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Abstract 
 
     The PolyCipher Downloadable 
Conditional Access System provides a new 
approach to security in cable: a small 
hardware footprint is used to enable both 
high security and the flexibility of software 
downloadable security clients for set-top 
boxes and other cable-ready devices.   An 
important and often asked question is how 
much of this system specification should be 
disclosed publicly?  Here we explain the 
tradeoffs involved in disclosure and motivate 
the ultimate choice: a combination of public 
cryptographic primitives embedded in a 
private defense-in-depth system. 
 

INTRODUCTION 
 
     PolyCipher is developing with Cable 
Television Laboratories a proposed 
foundation for downloadable conditional 
access (DCAS) for the U.S. cable industry.   
This system represents a major departure in 
cable security system design, opening up the 
possibilities of lower cost and increased 
flexibility in managing access to cable 
content, while maintaining backwards 
compatibility with the industry’s installed 
base of security equipment. 
 
     In designing a major security system, 
there are important questions on what kinds 
of information are made public and what is 
kept secret.  The choices made affect both the 
basic security of the system and the industry 

and the range and simplicity of 
implementations. 
 
     The principle security paradigm employed 
in DCAS is “defense-in-depth.”  In the paper 
we explain how this contrasts and interacts 
with other important concepts in security 
design, including “security by design,” 
“security by obscurity,” Kerckhoffs’ 
principle, the economics of attack and 
defense,  effective approaches to security 
system review and qualification, and the role 
of open source, cryptographic primitives, and 
modes of standardization for security 
systems. 
 
     The resulting choices are intended to 
produce a robust security system approach 
that can achieve both lower costs for the 
industry and appropriate security to maintain 
the industry’s unparalleled access to high 
quality content over the coming decades. 
 

DOWNLOADABLE CONDITIONAL ACCESS 
 
     The PolyCipher Downloadable 
Conditional Access System (DCAS) is an 
emerging architecture designed to bring 
increased power and flexibility to the cable 
industry's effort to combat the piracy of its 
video, audio and other content. 
 
     Specifically, the PolyCipher DCAS 
architecture is focused on delivering security-
related software clients to

 
 
 
 
 

 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
compliant cable-ready hosts, including:  
 

• Set-top boxes and devices  
 
• Cable-ready televisions  

 
• Home entertainment systems  

 

• Cable-ready mobile and portable 
devices  

 
• Other emerging products 

 
     Content security for these devices has 
traditionally been handled via hardware, 
through some combination of set-top devices  



or the installation of CableCARDTMs. 
Unfortunately, this hardware module-driven 
approach requires significant manual effort to 
upgrade or change security systems at the 
cable customer level. Furthermore, hardware  
 
 
modules must be shipped, inventoried and 
repaired, all of which drives up operating 
expenses and limits the flexibility of the 
cable operator. 
 
     The PolyCipher DCAS architecture 
eliminates all this hardware module shuffling 
because it allows security systems to be 
automatically downloaded to compliant 
devices, using the existing cable 
infrastructure. Furthermore, the PolyCipher 
DCAS specification provides control over a 
broad range of security-related functions, 
including traditional conditional access 
systems (CAS: control at the host device of 
access to content), authorized service domain 
(ASD: control of other local devices all 
secured by the cable operator’s security 
system), and digital rights management 
(DRM: bridging to other security systems on 
other local devices).  
 
Hardware Architecture 
 
     The PolyCipher DCAS hardware 
architecture includes a Secure Micro (SM) 
and a Transport Processor (TP). The SM is a 
hardened and limited-capability 
microprocessor that primarily enables the 
decryption of multiple video streams, under 
direction of the installed CAS client. It does 
this by providing the necessary key 
management services for the TP and enabling 
a secure bootstrap of the software system [1]. 
 
     The download of clients (CAS, ASD or 
DRM) to the SM is securely managed in the 
network operator's headend via the 
interaction of the SM software and a DCAS 
authentication proxy. The TP is primarily 

used for encrypting and decrypting the video 
and media protected by the SM clients. 
 
Software Architecture 
 
     The PolyCipher DCAS specification 
defines many key elements:  
 
• Messages between the SM and the DCAS 

servers in the headend environment  
 
• Requirements for SM and DCAS Hosts 

to support DCAS  
 
• Requirements of the headend server  
 
• A new key management infrastructure 
 
     The new key management infrastructure 
supports the DCAS architecture by providing 
custom protocols, performance and security 
requirements, and by defining the necessary 
levels of interoperability, accountability and 
security. 
 

OPENNESS AND SECRECY IN DCAS 
 
     In simple terms, a security system can be 
thought of as an algorithm and a key.  The 
algorithm explains what happens to 
accomplish the functions desired if the key is 
known.  The key is a piece of data that is 
kept secret except to those who need to use it 
to operate the system. 
 
     
     While there is no debate about the 
importance of keeping the key secret, there is 
an ongoing debate on when to keep the 
algorithm secret. 
 
