
UNDERSTANDING THE IMPACT OF BITTORRENT ON CABLE NETWORKS
Jim Martin

Clemson University
Terry Shaw
CableLabs

Abstract

BitTorrent is a peer-to-peer (P2P)
protocol for sharing media (audio, video
and software) files that accounts for 18% of
traffic on cable high-speed data networks. In
order to better understand the network
dynamics of traffic associated with this
protocol, we analyzed roughly 1 Gbytes of
network trace data from BitTorrent clients
running in three different environments.
Based on this data, we performed a
simulation-based analysis of a DOCSIS®-
based cable network involving a varying
number of simulated BitTorrent users and
web browsing users. Our results suggest
that as few as 10 BitTorrent clients can
double the access delay experienced by
other non-BitTorrent users.

INTRODUCTION

BitTorrent is a peer-to-peer (P2P)
protocol that provides scalable file sharing
capabilities. As in other P2P systems,
BitTorrent provides an overlay network that
runs over the Internet. BitTorrent is unique
from other P2P protocols in several aspects.
The most notable of these are: 1) the use of
swarming; and 2) the use of incentives to
prevent free-riding. BitTorrent, frequently
the dominant application in a network, poses
a dilemma for cable network service
providers. In general, P2P applications are
broadband applications that contribute to the
demand for high speed broadband access.
This usage is driven by younger Internet
users. In a recent study, it was estimated that
about 58% of American teenagers with
broadband access have downloaded audio
and/or video files from the Internet using

P2P networks1. However, BitTorrent can
consume tremendous amounts of bandwidth
in both the upstream and downstream
directions. The primary incentive used by
BitTorrent to prevent free-riding is that the
protocol mandates that a file-downloader
must make some content available for
upload. One study from several cable
operators found that 18% of all traffic is
BitTorrent [WSJ05]. The government and
the cable industry are addressing the
evolving economic and policy issues. In this
study we explore the impact that BitTorrent
users can have on a cable network. We
provide insight to this issue by presenting an
analysis of BitTorrent involving live
network measurement and simulation2.

In addition to file sharing, P2P has been
used for grid computation [Entropia],
storage [DKK+01], web caching [IRD02]
and directory services [RFH+01, SMK+01].
BitTorrent, however, is designed
specifically for file distribution. The
algorithms contained in BitTorrent were
heavily influenced by previous P2P
protocols and applications. We briefly
overview two such protocols, Gnutella and
Kazaa, before presenting BitTorrent.

1 In a recent study, it was estimated that about 66% of
American teenagers have downloaded audio and/or
video files from the Internet. It was also found that
30% of teenagers admit to currently using P2P
networks and 28% admit to using P2P networks in
the past [PIP05].
2 The observations that we report represent
preliminary work. We expect our findings and
conclusions to evolve as the study progresses.

Gnutella

Gnutella is an overlay network
superimposed on the Internet
[MAR+04,IVK]. Unlike the centralized
Napster approach, Gnutella is decentralized
because meta-data (i.e., the indexes of where
files are located) is distributed throughout
the network. At initialization time, a
Gnutella client accesses a host server to
obtain a list of peers currently in the
network. After this step, peers learn about
the network and available content using
Ping and Pong messages. Once a client has
identified a file to download, it sends the
request to the network using a query
message. Query replies will contain
information needed for the client to
download the file.

Kazaa

Few details of the Kazaa protocol are
available. Several ‘black box’ measurement
studies do however provide some insight
[LKR04,LRW03]. There are two types of
nodes: Super Nodes (SN) and Ordinary
Nodes (ON). Each ON must be told or must
learn the address of at least one SN. SNs
maintain lists of other SNs that can be
thousands large. Each SN maintains records
for files located at the ONs in its domain.
ONs contact their SN on initialize, providing
metadata that describes the content located
at the ON. When an ON requests a file, the
SN looks locally and also propagates the
request to other SNs in the overlay network.
To improve performance, files can be stored
in fragments on multiple nodes and they can
be transferred in parallel.

BitTorrent

While other P2P systems provide
distributed object location in addition to file
downloading, BitTorrent assumes that the

user has a URL of the file to be downloaded.
BitTorrent is therefore a protocol for
distributing files. Files are broken up into
chunks and downloaded in pieces. This
concept is borrowed from [RB02] whose
authors experimented with several parallel
access schemes to download a file from
multiple servers concurrently. BitTorrent
files are represented by a torrent which is a
meta-information file that identifies the
chunks associated with a file and a tracker
address that knows about the file.
Downloaders, also referred to as clients or
peers, download the torrent that is available
on a web site. The download engages the
BitTorrent client software that was installed
on its machine which contacts the tracker
that was identified in the torrent to obtain a
number of IP address/port pairs
corresponding to peers that have one or
more chunks of the file. The client
periodically reports its state to the tracker
(about every 30 minutes). The client
attempts to maintain connections with at
least 20 peers (referred to as the peer set). If
it can not, it asks the tracker for additional
peers. When a client first connects to a
tracker, the tracker attempts to reverse
connect to it. If it succeeds, the client is
added to the list of peers for the torrent
maintained by the tracker. This ensures that
the peers in the client’s peer set will accept
incoming connections. At least one of the
peers must contain all of the file. Once a
peer has downloaded the entire file, it
becomes a seed and provides chunks of the
file to lechers for free. The system is self-
scalable in that as the number of
downloaders increase, the number of nodes
that can function as seeds also increase.

