Communication (AJAX, JSON)

Figure 1: Client-Server Model

The client-side implementation is

typically (but not constrained to):

 HTML (HyperText Markup Language)
pages, which are navigated by the user as
she interacts with the user-interface.

 JavaScript, which provides embedded
functions that interact with the Document
Object Model (DOM) of the HTML page.
Because JavaScript code runs locally in
the client environment, user-interface
functions can be very responsive.

 CSS (Cascading Style Sheets) allow the
format (look and feel) of the user-interface
to be separated from the business logic.
This allows rapid customization of the
graphical aspects (color, fonts, and
layout).

Communication protocols are:

 Client-server messages are carried by
HTTP using the AJAX format.

 JSON (Java Script Object Notation) is
used as data-interchange format.

This standards-based architecture allows

each JavaScript object to be transferred
asynchronously to the client, eliminating the
serialization of transactions and increasing
performance of the user-interface.

The server-side implementation is not
constrained at all. However, Java Enterprise
Edition Server (still commonly known by its
old name of J2EE) provides a useful
container-based environment.

Browser-based Set-top Box Software
Environment

The client that runs on the STB is an

advanced web page. Client-server
communications are handled by JavaScript
and AJAX technology (as previously
described). The software framework, both on
client- and server-side, is responsible for
loading any required JavaScript objects.

The framework also wraps the STB-

specific JavaScript Application Programming
Interfaces (APIs), enabling new applications
to run on any compliant STB.

Advantages of this approach are:

 Allows the use of third-party developers,
using Web 2.0 service creation methods.

 Provides set-top independence and
multiplatform portability.

 Decouples CA/DRM certification from
new features and applications
development.

Figure 2 shows the STB software stack.

The key points (highlighted on the diagram)
are:

 Network Interface – the network interface

is based on standard IETF protocols such
as SIP, RTSP, and IGMP.

2010 Spring Technical Forum Proceedings - Page 49

 IMS Applications – IMS (IP Multimedia
Subsystem) is used to enable application
functions such as presence and messaging.
This provides a standards-based way of
supporting convergence applications such
as caller-id. (IMS is also the foundation of
the PacketCable 2.0 specification.)

 Blended Services – the browser runs
JavaScript applications and leverages the
underlying services layers.

 Characteristics – each STB must meet a
baseline set of parameters (such as CPU,
memory, and graphics capabilities) to
ensure correct performance.

 Browser interface – a set of plug-ins to the
browser to allow rapid porting to new
STBs.

 Browser capabilities – this will be
described in the next section (scalable
vector graphics).

Hardware

Drivers

Operating System

IG
M

P

R
TS

P

SI
P

M
ed

ia
Pl

ay
er

C
A

 /
D

R
M

Presence &
Messaging

Q
oS

M
on

ito
r

Plug-ins

JavaScript
engine

SVG
engine

Browser

Characteristics
Guaranteed STB
performance

Network
Interface
Standardized Interface
to the Network

IMS
Applications
Behaviour standardized
by IMS

Browser
Interface
Standardized Plug-in API

Blended
Services
Interaction between IMS
services and browser
experience

Browser
Capabilities
High-performance
graphics support

Hardware

Drivers

Operating System

IG
M

P

R
TS

P

SI
P

M
ed

ia
Pl

ay
er

C
A

 /
D

R
M

Presence &
Messaging

Q
oS

M
on

ito
r

Plug-ins

JavaScript
engine

SVG
engine

Browser

Hardware

Drivers

Operating System

IG
M

P

R
TS

P

SI
P

M
ed

ia
Pl

ay
er

C
A

 /
D

R
M

Presence &
Messaging

Q
oS

M
on

ito
r

Plug-ins

JavaScript
engine

SVG
engine

Browser

Characteristics
Guaranteed STB
performance

Network
Interface
Standardized Interface
to the Network

IMS
Applications
Behaviour standardized
by IMS

Browser
Interface
Standardized Plug-in API

Blended
Services
Interaction between IMS
services and browser
experience

Browser
Capabilities
High-performance
graphics support

Figure 2: Set-top Box Software Environment

Scalable Vector Graphics (SVG)

SVG is a graphics file format and web

development language based on XML. It can
be used to create graphically-rich user-
interfaces which include animations.

SVG provides similar user-interface
functions to Adobe Flash but differs in that it
is an open standard that has been under
development by the World Wide Web
Consortium (W3C) since 1999 [4].

