

OPENNESS AND SECRECY IN SECURITY SYSTEMS:

POLYCIPHER SM DOWNLOADABLE CONDITIONAL ACCESS
Tom Lookabaugh, PolyCipher
James Fahrny, Comcast Cable

Abstract

 The PolyCipher Downloadable
Conditional Access System provides a new
approach to security in cable: a small
hardware footprint is used to enable both
high security and the flexibility of software
downloadable security clients for set-top
boxes and other cable-ready devices. An
important and often asked question is how
much of this system specification should be
disclosed publicly? Here we explain the
tradeoffs involved in disclosure and motivate
the ultimate choice: a combination of public
cryptographic primitives embedded in a
private defense-in-depth system.

INTRODUCTION

 PolyCipher is developing with Cable
Television Laboratories a proposed
foundation for downloadable conditional
access (DCAS) for the U.S. cable industry.
This system represents a major departure in
cable security system design, opening up the
possibilities of lower cost and increased
flexibility in managing access to cable
content, while maintaining backwards
compatibility with the industry’s installed
base of security equipment.

 In designing a major security system,
there are important questions on what kinds
of information are made public and what is
kept secret. The choices made affect both the
basic security of the system and the industry

and the range and simplicity of
implementations.

 The principle security paradigm employed
in DCAS is “defense-in-depth.” In the paper
we explain how this contrasts and interacts
with other important concepts in security
design, including “security by design,”
“security by obscurity,” Kerckhoffs’
principle, the economics of attack and
defense, effective approaches to security
system review and qualification, and the role
of open source, cryptographic primitives, and
modes of standardization for security
systems.

 The resulting choices are intended to
produce a robust security system approach
that can achieve both lower costs for the
industry and appropriate security to maintain
the industry’s unparalleled access to high
quality content over the coming decades.

DOWNLOADABLE CONDITIONAL ACCESS

 The PolyCipher Downloadable
Conditional Access System (DCAS) is an
emerging architecture designed to bring
increased power and flexibility to the cable
industry's effort to combat the piracy of its
video, audio and other content.

 Specifically, the PolyCipher DCAS
architecture is focused on delivering security-
related software clients to

compliant cable-ready hosts, including:

• Set-top boxes and devices

• Cable-ready televisions

• Home entertainment systems

• Cable-ready mobile and portable
devices

• Other emerging products

 Content security for these devices has
traditionally been handled via hardware,
through some combination of set-top devices

or the installation of CableCARDTMs.
Unfortunately, this hardware module-driven
approach requires significant manual effort to
upgrade or change security systems at the
cable customer level. Furthermore, hardware

modules must be shipped, inventoried and
repaired, all of which drives up operating
expenses and limits the flexibility of the
cable operator.

 The PolyCipher DCAS architecture
eliminates all this hardware module shuffling
because it allows security systems to be
automatically downloaded to compliant
devices, using the existing cable
infrastructure. Furthermore, the PolyCipher
DCAS specification provides control over a
broad range of security-related functions,
including traditional conditional access
systems (CAS: control at the host device of
access to content), authorized service domain
(ASD: control of other local devices all
secured by the cable operator’s security
system), and digital rights management
(DRM: bridging to other security systems on
other local devices).

Hardware Architecture

 The PolyCipher DCAS hardware
architecture includes a Secure Micro (SM)
and a Transport Processor (TP). The SM is a
hardened and limited-capability
microprocessor that primarily enables the
decryption of multiple video streams, under
direction of the installed CAS client. It does
this by providing the necessary key
management services for the TP and enabling
a secure bootstrap of the software system [1].

 The download of clients (CAS, ASD or
DRM) to the SM is securely managed in the
network operator's headend via the
interaction of the SM software and a DCAS
authentication proxy. The TP is primarily

used for encrypting and decrypting the video
and media protected by the SM clients.

Software Architecture

 The PolyCipher DCAS specification
defines many key elements:

• Messages between the SM and the DCAS

servers in the headend environment

• Requirements for SM and DCAS Hosts

to support DCAS

• Requirements of the headend server

• A new key management infrastructure

 The new key management infrastructure
supports the DCAS architecture by providing
custom protocols, performance and security
requirements, and by defining the necessary
levels of interoperability, accountability and
security.

OPENNESS AND SECRECY IN DCAS

 In simple terms, a security system can be
thought of as an algorithm and a key. The
algorithm explains what happens to
accomplish the functions desired if the key is
known. The key is a piece of data that is
kept secret except to those who need to use it
to operate the system.

 While there is no debate about the
importance of keeping the key secret, there is
an ongoing debate on when to keep the
algorithm secret.