BitTorrent breaks a file into chunks, or
pieces. To enhance performance, BitTorrent
further breaks pieces into small (typically 16
Kbytes) sub-pieces (sometimes called
blocks) and maintains a strategy of having at

least 5 concurrent block requests pipelined
to a given peer. The client contains a piece
selection algorithm that decides the next
piece to obtain. The algorithm has three
modes of operation: starting, downloading,
or finishing. When the client starts it has
nothing to upload. The algorithm randomly
selects the initial pieces. Once one or more
pieces are received, the algorithm switches
to a rarest first algorithm. Based on
information learned from its peers, the client
chooses to download the chunk that is least
available. This ensures that peers will have
pieces that they will need. Once the peer has
downloaded all but the last few pieces, it
might experience significant delay if the
remaining pieces are located at nodes that
are available only over low-bandwidth
paths. To avoid this, it sends requests for
these sub-pieces to all peers.

A peer actively controls its downstream
bandwidth consumption by granting upload
requests to peers from which it is currently
downloading a piece. In essence, it provides
a ‘tit-for-tat’ bartering approach to
distributed resource management. By
choosing to upload to peers that provide the
best download rates, freeloaders will
perform poorly. A peer effectively ‘chokes’
another peer by denying download requests
from a peer. Snubbing is when a peer is
choked by all peers with which it was
formerly downloading.

A BitTorrent peer uploads only to a
limited number of peers (usually four). Peers
monitor download rates and decide who to
choke over time intervals of every ten
seconds (note that some implementations
might use a different rechoke period). When
the next piece is to be downloaded, the peer
that has been performing the worst will
likely be replaced by a higher performing
peer. To probe the network in search of
better performing peers, BitTorrent supports

an ‘optimistic unchoke.’ Every third rechoke
period, it unchokes a peer by uploading to it
regardless of its download rate. Therefore, a
BitTorrent client is allowed to upload to a
maximum of five peers, four that implement
tit-for-tat bartering to maximize downstream
throughput and a fifth that probes the
network searching for better performing
peers.

BitTorrent is unique from other P2P
protocols in several aspects: 1) the use of
swarming; 2) the use of incentives to
prevent free-riding. BitTorrent, frequently
the dominant application in a network, poses
a dilemma for cable network service
providers. It is a broadband application
which contributes to the demand for high-
speed broadband access. However,
BitTorrent can consume tremendous
amounts of bandwidth. In this study, we
explore the impact that BitTorrent users can
have on a cable network. We provide insight
to this issue by presenting an analysis of
BitTorrent involving live network
measurement and simulation. This paper is
organized as follows. First, we overview
related performance studies of peer-to-peer
systems. We then describe our modeling
efforts: a measurement study designed to
characterize bandwidth consumption of
BitTorrent clients and a simulation analysis
designed to assess the impact of BitTorrent
on an HFC cable network. We end the paper
with conclusions and our future directions.

RELATED WORK

There has been a great deal of prior
research on P2P protocols and systems. The
majority of the studies have focused either
on P2P deployments in the Internet [SGG02,
NCR+03, RIP01] or on evaluating protocol
issues [RFK+01, SMK+01,GKT03]. There
have been several analytic models proposed.
Several notable efforts have been based on

queuing theory [GFJ+03] and on fluid flow
models [CN03,CNR03].

The existing studies of BitTorrent
indicate that the protocol is indeed scalable
and robust [PGE+05, SGP04, IUB+04,
BLS04, BHP05]. In [IUB+04] the authors
examined the log file from the tracker
associated with the popular Redhat Linux 9
distribution torrent. They observed that
peers continue to participate in the
BitTorrent network as a seed for an average
of 6.5 hours after the entire file has been
downloaded. The authors also showed that
the average download rate is over 500 Kbps
and that nodes do consume symmetric
amounts of bandwidth. The authors
observed that 81% of all file downloads
were incomplete. Of these aborted
downloads, 90% had retrieved less than 10%
of the file. The average download rate of the
19% of the sessions that completed was 1.3
Mbps which is larger than the average
download rate of all sessions at 500 Kbps.
The authors studied an individual peer by
running an instrumented client. The client
downloads a 1.7 Gbyte file in 4500 seconds.
During the download period, the client
interacted with roughly 40 peers. Upon
completion, the client remained on line as a
seed for 13 additional hours. During this
period, roughly 90 leechers were served (but
only 4 at a time while the others are
choked). They found that the volume of
traffic in the upstream and downstream
directions at the client was correlated, but
throughputs were not correlated. 85% of the
file was sent by only 20 peers including 8
seeds that provided 40% of the file. This set
of 20 peers were not a part of the initial peer
list provided by the tracker which suggests
that to enhance performance NAT must not
prevent nodes from connecting with a
downloader.

In [PGE05], the authors examined the
access of 60000 files and find an average
download bandwidth of 240 Kbps and that
only 17% of the nodes stay on line for one
or more hours after they complete the
download. The authors suggested that there
might be a shortage of seeds in typical usage
scenarios. The authors assessed performance
based on availability, integrity,
responsiveness to flash crowds and on
download performance. To obtain an
availability data point, they tracked the
activity associated with a popular file from
its initial offering until when it died (i.e.,
when it is no longer available). During the
file’s three month lifetime, 90155 peers
downloaded at least one piece. Of the 53883
peers that were not behind firewalls, only
17% have an uptime longer than 1 hour after
they finish downloading. By trying to
upload corrupt files but failing due to the
moderator’s inspection, the authors deduce
the BitTorrent network is relatively
pollution free. By correlating system activity
with the introduction of a new file (The
Lord of The Rings III) that caused a flash
crowd effect, the authors observe that the
system remained stable.

In [QS04], the authors applied fluid flow
modeling techniques to BitTorrent to obtain
a model that predicts average number of
seeds, downloaders, and download time.

