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Abstract 
 

BitTorrent is a peer-to-peer (P2P) 
protocol for sharing media (audio, video 
and software) files that accounts for 18% of 
traffic on cable high-speed data networks. In 
order to better understand the network 
dynamics of traffic associated with this 
protocol, we analyzed roughly 1 Gbytes of 
network trace data from BitTorrent clients 
running in three different environments. 
Based on this data, we performed a 
simulation-based analysis of a DOCSIS®-
based cable network involving a varying 
number of simulated BitTorrent users and 
web browsing users. Our results suggest 
that as few as 10 BitTorrent clients can 
double the access delay experienced by 
other non-BitTorrent users.  
 

INTRODUCTION 
 

BitTorrent is a peer-to-peer (P2P) 
protocol that provides scalable file sharing 
capabilities. As in other P2P systems, 
BitTorrent provides an overlay network that 
runs over the Internet. BitTorrent is unique 
from other P2P protocols in several aspects. 
The most notable of these are: 1) the use of 
swarming; and 2) the use of incentives to 
prevent free-riding. BitTorrent, frequently 
the dominant application in a network, poses 
a dilemma for cable network service 
providers. In general, P2P applications are 
broadband applications that contribute to the 
demand for high speed broadband access. 
This usage is driven by younger Internet 
users. In a recent study, it was estimated that 
about 58% of American teenagers with 
broadband access have downloaded audio 
and/or video files from the Internet using 

P2P networks1. However, BitTorrent can 
consume tremendous amounts of bandwidth 
in both the upstream and downstream 
directions. The primary incentive used by 
BitTorrent to prevent free-riding is that the 
protocol mandates that a file-downloader 
must make some content available for 
upload. One study from several cable 
operators found that 18% of all traffic is 
BitTorrent [WSJ05]. The government and 
the cable industry are addressing the 
evolving economic and policy issues. In this 
study we explore the impact that BitTorrent 
users can have on a cable network. We 
provide insight to this issue by presenting an 
analysis of BitTorrent involving live 
network measurement and simulation2.  
 

In addition to file sharing, P2P has been 
used for grid computation [Entropia], 
storage [DKK+01], web caching [IRD02] 
and directory services [RFH+01, SMK+01]. 
BitTorrent, however, is designed 
specifically for file distribution. The 
algorithms contained in BitTorrent were 
heavily influenced by previous P2P 
protocols and applications. We briefly 
overview two such protocols, Gnutella and 
Kazaa, before presenting BitTorrent. 
 
 
 

                     
1 In a recent study, it was estimated that about 66% of 
American teenagers have downloaded audio and/or 
video files from the Internet. It was also found that 
30% of teenagers admit to currently using P2P 
networks and 28% admit to using P2P networks in 
the past [PIP05]. 
2 The observations that we report represent 
preliminary work. We expect our findings and 
conclusions to evolve as the study progresses.  



Gnutella 
 

Gnutella is an overlay network 
superimposed on the Internet 
[MAR+04,IVK]. Unlike the centralized 
Napster approach, Gnutella is decentralized 
because meta-data (i.e., the indexes of where 
files are located) is distributed throughout 
the network. At initialization time, a 
Gnutella client accesses a host server to 
obtain a list of peers currently in the 
network. After this step, peers learn about 
the network and available content using 
Ping and Pong messages. Once a client has 
identified a file to download, it sends the 
request to the network using a query 
message. Query replies will contain 
information needed for the client to 
download the file. 
 
Kazaa 
 

Few details of the Kazaa protocol are 
available. Several ‘black box’ measurement 
studies do however provide some insight 
[LKR04,LRW03]. There are two types of 
nodes: Super Nodes (SN) and Ordinary 
Nodes (ON). Each ON must be told or must 
learn the address of at least one SN. SNs 
maintain lists of other SNs that can be 
thousands large. Each SN maintains records 
for files located at the ONs in its domain. 
ONs contact their SN on initialize, providing 
metadata that describes the content located 
at the ON. When an ON requests a file, the 
SN looks locally and also propagates the 
request to other SNs in the overlay network. 
To improve performance, files can be stored 
in fragments on multiple nodes and they can 
be transferred in parallel. 
 