 Making the algorithm public allows for a
broad community with diverse tools and
perspectives to carefully evaluate it. Many
an assistant professor or graduate student can
win glory (and maybe tenure) by finding a
critical flaw in a proposed algorithm. The
notion that a security system should only rely

on the secrecy of the key for its security goes
by the name Kerckhoffs’ principle [2, 3]. A
frequent complement to Kerckhoffs’
principle is the notion that reliance on the
principle can only be reasonably assured by
submitting a security system to broad public
scrutiny.

 Many important security primitives
(algorithms focused on a narrow security
function) are publicly vetted in exactly this
way, examples include AES, RSA, and a
variety of others that are used commonly in
security systems of any scale. Some, like
DES, were originally created in secret but
later subjected to intense public scrutiny.

 More generally, software systems such as
operating systems and browsers have been
the subject of a debate on the relative merits
for security of open and closed source.
These systems can be quite complex but are
also of intrinsic interest to a large community
of developers. There does not seem to be a
definitive answer as to whether such systems
(complex but of broad interest) are more
secure in open or closed source form,
although a number of authors give the edge
to recommending open source for security [4,
5, 6, 7].

 However, many large security systems do
not fully subscribe to public scrutiny but
choose, instead, to keep substantial parts of
the security system algorithms private. A
relevant alternative paradigm, especially
common in pay-TV systems, is called
“defense in depth” [8]. This approach views
security as an economic competition between
the security operator and his opponents
(pirates and hackers); the goal is not perfect
security – which is deemed to be
unachievable – but rather a situation in which
the economic gain to the pirates and
economic losses of the security operator are
both sufficiently low to maintain the viability
of the operator’s business model. Defense in
depth envisions a series of counter measures,

all kept secret, which are sequentially
deployed when and if previous deployed
counter measures are breached. The idea is
that with each deployment, there is an
extension of the period of low gain for
pirates and low loss for the operator.

 So, what should reasonably decide which
kind or which parts of a security system
algorithm should be public versus secret?

 A useful answer is: when the system is
simple enough that the cost to evaluators to
test it is more than offset by their expected
gains (in money or, more typically, fame and
reputation), the public scrutiny that is
frequently equated with Kerckhoffs’
principle will be valuable. Conversely, when
the system is complex enough and of limited
enough interest that public scrutiny will only
result in incomplete vetting, public disclosure
may backfire, since an attacker needs find
only one flaw in a public algorithm to breach
it (while the evaluators have the much harder
task of attempting to test and eliminate all
possible flaws). As Schneier points out,
there are limits to the amount of gratis work
one can expect of the security community:
“Security researchers are fickle and busy
people. They do not have the time, nor the
inclination, to examine every piece of source
code that is published.” [9, pp. 343-346]. Or,
in Anderson’s words: “Arguments against
open source center on the fact that once
software becomes large and complex, there
may be few or no capable motivated people
studying it, hence major vulnerabilities may
take years to be discovered….the important
questions are how much effort was expended
by capable people in checking and testing the
code – and whether they tell you everything
they find” [8, pp. 296-207].

 The Data Encryption Standard (DES)
encryption algorithm, for example, can be
described in about 100 lines of source code.
It is straightforward for academics,
hobbyists, and professionals to understand

and analyze it in detail from many different
perspectives. The same is true of many
cryptographic primitives.

 The protocols, procedures, and algorithms
involved in a full scale conditional access
system sit near the other end of a continuum.
Describing these fully could easily run to
thousands of pages of documentation. It is
so expensive to fully comprehend these that
the amount of evaluation that can be
expected (other from those explicitly paid to
do so) is quite limited. And the intrinsic
motivation for the security community to
protect a particular instance of a conditional
access system could reasonably be expected
to be much less than that for a widely used
application like an operating system or
browser. Moreover, systems this complex are
simply never bug free; the combinatorics of
analysis and testing make this infeasible.
The result is that such systems are rarely if
ever made public. This does not mean there
is an intention that the secrecy of the
algorithm is its sole defense; indeed
Kerckhoffs’ principle is as much an objective
here as it is in a cryptographic primitive. But
both the reality of large scale system creation
and system test and the particular economic
incentives of system creators, pirates, and
potential reviewers mean that striving for the
goal of Kerckhoffs’ principle is
supplemented by the use of defense in depth
to manage the economics that are the
fundamental driver in protecting a
commercial conditional access.