To assess the effectiveness of
BitTorrent, the authors in [BP05] defined
link utilization as the aggregate capacity of
all nodes participating in the overlay
network. Fairness is defined in terms of the
relative number of pieces served by a node
to the number downloaded. Another aspect
of fairness is if all nodes, in particular seeds,
are equally utilized. Finally, a diversity
measure assesses how effectively pieces are
distributed throughout the overlay network.

In [BLS04] the authors analyzed
BitTorrent activity over a four month period
involving thousands of torrents. They
observed a mean and median file size of 760
and 600 Mbytes, respectively. The mean and
median session duration was 13.25 and 8.4
hours, respectively. The authors plan on
developing a BitTorrent application for
distributing large network traces to the
research community.

In [SGP04] the authors instrumented the
standard BitTorrent client and monitored the
activity associated with a popular tracker.
They observed an average download rate of
200 Kbps among all clients that were not
behind a firewall. The authors proposed a
streaming content delivery network based on
a BitTorrent-like protocol. They pointed out
that two areas that need improvement for
this application are better protection from
freeloaders and better support for nodes
behind firewalls.

MODELING BITTORRENT

To the best of our knowledge no one has
characterized in detail the workload
generated by a BitTorrent client. As this was
required for our simulations, we performed
an analysis involving network traces of real
BitTorrent clients.

BitTorrent Traces

We obtained three sets of traces. They
are summarized in Table 1. All involved
downloading the same torrent (a 4.3 GByte
file actively traded on the BitTorrent
network) using version 4.04 of the
BitTorrent client at [BT]. The client
machine was a WindowsXP machine.
According to the statistics at the tracker, the
torrent consistently had hundreds of
downloaders and tens of peers. In our
experiments, firewalls prevented remote

peers from initiating TCP connections with
the client. The BitTorrent client allows the
user to specify the maximum bandwidth to
be consumed by the host. We set this to the
maximum value of 45 Mbps.

We refer to the three data sets as Set1,
Set2 and Set3 respectively. Two of the sets
(Set1 and Set2) are from a machine on
Clemson University’s campus and the other
set (Set3) is from a machine located at the
author’s home. To help manage P2P traffic
generated by students, Clemson deployed a
Packeteer bandwidth management device
that limits individual TCP sessions (except
for web traffic) to a maximum rate of 64
Kbps[PACK]. Set1 traces were subject to
this control. For Set2, we configured the
Packeteer device so that packets associated
with the IP address of the BitTorrent client
had high priority and were not subject to
rate limits. The speed of the access link
connecting Clemson’s gigabit Ethernet
campus network to the Internet is 100 Mbps.
Set 3 traces were from a machine connected
to the Internet by DSL with service rates of
1.5 Mbps downstream and 256 Kbps
upstream.

To calibrate our trace and analysis
methodology we performed a set of TCP
transfers between the DSL connected
machine and the host located on campus.
We transferred 500 Kbytes ten times from
the DSL connected machine to the campus
machine (i.e., upstream from the perspective
of the BitTorrent client). Then, we
transferred 500 Kbytes ten times from
campus to the DSL connected machine. For
these traces, and for all traces described in
this report, all TCP packets sent and
received by the DSL connected host were
captured using tcpdump[TCPD]. Table 2
summarizes the calibration results. The top
row shows the average of a set of
performance measures collected from each

of the 10 upstream transfers and the bottom
row shows the downstream results. The
columns labeled ‘AvgCx BW’, ‘Avg TCP
RTT’, and ‘Avg TCP LR’ indicate the
average TCP throughput, round trip time
and loss rate, respectively, experienced by
the 10 TCP connections. The column
labeled ‘Bottleneck Link Speed Estimate‘
examines the interarrival times between
ACK packets that arrive at the client and,
based on a packet-pair algorithm, estimates
the bottleneck link speed in the upstream
direction [KLD+04]. Since this flow will not
be classified as P2P traffic by the Packeteer
device, we expect that the bottleneck link
speed in both the upstream and downstream
directions to be the DSL access link speeds.
The results from Table 2 confirm this
although the estimated bottleneck bandwidth
is roughly 20% lower than the actual. This is
due to framing overhead that is not included
in the bandwidth estimate. The TCP
throughput was slightly less than the
bandwidth estimate. This is because of
additional overhead due to TCP. The
uncongested RTT over the path based on a
56 byte Ping probe is roughly .11 seconds.
The mean TCP RTT of 1.16 seconds
observed in the upstream connections along
with no packet losses implies that sustained
queuing exists over the path, presumably at
the DSL router’s upstream queue. Further
analysis shows that the TCP congestion
window stays at a maximum value of 32
Kbytes that was set by the receiver’s
advertised window. The transmission time
of 32 Kbytes over a 256 Kbps link is
roughly 1 second making the observed RTT
reasonable. The algorithm that we use to
obtain the average TCP RTT is based on
previous work [MNR03]. It requires a send
side trace and consequently we were not
able to obtain a RTT result for downstream
connections.

The first two traces of each set were
taken while the client was downloading the
torrent. The third trace was taken once the
client became a seed. While downloading,
data flowed in both directions over most of
the TCP connections. Our analysis tools
operate only on the data sent in the upstream
direction. While seeding, data flowed
primarily in the upstream direction. Each
trace in Set1 and Set2 contains about
400000 packets comprising roughly 60
unique connections of which 20 to 30 were
active throughout the lifetime of the trace.
The Set3 traces each contained about 60000
packets comprising slightly more (40-60)
active connections while downloading and
significantly more once the client became a
peer (180 connections). More than half of
the connections in all sets transferred a very
small amount of data (presumably
BitTorrent messages).