     Making the algorithm public allows for a 
broad community with diverse tools and 
perspectives to carefully evaluate it.  Many 
an assistant professor or graduate student can 
win glory (and maybe tenure) by finding a 
critical flaw in a proposed algorithm.   The 
notion that a security system should only rely 



on the secrecy of the key for its security goes 
by the name Kerckhoffs’ principle [2, 3]. A 
frequent complement to Kerckhoffs’ 
principle is the notion that reliance on the 
principle can only be reasonably assured by 
submitting a security system to broad public 
scrutiny. 
 
     Many important security primitives 
(algorithms focused on a narrow security 
function) are publicly vetted in exactly this 
way, examples include AES, RSA, and a 
variety of others that are used commonly in 
security systems of any scale.  Some, like 
DES, were originally created in secret but 
later subjected to intense public scrutiny. 
 
     More generally, software systems such as 
operating systems and browsers have been 
the subject of a debate on the relative merits 
for security of open and closed source.  
These systems can be quite complex but are 
also of intrinsic interest to a large community 
of developers.  There does not seem to be a 
definitive answer as to whether such systems 
(complex but of broad interest) are more 
secure in open or closed source form, 
although a number of authors give the edge 
to recommending open source for security [4, 
5, 6, 7]. 
 
     However, many large security systems do 
not fully subscribe to public scrutiny but 
choose, instead, to keep substantial parts of 
the security system algorithms private.   A 
relevant alternative paradigm, especially 
common in pay-TV systems, is called 
“defense in depth” [8]. This approach views 
security as an economic competition between 
the security operator and his opponents 
(pirates and hackers); the goal is not perfect 
security – which is deemed to be 
unachievable – but rather a situation in which 
the economic gain to the pirates and 
economic losses of the security operator are 
both sufficiently low to maintain the viability 
of the operator’s business model.  Defense in 
depth envisions a series of counter measures, 

all kept secret, which are sequentially 
deployed when and if previous deployed 
counter measures are breached.   The idea is 
that with each deployment, there is an 
extension of the period of low gain for 
pirates and low loss for the operator. 
 
     So, what should reasonably decide which 
kind or which parts of a security system 
algorithm should be public versus secret? 
 
     A useful answer is:  when the system is 
simple enough that the cost to evaluators to 
test it is more than offset by their expected 
gains (in money or, more typically, fame and 
reputation), the public scrutiny that is 
frequently equated with Kerckhoffs’ 
principle will be valuable.  Conversely, when 
the system is complex enough and of limited 
enough interest that public scrutiny will only 
result in incomplete vetting, public disclosure 
may backfire, since an attacker needs find 
only one flaw in a public algorithm to breach 
it (while the evaluators have the much harder 
task of attempting to test and eliminate all 
possible flaws).  As Schneier points out, 
there are limits to the amount of gratis work 
one can expect of the security community: 
“Security researchers are fickle and busy 
people.  They do not have the time, nor the 
inclination, to examine every piece of source 
code that is published.” [9, pp. 343-346].  Or, 
in Anderson’s words: “Arguments against 
open source center on the fact that once 
software becomes large and complex, there 
may be few or no capable motivated people 
studying it, hence major vulnerabilities may 
take years to be discovered….the important 
questions are how much effort was expended 
by capable people in checking and testing the 
code – and whether they tell you everything 
they find” [8, pp. 296-207]. 
 
     The Data Encryption Standard (DES) 
encryption algorithm, for example, can be 
described in about 100 lines of source code.  
It is straightforward for academics, 
hobbyists, and professionals to understand 



and analyze it in detail from many different 
perspectives.  The same is true of many 
cryptographic primitives. 
 
     The protocols, procedures, and algorithms 
involved in a full scale conditional access 
system sit near the other end of a continuum.  
Describing these fully could easily run to 
thousands of pages of documentation.  It is 
so expensive to fully comprehend these that 
the amount of evaluation that can be 
expected (other from those explicitly paid to 
do so) is quite limited.  And the intrinsic 
motivation for the security community to 
protect a particular instance of a conditional 
access system could reasonably be expected 
to be much less than that for a widely used 
application like an operating system or 
browser. Moreover, systems this complex are 
simply never bug free; the combinatorics of 
analysis and testing make this infeasible.   
The result is that such systems are rarely if 
ever made public.  This does not mean there 
is an intention that the secrecy of the 
algorithm is its sole defense; indeed 
Kerckhoffs’ principle is as much an objective 
here as it is in a cryptographic primitive.  But 
both the reality of large scale system creation 
and system test and the particular economic 
incentives of system creators, pirates, and 
potential reviewers mean that striving for the 
goal of Kerckhoffs’ principle is 
supplemented by the use of defense in depth 
to manage the economics that are the 
fundamental driver in protecting a 
commercial conditional access. 
 