SVG describes two-dimensional graphics
and graphical applications in XML. SVG
graphics do NOT lose any quality if they are
zoomed or resized. Most browsers now
support SVG.
Authoring tools

The operator must be able to rapidly

introduce new applications, for example (see
Figure 3):

1. Casual Games

2010 Spring Technical Forum Proceedings - Page 50

2. Video Art
3. Real-time Information
4. Web 2.0
5. App Store
6. TV Communities

These example applications can be

created by web-applications developers
because the environment is identical to that
for web development.

Figure 3: Application Examples

Personalization

Different user-interface styles (see

examples in Figure 4) can be supported for
different user groups or geographical areas.

As previously explained, cascading style
sheets (CSS) make it easy to change the
appearance and behavior of the HTML pages
that define the user-interface.

At the server-side there are other
significant advantages to this approach:

1. Different user-groups can have their own

unique user-interface style, based on the
subscriber profile. For example, a hotel
system user-interface may be designed to

look completely different from a
residential user-interface.

2. Minor changes in appearance and
behavior can be made quite simply and
rapidly. They are first tested on a lab
system, and then with “friendly”
subscribers, before being rolled out to the
entire subscriber base.

3. Because there is no resident application
in the STB, a new user-interface version
is published in the same way as updating
a web-page. STB firmware downloads
and reboots are almost completely
eliminated. (The only exception to this is
when a browser update is made.)

Casual games

Video Art App Store

Web 2.0

Real Time Info TV Communities

2010 Spring Technical Forum Proceedings - Page 51

Figure 4: Personalization of the User Interface

Multi-level Caching

Referring to Figure 5, a multi-level

caching scheme is used to improve
performance and reduce load on the servers
as follows:

1. The browser caches recent HTML pages

so that they are retrieved locally if the
subscriber goes back to them. The
program guide is a good example of this.

2. An HTTP cache stores commonly
accessed pages for rapid retrieval without

generating any transactions back to the
server.

3. A “portal” backend in the server is pre-
formatted to increase performance.

It should be noted that all of the cache

entries have a time-to-live (TTL) to ensure
that information does not become stale.
When the TTL timer expires the cache entry
is invalidated and the next user request
causes a cache-refresh.

2010 Spring Technical Forum Proceedings - Page 52

IAP

HTTP Proxy

A
uthentication

L-TV

Portal Back-End

Subscriber CS

H
TTP

 C
ache

HTTP
HTTP

EPG data

VOD

On-Demand Ingest

Content
MgmtEncodeOn-demand

content

EPG Server

Format
Adapter

EPG DB

JavaScript
Keep DOM tree

Browser Cache
Keep downloaded data

Shared Cache
Share data between STBs

Back-end
Preformat for fast STB handling

EPG CS

IAPIAP

HTTP Proxy

A
uthentication

L-TV

Portal Back-End

Subscriber CS

H
TTP

 C
ache

HTTP
HTTP

EPG data

VOD

On-Demand Ingest

Content
MgmtEncodeOn-demand

content

EPG Server

Format
Adapter

EPG DB

JavaScript
Keep DOM tree

Browser Cache
Keep downloaded data

Shared Cache
Share data between STBs

Back-end
Preformat for fast STB handling

EPG CS

Figure 5: Multi-level Caching Hierarchy

CONCLUSIONS

In this paper we have described how a

browser-based, thin-client approach can be
used to support a rich, graphical user-
interface for the STB.

Making this transition brings with it a

number of very significant advantages to the
operator:

 Support for rapid development of new

applications without the need for new
software download to the STB.

 The use of third-party developers, using
Web 2.0 service creation methods.

 Personalization of the user-interface.
 Allows full customization of the user-

interface, including branding.

 Set-top independence and rapid STB
porting through a browser-based
approach and plug-ins.

 Decoupling of CA/DRM certification
from new features and applications
development

 Scalability and performance through the
use of multi-level caching strategies.

References

[1] Digital Natives, Digital Immigrants, Marc

Prensky, 2001
[2] OpenCable Architecture, Cisco Press,

Michael Adams, page 131
[3] Broadcom Corporation,

http://www.broadcom.com/products/Cable/Cable-Set-
Top-Box-Solutions/BCM7400

[4] World Wide Web Consortium,
http://www.w3.org/Graphics/SVG/

2010 Spring Technical Forum Proceedings - Page 53