Table 3 summarizes the observed
behavior of upstream TCP transfers
contained in the Set1 traces. The columns
labeled ‘Avg Aggregate US BW’ and ‘Avg
Aggregate DS BW’ show the aggregate
bandwidth consumed in the upstream and
downstream direction, respectively, by the
client during the trace. As with all traces
described in this report, more bandwidth is
consumed in the upstream direction than in
the downstream. The column labeled
‘US/DS BW ratio’ captures this. The mean
ratio for the 4,5,7,8 traces was 2.5 and
increased to 24 once the client became a
peer (i.e., traces 6 and 9).

The Set1 results clearly show the impact
of the Packeteer device. Without the rate
limits imposed by Packeteer we would
expect to see a bottleneck bandwidth
estimate in the 1 to 5 Mbps range (i.e.,
typical broadband access downstream
service rates). As expected, with the
Packeteer device engaged, the estimated

bottleneck bandwidth was close to the
configured service rate of 64 Kbps. The
transmission time of a 1500 byte packet over
a 64 Kbps link is .188 seconds making the
observed TCP RTT reasonable. The average
upstream and downstream bandwidth
consumption for each trace is significant,
especially once the client becomes a seed.
The average upstream TCP throughput
varied widely although never exceeded
50,000 bps.

The last four columns in Table 3 indicate
the number of concurrent transfers. We
define an active connection to be a
connection that sends data in a one-way
direction at a rate that is greater than a
threshold level. We used thresholds of 10
Kbps, 40 Kbps and 100 Kbps. With Set1,
since TCP connections are limited to 64
Kbps, we did not see any connections with a
transfer rate greater than 100 Kbps. We see
many low rate (10 Kbps) flows and smaller
number of flows that consume at least 40
Kbps. Once the client became a peer, we
observed 28 concurrent 10 Kbps upstream
flows and 22 concurrent 40 Kbps flows.

In the Set2 traces we see an order of
magnitude increase in the bottleneck link
speed which confirms that the Packeteer
service rates are no longer in place. The
bottleneck link speed ranged from a
minimum of 256 Kbps to 10 Mbps. The
RTT is reasonable except for Trace 22
which had an RTT of .802 seconds. It’s
unclear why this value is so high. We see
roughly 5 to 7 active high speed flows in the
upstream direction. In the downstream
direction, the number of active high speed
flows was very low. Presumably, peers were
not capable (or willing) of sending at very
high rates.

The Set3 traces also seem reasonable
although the upstream bottleneck link

estimates were off by almost 50%. The error
associated with packet-pair estimate
increases if the senders are not constantly
sending. The average upstream TCP
throughput is low because the connection
was bidirectional and but there were periods
of time when data was flowing in only one
direction. This “idle” time is reflected in the
TCP throughput estimate. The TCP RTT
matches the value we saw in the calibration
tests (refer to Table 2). Once the client
becomes a seed the RTT becomes
significantly higher. However, the TCP loss
rate gets lower. Further investigation is
required to explain this.

Simulation Analysis

In prior work we implemented a
simulation model of a DOCSIS network
using the NS-2 simulation tool [MW05,
ns2]. We have extended this model to
support a simple BitTorrent traffic model.
Figure 1 illustrates the simulated network.
There are 200 cable modems (labeled CM-1
through CM-n) that share one downstream
channel and one upstream channel. Fifty
CMs are configured with the client side of a
web traffic model. A simulated web user at
the CM generates requests to web servers
(nodes S-1 through S-x) following the
model described in [BC98]. Figure 2
identifies the DOCSIS network
configuration parameters and the web model
settings that were used in the experiments.
Refer to [MW05] for further details of the
model.

100Mbps, 18ms
prop delay

5.121mbps upstream,
30.34Mbps downstream

CM-1
CM-2

CM-n ……………..

CMTS Node

S-2

100Mbps links
(1-3ms delay)

Node

100Mbps, .5ms
prop delay

S-x

S-1

.

.

.

.

.

.

.

.

.

.

.

.

10Mbps links
(1-5ms delay)

Test client 1

Test client 2

Test server 1

Test server 2

Web Response Time
(WRT) probe

TCP Analysis Connection

Figure 1. Simulation Network Model

Figure 2. DOCSIS Network and Web
Traffic Model Simulation Parameters

A varying number of the CMs are

configured with the client side of a
BitTorrent traffic model. In the model one
or more TCP connections transfer data in the
upstream direction and one or more
additional TCP connections transfer data in
the downstream direction. An on/off traffic
source is attached to each TCP sender
associated with the client. For US traffic, the
senders are located at the designated CM
and interact with the TCP sinks located at
the servers (S-1 through S-x). For DS traffic,
TCP senders are located at the servers and
the sinks are attached to the CMs. A
BitTorrent source periodically transfers a
large amount of data to the server. The
message size is exponentially distributed
with a mean of 1 Gbyte. This value is based
on a measurement study that found an
average torrent size of about 800 Mbytes
[BLS04]. The off time of the traffic source
is exponentially distributed with a mean of 2
seconds. To model n concurrent TCP
connections at a BitTorrent client, we create
n TCP flows between the server and the
client but reduce the amount of data sent by
each traffic source by a factor of 1/n.

We ran four sets of simulation
experiments. In each set, the number of

simulated BitTorrent clients in the HFC
network was increased from 0 to 50 in
increments of 10 over 6 different runs. The
four sets are summarized as follows:

Model Parameters
Upstream bandwidth 5.12Mbps
Preamble 80 bits
Downstream bandwidth 30.34Mbps
4 ticks per minislot
Default map time: 2 milliseconds (80 minislots per map)
Fragmentation Off, MAP_LOOKAHEAD = 255 slots
Concatenation ON
Backoff Start: 8 slots, Backoff stop: 128 slots
12 contention slots (minimum), 3 management slots

Web Traffic Model Parameters
Inter-page: pareto model, mean 10 and shape 2
Objects/page: pareto model, mean 3 and shape 1.5
Inter-object: pareto model, mean .5 and shape 1.5
Object size: pareto model, mean 12 (segments) shape 1.2

Symmetric: For each BitTorrent client,

there was one upstream and one downstream
flow.