     Swire has developed a thoughtful analysis 
of the economic, legal, and regulatory 
implications of tradeoffs in security system 
disclosure in a pair of papers [10, 11].  There 
he provides a useful comparison with 
military cryptography (remember, 
Kerckhoffs was in fact addressing military 
uses): why is it that militaries consistently 
find it valuable to keep cryptographic 
algorithms secret, even while adhering to 
Kerckhoffs’ idea that they shouldn’t design 

with a dependence on algorithms’ secrecy for 
their success?  Ultimately, the analysis there 
is economically motivated – as in this paper: 
if defenders profit more from exposure than 
attackers, then disclosure is valuable; if not, 
then not.  Note again, though that Kerchoffs’ 
principle is always valuable in design. 
 
     The implications for open standardization 
of security systems follow.  Security 
primitives certainly benefit from the 
evaluation possible in an open standards 
setting (although this is not the only way to 
obtain public scrutiny – for example, an 
alternative is to publish a patented algorithm 
and provide a prize to those who breach it).  
Large scale security systems benefit if they 
proportionally scale in their interest to the 
security community – so experts find it worth 
their while to provide free scrutiny.  Less 
interesting systems, such as a particular 
conditional access system implementation, 
do not benefit from open standardization – in 
the sense that security is weakened rather 
than improved in the particular and deciding 
context of system economics.  This leaves 
open the exact boundary between a security 
primitive and a large scale system, but the 
principle is clear. 
 
PolyCipher Approach 
 
     The PolyCipher approach attempts to find 
the best combination of open, public 
algorithms and closed, defense-in-depth 
system design.  Cryptographic primitives 
used in the system design are drawn from 
those that are widely used and well 
established, such as the DES and AES 
encryption algorithms. 
 
     The overall system is not public, though, 
and is divided into tiers of system design and 
documentation that are increasingly access 
restricted.  Although the overall system is too 
complex to expect that any substantial gratis 
vetting would be applied if the system were 
made public, paid vetting by experts is 



extensively applied.   Additionally, 
stakeholders who will depend on the security 
of the system and who are themselves expert 
in this type of security are invited to audit the 
system design.  Motivations for stakeholders 
vary and in many cases they can be expected 
to be quite critical of the system.   The 
resulting review environment is contentious 
but thorough. 
 

CONCLUSION 
 
     The PolyCipher DCAS system offers a 
new strategy for providing hardware rooted 
downloadable security for the cable industry.  
The question of how much of the system to 
publicly disclose is an important one and 
requires careful thought.   But after 
consideration, the complexity of the system 
and narrowness of application suggests a 
hybrid approach: the use of well vetted 
publicly known cryptographic primitives 
embedded in a “defense in depth’ system 
subject to extensive but private review. 
 

REFERENCES 
 
[1]  William A. Arbaugh, David J. Farber, 
Jonathan M. Smith, “A Secure and Reliable 
Bootstrap Architecutre,”  in Proceedings of 
the IEEE Symposium on Security and 
Privacy, May 4-7, 1997. 
 
[2] August Kerckhoffs, “La cryptographie 
militaire,” Journal des sciences militaries, 
vol. IX, pp. 5-38, Jan. 1883, pp. 161-181, 
Fev. 1883. 
 
[3] Bruce Schneier, “Secrecy, Security, and 
Obscurity,”  Crypto-Gram Newsletter, May 
15, 2002, available at 
http://www.schneier.com/crypto-gram.html. 
 
[4] Brian Whitten, Carl Landwehr, and 
Michael Caloyannides, “Does Open Source 
Improve System Security,” IEEE Software, 
September/October 2001, pp. 57-61. 
 

[5] Crispin Cowan, “Software Security for 
Open-Source Systems,” IEEE Security and 
Privacy,  January/February 2003, pp. 39-46. 
 
[6] Rebecca T. Mercuri, “Trusting in 
Transparency,”  Communications of the 
ACM, May 2005, pp. 15-19. 
 
[7] Jaap-Henk Hoepman and Bart Jacobs, 
“Increased Security Through Open Source,” 
Communications of the ACM, January 2007, 
pp. 79-83. 
 
 
 
 
[8] Ross Anderson. Security Engineering: A 
Guide to Building Dependable Distributed 
Systems, New York: John Wiley & Sons, Inc. 
2001. 
 
[9] Bruce Schneier, Secrets and Lies: Digital 
Security in a Networked World. New York: 
John Wiley and Sons, Inc. 2000. 
 
[10] Peter Swire, “A Model for When 
Disclosure Helps Security: What is Different 
about Computer and Network Security,” 
Journal of Telecommunications and High 
Technology Law, vol.2, 2004. 
 
[11] Peter Swire, “A Theory of Disclosure 
for Security and Competitive Reasons: Open 
Source, Proprietary Software, and 
Government Agencies,” Houston Law 
Review, vol. 42, No. 5, January 2006. 
 
AUTHORS 
 
Tom Lookabaugh is with PolyCipher, 999 
18th St., Su. 1925, Denver, CO 80202, and by 
email at tom.lookabaugh@polycipher.com.   
 
James Fahrny is with Comcast Cable, 1500 
Market St., Philadelphia, PA 19102 and with 
PolyCipher, 999 18th St., Su. 1925, Denver, 
CO 80202.  He can be reached by email at 
Jim_Fahrny@cable.comcast.com. 