BitTorrent 
 

While other P2P systems provide 
distributed object location in addition to file 
downloading, BitTorrent assumes that the 

user has a URL of the file to be downloaded. 
BitTorrent is therefore a protocol for 
distributing files. Files are broken up into 
chunks and downloaded in pieces. This 
concept is borrowed from [RB02] whose 
authors experimented with several parallel 
access schemes to download a file from 
multiple servers concurrently. BitTorrent 
files are represented by a torrent which is a 
meta-information file that identifies the 
chunks associated with a file and a tracker 
address that knows about the file. 
Downloaders, also referred to as clients or 
peers, download the torrent that is available 
on a web site. The download engages the 
BitTorrent client software that was installed 
on its machine which contacts the tracker 
that was identified in the torrent to obtain a 
number of IP address/port pairs 
corresponding to peers that have one or 
more chunks of the file. The client 
periodically reports its state to the tracker 
(about every 30 minutes). The client 
attempts to maintain connections with at 
least 20 peers (referred to as the peer set). If 
it can not, it asks the tracker for additional 
peers. When a client first connects to a 
tracker, the tracker attempts to reverse 
connect to it. If it succeeds, the client is 
added to the list of peers for the torrent 
maintained by the tracker. This ensures that 
the peers in the client’s peer set will accept 
incoming connections. At least one of the 
peers must contain all of the file. Once a 
peer has downloaded the entire file, it 
becomes a seed and provides chunks of the 
file to lechers for free. The system is self-
scalable in that as the number of 
downloaders increase, the number of nodes 
that can function as seeds also increase.  
 

BitTorrent breaks a file into chunks, or 
pieces. To enhance performance, BitTorrent 
further breaks pieces into small (typically 16 
Kbytes) sub-pieces (sometimes called 
blocks) and maintains a strategy of having at 



least 5 concurrent block requests pipelined 
to a given peer. The client contains a piece 
selection algorithm that decides the next 
piece to obtain. The algorithm has three 
modes of operation: starting, downloading, 
or finishing. When the client starts it has 
nothing to upload. The algorithm randomly 
selects the initial pieces. Once one or more 
pieces are received, the algorithm switches 
to a rarest first algorithm. Based on 
information learned from its peers, the client 
chooses to download the chunk that is least 
available. This ensures that peers will have 
pieces that they will need. Once the peer has 
downloaded all but the last few pieces, it 
might experience significant delay if the 
remaining pieces are located at nodes that 
are available only over low-bandwidth 
paths. To avoid this, it sends requests for 
these sub-pieces to all peers. 
 

A peer actively controls its downstream 
bandwidth consumption by granting upload 
requests to peers from which it is currently 
downloading a piece. In essence, it provides 
a ‘tit-for-tat’ bartering approach to 
distributed resource management. By 
choosing to upload to peers that provide the 
best download rates, freeloaders will 
perform poorly. A peer effectively ‘chokes’ 
another peer by denying download requests 
from a peer. Snubbing is when a peer is 
choked by all peers with which it was 
formerly downloading.  
 

A BitTorrent peer uploads only to a 
limited number of peers (usually four). Peers 
monitor download rates and decide who to 
choke over time intervals of every ten 
seconds (note that some implementations 
might use a different rechoke period). When 
the next piece is to be downloaded, the peer 
that has been performing the worst will 
likely be replaced by a higher performing 
peer. To probe the network in search of 
better performing peers, BitTorrent supports 

an ‘optimistic unchoke.’ Every third rechoke 
period, it unchokes a peer by uploading to it 
regardless of its download rate. Therefore, a 
BitTorrent client is allowed to upload to a 
maximum of five peers, four that implement 
tit-for-tat bartering to maximize downstream 
throughput and a fifth that probes the 
network searching for better performing 
peers.  
 