Downstream asymmetric: The total

number of upstream BitTorrent file transfers
is limited to five streams. We increase the
ratio of downstream BitTorrent traffic to
upstream traffic by increasing the number of
downstream connections from 5 to 50.

Upstream asymmetric: The total

number of downstream BitTorrent file
transfers is limited to five streams while the
number of upstream connections increases
from 5 to 50.

Symmetric and parallel connections:

For each BitTorrent client, instead of one
upstream flow and one downstream flow,
we adjust the traffic source accordingly and
use four concurrent connections upstream
and four concurrent connections
downstream.

To calibrate our simulation model with
observed behavior, we compare the
symmetric simulation results (summarized
in Table 6) with the results from measured
traces 7 and 8 shown in Table 5. The
average TCP connection throughput, the
loss rates and the aggregate US bandwidth
are similar. The most significant difference
is that the aggregate downstream bandwidth
is much higher in the simulation. This is due
in part because our BitTorrent model does
not capture the application ‘tit-for-tat’
dynamics, nor does the model support user
specified rate limits that are available on
most BitTorrent clients. However, the more
significant reason for the asymmetry is

because our simulation network model
assumes peers are connected to the network
with very high speed links (10Mbps).

Summary of simulation results

For each of the four sets of simulation
experiments, we obtain a number of
performance measures that fall into two
categories.

• Those that assess performance of CMs

that are not running BitTorrent. We ran
several network performance monitor
applications on the Test client 1 and Test
server 1 nodes. These nodes were not
running the BitTorrent or the web traffic
generators. For brevity we report only
the results of a CBR flow between these
two nodes. The objective of the monitor
is to simulate a best effort VoIP flow
and to monitor the UDP packet jitter,
latency and loss. The CBR source is
attached to the Test client 1 node and is
configured to send a 350 byte message
every .05 seconds (i.e., 56Kbps). Figures
3, 4 and 5 visualize these results for each
of the four sets of experiments.

• Those that assess DOCSIS network

dynamics. Figure 9 visualizes the mean
collision rates reported by the CM’s.
Figures 6, 7 and 8 provide insight to how
the CMs obtained upstream bandwidth.
Figure 6 plots the percentage that
contention requests were used for all
packets (IP packets, fragments and
management messages) that were sent
upstream. Figure 7 plots the percentage
of upstream packets that were sent in a
concatenated frame. Figure 8 plots the
average number of packets per
concatenated frame.

Figures 3 through 9 plot the performance

measures. Each figure contains four plots

representing the results of the experiments.
The following observations apply to all four
sets:

• As expected, the load on the upstream

channel increased linearly as the number
of BitTorrent clients grew. Over a 5.12
Mbps upstream channel, as few as 10
BitTorrent clients caused the access
delay experienced by other users to
double. When 10 BitTorrent clients were
active, the US channel was 55% utilized.
This result was observed with no service
rate limits and also when 384 Kbps
upstream service rates were imposed.

• As the BitTorrent load increased, the

majority of bandwidth requests was
accomplished using concatenation with
an average of 3.5 IP packets (primarily
TCP acknowledgement packets) inserted
into each concatenated frame. If
concatenation was disabled, most
bandwidth requests would rely on
piggybacking which is not as efficient
and would lead to significantly higher
mean access delays.

We note the following differences between
the experiments:

• The UDP packet jitter and latency is

double for the symmetric, parallel
connections compared to the symmetric,
single connection runs (i.e., Figures 3
and 4). At the same time, the collision
rate is lower by roughly 20% once the
network becomes congested (Figure 9).
More study is required to explain this
behavior. However, the result suggests
that BitTorrent’s use of concurrent
connections might have a greater
detrimental impact on real-time traffic
such as voice and video.

• All statistics confirm that performance is
significantly worse when BitTorrent
traffic is bi-directional rather than
asymmetric.

• The downstream asymmetric

configuration delivers upstream data by
concatenation less often (by 50%) than
the other sets. This is because the US
utilization was lower than in the
symmetric experiments.

CONCLUSIONS

The objective of this study was to gain

insight in how varying levels of BitTorrent
traffic on an HFC network impacts other
CMs and on the dynamics of a DOCSIS
network. Different parameters and model
assumptions will change the results. In
particular, the availability and locality of the
torrent, peer behaviors, and network loads
all determine the impact on the network and
subsequently, on subscriber’s perceived
performance. Our goal was to obtain
sufficient data permitting us to build a
simulation model of a BitTorrent traffic
generator. Our simulation model is most
similar to the behavior observed in a
residential network. We configured four
concurrent upstream and downstream flows
that consumed symmetric levels of
bandwidth.

Based on simulation we have shown that
a small number of BitTorrent users can
impact other users, even when CMs are
provisioned with low upstream service rates.
Cable companies can no longer rely on static
rules of thumb when provisioning an HFC
network. This issue becomes more urgent if
the provider plans to reliably support best
effort VoIP and video applications. The
provider must monitor network performance
and adapt the network as needed.

There are many directions for future
work including further development of our
BitTorrent traffic model and subsequent
analysis in cable environments. The impact
that high-bandwidth applications such as
BitTorrent have on other subscribers
becomes more problematic as service rates
increase. Therefore, we are developing
adaptive bandwidth management techniques
that implement fairness policies through a
combination of performance and monetary
incentives.

REFERENCES

[BC98] P. Barford, M. Crovella,
“Generating Representative Web Workloads
for Network and Server Performance
Evaluation”, ACM SIGMETRICS ’98, July,
1998.