 Swire has developed a thoughtful analysis
of the economic, legal, and regulatory
implications of tradeoffs in security system
disclosure in a pair of papers [10, 11]. There
he provides a useful comparison with
military cryptography (remember,
Kerckhoffs was in fact addressing military
uses): why is it that militaries consistently
find it valuable to keep cryptographic
algorithms secret, even while adhering to
Kerckhoffs’ idea that they shouldn’t design

with a dependence on algorithms’ secrecy for
their success? Ultimately, the analysis there
is economically motivated – as in this paper:
if defenders profit more from exposure than
attackers, then disclosure is valuable; if not,
then not. Note again, though that Kerchoffs’
principle is always valuable in design.

 The implications for open standardization
of security systems follow. Security
primitives certainly benefit from the
evaluation possible in an open standards
setting (although this is not the only way to
obtain public scrutiny – for example, an
alternative is to publish a patented algorithm
and provide a prize to those who breach it).
Large scale security systems benefit if they
proportionally scale in their interest to the
security community – so experts find it worth
their while to provide free scrutiny. Less
interesting systems, such as a particular
conditional access system implementation,
do not benefit from open standardization – in
the sense that security is weakened rather
than improved in the particular and deciding
context of system economics. This leaves
open the exact boundary between a security
primitive and a large scale system, but the
principle is clear.

PolyCipher Approach

 The PolyCipher approach attempts to find
the best combination of open, public
algorithms and closed, defense-in-depth
system design. Cryptographic primitives
used in the system design are drawn from
those that are widely used and well
established, such as the DES and AES
encryption algorithms.

 The overall system is not public, though,
and is divided into tiers of system design and
documentation that are increasingly access
restricted. Although the overall system is too
complex to expect that any substantial gratis
vetting would be applied if the system were
made public, paid vetting by experts is

extensively applied. Additionally,
stakeholders who will depend on the security
of the system and who are themselves expert
in this type of security are invited to audit the
system design. Motivations for stakeholders
vary and in many cases they can be expected
to be quite critical of the system. The
resulting review environment is contentious
but thorough.

CONCLUSION

 The PolyCipher DCAS system offers a
new strategy for providing hardware rooted
downloadable security for the cable industry.
The question of how much of the system to
publicly disclose is an important one and
requires careful thought. But after
consideration, the complexity of the system
and narrowness of application suggests a
hybrid approach: the use of well vetted
publicly known cryptographic primitives
embedded in a “defense in depth’ system
subject to extensive but private review.

REFERENCES

[1] William A. Arbaugh, David J. Farber,
Jonathan M. Smith, “A Secure and Reliable
Bootstrap Architecutre,” in Proceedings of
the IEEE Symposium on Security and
Privacy, May 4-7, 1997.

[2] August Kerckhoffs, “La cryptographie
militaire,” Journal des sciences militaries,
vol. IX, pp. 5-38, Jan. 1883, pp. 161-181,
Fev. 1883.

[3] Bruce Schneier, “Secrecy, Security, and
Obscurity,” Crypto-Gram Newsletter, May
15, 2002, available at
http://www.schneier.com/crypto-gram.html.

[4] Brian Whitten, Carl Landwehr, and
Michael Caloyannides, “Does Open Source
Improve System Security,” IEEE Software,
September/October 2001, pp. 57-61.

[5] Crispin Cowan, “Software Security for
Open-Source Systems,” IEEE Security and
Privacy, January/February 2003, pp. 39-46.

[6] Rebecca T. Mercuri, “Trusting in
Transparency,” Communications of the
ACM, May 2005, pp. 15-19.

[7] Jaap-Henk Hoepman and Bart Jacobs,
“Increased Security Through Open Source,”
Communications of the ACM, January 2007,
pp. 79-83.

[8] Ross Anderson. Security Engineering: A
Guide to Building Dependable Distributed
Systems, New York: John Wiley & Sons, Inc.
2001.

[9] Bruce Schneier, Secrets and Lies: Digital
Security in a Networked World. New York:
John Wiley and Sons, Inc. 2000.

[10] Peter Swire, “A Model for When
Disclosure Helps Security: What is Different
about Computer and Network Security,”
Journal of Telecommunications and High
Technology Law, vol.2, 2004.

[11] Peter Swire, “A Theory of Disclosure
for Security and Competitive Reasons: Open
Source, Proprietary Software, and
Government Agencies,” Houston Law
Review, vol. 42, No. 5, January 2006.

AUTHORS

Tom Lookabaugh is with PolyCipher, 999
18th St., Su. 1925, Denver, CO 80202, and by
email at tom.lookabaugh@polycipher.com.

James Fahrny is with Comcast Cable, 1500
Market St., Philadelphia, PA 19102 and with
PolyCipher, 999 18th St., Su. 1925, Denver,
CO 80202. He can be reached by email at
Jim_Fahrny@cable.comcast.com.