BitTorrent is unique from other P2P 
protocols in several aspects: 1) the use of 
swarming; 2) the use of incentives to 
prevent free-riding. BitTorrent, frequently 
the dominant application in a network, poses 
a dilemma for cable network service 
providers. It is a broadband application 
which contributes to the demand for high-
speed broadband access. However, 
BitTorrent can consume tremendous 
amounts of bandwidth. In this study, we 
explore the impact that BitTorrent users can 
have on a cable network. We provide insight 
to this issue by presenting an analysis of 
BitTorrent involving live network 
measurement and simulation. This paper is 
organized as follows. First, we overview 
related performance studies of peer-to-peer 
systems. We then describe our modeling 
efforts: a measurement study designed to 
characterize bandwidth consumption of 
BitTorrent clients and a simulation analysis 
designed to assess the impact of BitTorrent 
on an HFC cable network. We end the paper 
with conclusions and our future directions. 
 

RELATED WORK 
 

There has been a great deal of prior 
research on P2P protocols and systems. The 
majority of the studies have focused either 
on P2P deployments in the Internet [SGG02, 
NCR+03, RIP01] or on evaluating protocol 
issues [RFK+01, SMK+01,GKT03]. There 
have been several analytic models proposed. 
Several notable efforts have been based on 



queuing theory [GFJ+03] and on fluid flow 
models [CN03,CNR03].  
 

The existing studies of BitTorrent 
indicate that the protocol is indeed scalable 
and robust [PGE+05, SGP04, IUB+04, 
BLS04, BHP05]. In [IUB+04] the authors 
examined the log file from the tracker 
associated with the popular Redhat Linux 9 
distribution torrent. They observed that 
peers continue to participate in the 
BitTorrent network as a seed for an average 
of 6.5 hours after the entire file has been 
downloaded. The authors also showed that 
the average download rate is over 500 Kbps 
and that nodes do consume symmetric 
amounts of bandwidth. The authors 
observed that 81% of all file downloads 
were incomplete. Of these aborted 
downloads, 90% had retrieved less than 10% 
of the file. The average download rate of the 
19% of the sessions that completed was 1.3 
Mbps which is larger than the average 
download rate of all sessions at 500 Kbps. 
The authors studied an individual peer by 
running an instrumented client. The client 
downloads a 1.7 Gbyte file in 4500 seconds. 
During the download period, the client 
interacted with roughly 40 peers. Upon 
completion, the client remained on line as a 
seed for 13 additional hours. During this 
period, roughly 90 leechers were served (but 
only 4 at a time while the others are 
choked). They found that the volume of 
traffic in the upstream and downstream 
directions at the client was correlated, but 
throughputs were not correlated. 85% of the 
file was sent by only 20 peers including 8 
seeds that provided 40% of the file. This set 
of 20 peers were not a part of the initial peer 
list provided by the tracker which suggests 
that to enhance performance NAT must not 
prevent nodes from connecting with a 
downloader. 

 

In [PGE05], the authors examined the 
access of 60000 files and find an average 
download bandwidth of 240 Kbps and that 
only 17% of the nodes stay on line for one 
or more hours after they complete the 
download. The authors suggested that there 
might be a shortage of seeds in typical usage 
scenarios. The authors assessed performance 
based on availability, integrity, 
responsiveness to flash crowds and on 
download performance. To obtain an 
availability data point, they tracked the 
activity associated with a popular file from 
its initial offering until when it died (i.e., 
when it is no longer available). During the 
file’s three month lifetime, 90155 peers 
downloaded at least one piece. Of the 53883 
peers that were not behind firewalls, only 
17% have an uptime longer than 1 hour after 
they finish downloading. By trying to 
upload corrupt files but failing due to the 
moderator’s inspection, the authors deduce 
the BitTorrent network is relatively 
pollution free. By correlating system activity 
with the introduction of a new file (The 
Lord of The Rings III) that caused a flash 
crowd effect, the authors observe that the 
system remained stable.  
 

In [QS04], the authors applied fluid flow 
modeling techniques to BitTorrent to obtain 
a model that predicts average number of 
seeds, downloaders, and download time.  
 

To assess the effectiveness of 
BitTorrent, the authors in [BP05] defined 
link utilization as the aggregate capacity of 
all nodes participating in the overlay 
network. Fairness is defined in terms of the 
relative number of pieces served by a node 
to the number downloaded. Another aspect 
of fairness is if all nodes, in particular seeds, 
are equally utilized. Finally, a diversity 
measure assesses how effectively pieces are 
distributed throughout the overlay network.  
 