[BHP05] A Bharambe,C. Herley, V.
Padmanabhan, “Analyzing and Improving
BitTorrent Performance”, Microsoft
Research Technical Report MSR-TR-2005-
03, Feb 2005.

[BITPR] BitTorrent Documentation:
Protocol available at
http://www.bittorrent.com/protocol.html

[BLS04] A Bellissimo, B. Levine, P.
Shenoy, “Exploring the Use of BitTorrent as
the Basis for a Large Trace Repository”,
Technical report 04-41, Department of
Computer Science, University of Amherst,
June 2004.

[BT] BitTorrent client and tracker software,
http://www.bittorrent.com

[BTSPE] The BitTorrent Specification: http:
//wiki.theory.org/BitTorrentSpecification

[CN03] F. Clevenot, P. Nain, “A Simple
Fluid Model for the Analysis of
SQUIRREL”, Technical Report, Inria RR-
4911,2003.

[CNR03] F. Clevenot, P. Nain, K. Ross,
“Stochastic Fluid Models for Cache
Clusters”, Technical Report, Inria RR-4815,
2003.

[COH03] B.Cohen, “Incentives Build
Robustness in BitTorrent”, Workshop on
Economics of Peer-to-Peer Systems,
Berkeley CA, May 2004. Available at
http://www.bittorrent.com/bittorrentecon.pdf

[DKK+01] F. Dabek, M. Kaasheok, D.
Karger, R. Morris, I Stoica, “Wide-area
Cooperative Storage with CFS”, SOSP01,
Oct 2001.

[ENTRO]Entropia, http://www.entropia.com

[GFJ+03] Z. Ge, D. Figueiredo, S. Jaiswal,
J. Kurose, D. Towsley, “Modeling Peer-to-
Peer File Sharing Systems”, IEEE Infocom
2003.

[GKT02] L. Gao, J. Kurose, D. Towsley,
“Efficient Schemes for Broadcasting
Popular Videos”, Multimedia Systems, Vol
8, No4, July 2002.

[IRD02] S. Iyer, A. Rowstron, P. Druschel,
“Squirrel: A Decentralized Peer-to-Peer
Web Cache”, PODC02, 2002.

[IUB+04] M Izal, et. Al., “Dissecting
BitTorrent: Five Months in a Torrent’s
Lifetime”,Passive and Active
Measurements, April 2004.

[IVK] I. Ivkovic, “Improving Gnutella
Protocol: Protocol Analysis and Research
Proposals”, unpublished report available at
http://www9.limewire.com/download/
ivkovic_paper.pdf.

[KBB+04] T. Karagiannis, A. Broidi, N.
Brownlee, K. Claffy, M. Faloutsos, “Is P2P
Dying or just Hiding?”, IEEE Globecom,
November 2004.

[KLD+04] S. Kang, X. Liu, M. Dai, D.
Loguinov,“ Packet-pair Bandwidth
Estimation: Stochastic Analysis of a Single
Congested Node”, ICNP-04, 2004.

[LKR04] J. Liang, R. Kumar, K. Ross,
“Understanding KaZaA”, unpublished,
available at http://cis.poly.edu/
~ross/papers/.

[LRW03] N. Leibowitz, M. Ripeanu, A.
Wierzbicki, “Deconstructing the KaZaA
Network”, Proceedings of the Third IEEE
Workshop on Internet Applications
(WIAPP’03), June 2003.

[Mark02] E. Markatos, “Tracing a large-
scale Peer to Peer System: an hour in the life
of Gnutella”, CCGrid 2002.

[MNR03] J. Martin, A. Nilsson, I. Rhee,
“Delay-based Congestion Avoidance for
TCP”, IEEE/ACM Transactions on
Networking, 11(3), 356-369 (2003).

[MW05] J. Martin, J. Westall, “Validating
an ‘ns’ Simulation Model of the DOCSIS
Protocol”, under review, available at:
http://people.clemson.edu/~jmarty/papers/do
csis-model.pdf.

[NCR+03] T. Ng, Y. Chu, S. Rao, K.
Sripanidkulchai, H. Zhang, “Measurement-
Based Optimization Techniques for
Bandwidth-DemandingPeer-to-Peer
Systems, Infocom, 2003.

[NS2] The Network Simulator. Available at
: http://www-mash.cs.Berkeley.EDU/ns/.

[PACK] Packeteer bandwidth management
devices, http://www.packeteer.com

[PGE+05] J. Pouwelse, P. Garbacki, D.
Epema, H. Sips, “The BitTorrent P2P File-
Sharing System: Measurements and
Analysis”, International Workshop on Peer-
To-Peer Systems, Feb 2005.

[PIP05] A. Lenhart, M. Madden, “Teen
Content Creators and Consumers”, Pew
Internet & American Life Project,
November 2, 2005.

[QS04] D. Qiu, R. Srikant, “Modeling and
Performance Analysis of BitTorrent-like
Peer-to-Peer Networks”, Proceedings of the

2004 conference on Applications,
technologies, architectures, and protocols
for computer communications, 2004.

[RB02] P. Rodriguez, E. Biersack,
“Dynamic Parallel Access to Replicated
Content in the Internet”, IEEE/ACM
Transactions on Networking, Vol 10, no 4,
Aug 2002.

[RFH+01] S. Ratnasamy, P. Francis, M.
Handley, R. Karp, S. Shenker, “A Scalable
Content Addressable Network”, ACM
SIGCOMM 2001

[RFI02] M. Ripeanu, I. Foster, A. Iamnitchi,
“Mapping the Gnutella Network: Properties
of Large-scale Peer-to-Peer Systems and
Implications for System Design”, IEEE
Internet Computing Journal, 6(1), 2002.

[RIP01] M. Ripeanu, Peer-to-Peer
Architecture Case Study: Gnutella Network,
2001.

[SGG02] S. Saroiu, P. Gummadi, S. Gibble,
“A Measurement Study of Peer-to-Peer File
Sharing Systems”, Proceedings of
Multimedia Computing and Networking
2002.

[SMK+01] I Stoica, R. Morris, D. Karger,
M. Kaashoek, H. Balakrishman, “Chord: A
Scalable Peer-to-Peer Lookup Prototocol for
Internet Applications”, ACM SIGCOMM
2001.

[SGP04] K. Skevik,V. Goebel, T.
Plagemann, “Analysis of BitTorrent and its
use for the Design of a P2P based Streaming
Protocol for a Hybrid CDN”, Technical
report, Department of Informatics,
University of OSLO, 2004.

[TCPD] tcpdump program available at
http://www.tcpdump.org

[YV04] X. Yang, G. Veciana, “Service
Capacity of Peer-to-Peer Networks”, IEEE
Infocom

[VY03] G. Veciana, X. Yang, “Fairness,
Incentives and Performance in Peer-to-Peer
Networks”, Proceedings of the Forty-first
Annual Allerton Conference on
Communication, Control and Computing,
Oct 2003.

[WSJ05] P. Grant, J. Drucker, “Phone,
Cable Firms Rein in Consumers’s Internet
Use”, The Wall Street Journal, October 21,
2005.

Set Comment US bandwidth DS bandwidth # Traces in Set
1 Campus, but rate

limited
64 Kbps 64 Kbps 3

2 Campus, high
speed

100 Mbps 100 Mbps 6

3 DSL home
network

256 Kbps 1.5 Mbps 3

Table 1. Summary of the three data sets

Trace Number US Bottleneck

Link Speed
Estimate

AvgCx
BW (bps)

Avg TCP RTT Avg Loss Rate (%)

Calibration US 214484 210161 1.164 0
Calibration DS 1221614 1123897 * 0

Table 2. Residential Network Calibration Results

Trace
Number

US
Bottle-
neck
Link
Speed
Estimate

AvgCx
BW
(bps)

Avg
TCP
RTT

Avg
Loss
Rate
(%)

Avg
aggregate
US BW
(bps)

Avg
Aggregate
DS BW
(bps)

US/DS
BW
ratio

US >
100Kbps,
40Kbps,
10Kbps
flows

DS >
100Kbps,
40Kbps,
10Kbps
flows

1 54873 18655 .554 2.43 326079 129626 2.5 0, 2.8, 7.5 0, .2, 4.9
2 55523 36705 .407 .431 462271 312500 1.48 0, 6, 10.1 0, 2.6, 8.3
3 (seed) 63655 47509 .447 .96 1379270 30947 45 0, 22, 28.5 0, 0, 0

Table 3. Set1 BitTorrent Client Measurement Results

Trace
Number

US
Bottle-
neck
Link
Speed
Estimate

AvgCx
BW (bps)

Avg
TCP
RTT

Avg
Loss
Rate
(%)

Avg
Aggregate
US BW
(bps)

Avg
Aggregate
DS BW
(bps)

US/DS
BW
ratio

US >
100Kbps,
10Kbps
flows

DS >
100Kbps,
10K bps
flows

4 3948836 191714 .366 2.6 2180090 1292200 1.69 5.8,10.0 4.9,8.4
5 3809208 211886 .361 2.9 2525240 885066 2.85 5.8, 12.3 3,10.8
6 (seed) 2425737 203143 .802 1.1 2671200 111122 24 6.4, 16.1 0,3.7

Table 4. Set2 BitTorrent Client Measurement Results

Trace
Number

US
Bottle-
neck
Link
Speed
Estimate

AvgCx
BW
(bps)

Avg
TCP
RTT

Avg
Loss
Rate
(%)

Avg
Aggregate
US BW
(bps)

Avg
Aggregate
DS BW
(bps)

US/DS
BW
ratio

US >
100Kbps,
40Kbps,
10Kbps
flows

DS >
100Kbps,
40Kbps,
10Kbps
flows

7 123797 23347 .989 4.35 189623 161176 1.18 .1, 1.2, 3.8 .1, 1.2, 3.8
8 111115 17840 1.11 4.8 201635 156835 1.28 0, 1.2,4.7 0, .8, 4.4
9 (seed) 140998 20869 3.93 .013 214107 5851 37 0, .4, 6.2 0, 0, 0

Table 5. Set3 BitTorrent Client Measurement Results

Set

Identifier
Avg

TCP Cx
BW

Avg
TCP Cx
RTT

Avg
TCP Cx
LR

Aggregate
US BW

Aggregate
DS BW

US/DS
BW

ratio

Number of
concurrent
US and DS
flows

Symmetric 60000 .05 4% 160 Kbps 1.4 Mbps .11 1
Symmetric
and
parallel
cxs

17500 .2 6.5% 185 Kbps 1.3 Mbps .14 4

Table 6. Summary of the Symmetric Simulations

Symmetric cxs Symmetric and parallel cxs

Downstream asymmetry Upstream asymmetry

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
CBR Jitter

Ji
tt

er
 (

se
co

nd
s)

Number BT flows

0 5 10 15 20 25 30 35 40 45 50
6.6

6.8

7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6
x 10

-3 CBR Jitter

Ji
tt

er
 (

se
co

nd
s)

Number BT flows
0 5 10 15 20 25 30 35 40 45 50

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
CBR Jitter

Ji
tt

er
 (

se
co

nd
s)

Number BT flows

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
CBR Jitter

Ji
tt

er
 (

se
co

nd
s)