In [BLS04] the authors analyzed 
BitTorrent activity over a four month period 
involving thousands of torrents. They 
observed a mean and median file size of 760 
and 600 Mbytes, respectively. The mean and 
median session duration was 13.25 and 8.4 
hours, respectively. The authors plan on 
developing a BitTorrent application for 
distributing large network traces to the 
research community.  
 

In [SGP04] the authors instrumented the 
standard BitTorrent client and monitored the 
activity associated with a popular tracker. 
They observed an average download rate of 
200 Kbps among all clients that were not 
behind a firewall. The authors proposed a 
streaming content delivery network based on 
a BitTorrent-like protocol. They pointed out 
that two areas that need improvement for 
this application are better protection from 
freeloaders and better support for nodes 
behind firewalls. 
 

MODELING BITTORRENT 
 

To the best of our knowledge no one has 
characterized in detail the workload 
generated by a BitTorrent client. As this was 
required for our simulations, we performed 
an analysis involving network traces of real 
BitTorrent clients.  
 
BitTorrent Traces 
 

We obtained three sets of traces. They 
are summarized in Table 1. All involved 
downloading the same torrent (a 4.3 GByte 
file actively traded on the BitTorrent 
network) using version 4.04 of the 
BitTorrent client at [BT]. The client 
machine was a WindowsXP machine. 
According to the statistics at the tracker, the 
torrent consistently had hundreds of 
downloaders and tens of peers. In our 
experiments, firewalls prevented remote 

peers from initiating TCP connections with 
the client. The BitTorrent client allows the 
user to specify the maximum bandwidth to 
be consumed by the host. We set this to the 
maximum value of 45 Mbps. 
 

We refer to the three data sets as Set1, 
Set2 and Set3 respectively. Two of the sets 
(Set1 and Set2) are from a machine on 
Clemson University’s campus and the other 
set (Set3) is from a machine located at the 
author’s home. To help manage P2P traffic 
generated by students, Clemson deployed a 
Packeteer bandwidth management device 
that limits individual TCP sessions (except 
for web traffic) to a maximum rate of 64 
Kbps[PACK]. Set1 traces were subject to 
this control. For Set2, we configured the 
Packeteer device so that packets associated 
with the IP address of the BitTorrent client 
had high priority and were not subject to 
rate limits. The speed of the access link 
connecting Clemson’s gigabit Ethernet 
campus network to the Internet is 100 Mbps. 
Set 3 traces were from a machine connected 
to the Internet by DSL with service rates of 
1.5 Mbps downstream and 256 Kbps 
upstream.  
 

To calibrate our trace and analysis 
methodology we performed a set of TCP 
transfers between the DSL connected 
machine and the host located on campus. 
We transferred 500 Kbytes ten times from 
the DSL connected machine to the campus 
machine (i.e., upstream from the perspective 
of the BitTorrent client). Then, we 
transferred 500 Kbytes ten times from 
campus to the DSL connected machine. For 
these traces, and for all traces described in 
this report, all TCP packets sent and 
received by the DSL connected host were 
captured using tcpdump[TCPD]. Table 2 
summarizes the calibration results. The top 
row shows the average of a set of 
performance measures collected from each 



of the 10 upstream transfers and the bottom 
row shows the downstream results. The 
columns labeled ‘AvgCx BW’, ‘Avg TCP 
RTT’, and ‘Avg TCP LR’ indicate the 
average TCP throughput, round trip time 
and loss rate, respectively, experienced by 
the 10 TCP connections. The column 
labeled ‘Bottleneck Link Speed Estimate‘ 
examines the interarrival times between 
ACK packets that arrive at the client and, 
based on a packet-pair algorithm, estimates 
the bottleneck link speed in the upstream 
direction [KLD+04]. Since this flow will not 
be classified as P2P traffic by the Packeteer 
device, we expect that the bottleneck link 
speed in both the upstream and downstream 
directions to be the DSL access link speeds. 
The results from Table 2 confirm this 
although the estimated bottleneck bandwidth 
is roughly 20% lower than the actual. This is 
due to framing overhead that is not included 
in the bandwidth estimate. The TCP 
throughput was slightly less than the 
bandwidth estimate. This is because of 
additional overhead due to TCP. The 
uncongested RTT over the path based on a 
56 byte Ping probe is roughly .11 seconds. 
The mean TCP RTT of 1.16 seconds 
observed in the upstream connections along 
with no packet losses implies that sustained 
queuing exists over the path, presumably at 
the DSL router’s upstream queue. Further 
analysis shows that the TCP congestion 
window stays at a maximum value of 32 
Kbytes that was set by the receiver’s 
advertised window. The transmission time 
of 32 Kbytes over a 256 Kbps link is 
roughly 1 second making the observed RTT 
reasonable. The algorithm that we use to 
obtain the average TCP RTT is based on 
previous work [MNR03]. It requires a send 
side trace and consequently we were not 
able to obtain a RTT result for downstream 
connections.  