Number BT flows

Figure 3. CBR Jitter as BitTorrent Load Increases

Symmetric cxs Symmetric and parallel cxs

Downstream asymmetry Upstream asymmetry

0 5 10 15 20 25 30 35 40 45 50
0.01

0.02

0.03

0.04

0.05

0.06

0.07
CBR one way delay

D
el

ay
 (

se
co

nd
s)

Number BT flows

0 5 10 15 20 25 30 35 40 45 50
0.018

0.019

0.02

0.021

0.022

0.023

0.024

0.025
CBR one way delay

D
el

ay
 (

se
co

nd
s)

Number BT flows

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25
CBR one way delay

D
el

ay
 (

se
co

nd
s)

Number BT flows

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
CBR one way delay

D
el

ay
 (

se
co

nd
s)

Number BT flows

Figure 4. CBR One-Way Latency as BitTorrent Load Increases

Symmetric cxs Symmetric and parallel cxs

Downstream asymmetry Upstream asymmetry

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10
CBR Loss Rate Percentage

Lo
ss

 R
at

e
(p

er
ce

nt
)

Number BT flows

0 5 10 15 20 25 30 35 40 45 50
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
CBR Loss Rate Percentage

Lo
ss

 R
at

e
(p

er
ce

nt
)

Number BT flows

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5
CBR Loss Rate Percentage

Lo
ss

 R
at

e
(p

er
ce

nt
)

Number BT flows

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7
CBR Loss Rate Percentage

Lo
ss

 R
at

e
(p

er
ce

nt
)

Number BT flows

Figure 5. CBR Loss as BitTorrent Load Increases

Symmetric cxs
Symmetric and parallel cxs

Downstream asymmetry Upstream asymmetry

0 5 10 15 20 25 30 35 40 45 50
80

82

84

86

88

90

92

94
Percentage pkts delivered by contention requests

%
 p

kt
s

de
liv

er
ed

 b
y

co
nt

en
tio

n

Number BT flows

0 5 10 15 20 25 30 35 40 45 50
60

65

70

75

80

85
Percentage pkts delivered by contention requests

%
 p

kt
s

de
liv

er
ed

 b
y

co
nt

en
tio

n

Number BT flows
0 5 10 15 20 25 30 35 40 45 50

50

55

60

65

70

75

80

85
Percentage pkts delivered by contention requests

%
 p

kt
s

de
liv

er
ed

 b
y

co
nt

en
tio

n

Number BT flows

0 5 10 15 20 25 30 35 40 45 50
82

84

86

88

90

92

94

96

98
Percentage pkts delivered by contention requests

%
 p

kt
s

de
liv

er
ed

 b
y

co
nt

en
tio

n

Number BT flows

Figure 6. Percent Contention Requests as BitTorrent Load Increases

Symmetric cxs Symmetric and parallel cxs

Downstream asymmetry Upstream asymmetry

0 5 10 15 20 25 30 35 40 45 50
45

50

55

60

65

70

75

80

85
Percentage pkts deliverd by concatonated requests

%
 p

kt
s

de
liv

er
ed

 b
y

co
nc

at
on

at
io

n

Number BT flows

0 5 10 15 20 25 30 35 40 45 50
40

42

44

46

48

50

52

54

56

58
Percentage pkts deliverd by concatonated requests

%
 p

kt
s

de
liv

er
ed

 b
y

co
nc

at
on

at
io

n

Number BT flows
0 5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

60

70

80
Percentage pkts deliverd by concatonated requests

%
 p

kt
s

de
liv

er
ed

 b
y

co
nc

at
on

at
io

n

Number BT flows

0 5 10 15 20 25 30 35 40 45 50
45

50

55

60

65

70

75

80

85

90

95
Percentage pkts deliverd by concatonated requests

%
 p

kt
s

de
liv

er
ed

 b
y

co
nc

at
on

at
io

n

Number BT flows

Figure 7. Percent Concatenation Requests as BT Load Increases

Symmetric cxs Symmetric and parallel cxs

Downstream asymmetry Upstream asymmetry

0 5 10 15 20 25 30 35 40 45 50
2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7
Mean # pkts in concat frames

m
ea

n
#p

kt
s/

co
nc

at
F

ra
m

e

Number BT flows

0 5 10 15 20 25 30 35 40 45 50
2.6

2.8

3

3.2

3.4

3.6

3.8

4
Mean # pkts in concat frames

m
ea

n
#p

kt
s/

co
nc

at
F

ra
m

e

Number BT flows 0 5 10 15 20 25 30 35 40 45 50

2.6

2.8

3

3.2

3.4

3.6

3.8
Mean # pkts in concat frames

m
ea

n
#p

kt
s/

co
nc

at
F

ra
m

e

Number BT flows

0 5 10 15 20 25 30 35 40 45 50
2.5

3

3.5

4

4.5

5

5.5

6
Mean # pkts in concat frames

m
ea

n
#p

kt
s/

co
nc

at
F

ra
m

e

Number BT flows

Figure 8. Mean Number of Pkts in Concatenated Frames as BitTorrent Load Increases

Symmetric cxs Symmetric and parallel cxs

Downstream asymmetry Upstream asymmetry

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45
Collision rate versus Load

C
ol

lis
io

n
ra

te

Number BT flows

0 5 10 15 20 25 30 35 40 45 50
8

10

12

14

16

18

20

22

24
Collision rate versus Load

C
ol

lis
io

n
ra

te

Number BT flows
0 5 10 15 20 25 30 35 40 45 50

6

8

10

12

14

16

18

20
Collision rate versus Load

C
ol

lis
io

n
ra

te

Number BT flows

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30
Collision rate versus Load

C
ol

lis
io

n
ra

te

Number BT flows

Figure 9. Collision rate as BitTorrent load increases