 

The first two traces of each set were 
taken while the client was downloading the 
torrent. The third trace was taken once the 
client became a seed. While downloading, 
data flowed in both directions over most of 
the TCP connections. Our analysis tools 
operate only on the data sent in the upstream 
direction. While seeding, data flowed 
primarily in the upstream direction. Each 
trace in Set1 and Set2 contains about 
400000 packets comprising roughly 60 
unique connections of which 20 to 30 were 
active throughout the lifetime of the trace. 
The Set3 traces each contained about 60000 
packets comprising slightly more (40-60) 
active connections while downloading and 
significantly more once the client became a 
peer (180 connections). More than half of 
the connections in all sets transferred a very 
small amount of data (presumably 
BitTorrent messages).  
 

Table 3 summarizes the observed 
behavior of upstream TCP transfers 
contained in the Set1 traces. The columns 
labeled ‘Avg Aggregate US BW’ and ‘Avg 
Aggregate DS BW’ show the aggregate 
bandwidth consumed in the upstream and 
downstream direction, respectively, by the 
client during the trace. As with all traces 
described in this report, more bandwidth is 
consumed in the upstream direction than in 
the downstream. The column labeled 
‘US/DS BW ratio’ captures this. The mean 
ratio for the 4,5,7,8 traces was 2.5 and 
increased to 24 once the client became a 
peer (i.e., traces 6 and 9).  
 

The Set1 results clearly show the impact 
of the Packeteer device. Without the rate 
limits imposed by Packeteer we would 
expect to see a bottleneck bandwidth 
estimate in the 1 to 5 Mbps range (i.e., 
typical broadband access downstream 
service rates). As expected, with the 
Packeteer device engaged, the estimated 



bottleneck bandwidth was close to the 
configured service rate of 64 Kbps. The 
transmission time of a 1500 byte packet over 
a 64 Kbps link is .188 seconds making the 
observed TCP RTT reasonable. The average 
upstream and downstream bandwidth 
consumption for each trace is significant, 
especially once the client becomes a seed. 
The average upstream TCP throughput 
varied widely although never exceeded 
50,000 bps.  
 

The last four columns in Table 3 indicate 
the number of concurrent transfers. We 
define an active connection to be a 
connection that sends data in a one-way 
direction at a rate that is greater than a 
threshold level. We used thresholds of 10 
Kbps, 40 Kbps and 100 Kbps. With Set1, 
since TCP connections are limited to 64 
Kbps, we did not see any connections with a 
transfer rate greater than 100 Kbps. We see 
many low rate (10 Kbps) flows and smaller 
number of flows that consume at least 40 
Kbps. Once the client became a peer, we 
observed 28 concurrent 10 Kbps upstream 
flows and 22 concurrent 40 Kbps flows.  
 

In the Set2 traces we see an order of 
magnitude increase in the bottleneck link 
speed which confirms that the Packeteer 
service rates are no longer in place. The 
bottleneck link speed ranged from a 
minimum of 256 Kbps to 10 Mbps. The 
RTT is reasonable except for Trace 22 
which had an RTT of .802 seconds. It’s 
unclear why this value is so high. We see 
roughly 5 to 7 active high speed flows in the 
upstream direction. In the downstream 
direction, the number of active high speed 
flows was very low. Presumably, peers were 
not capable (or willing) of sending at very 
high rates.  
 

The Set3 traces also seem reasonable 
although the upstream bottleneck link 

estimates were off by almost 50%. The error 
associated with packet-pair estimate 
increases if the senders are not constantly 
sending. The average upstream TCP 
throughput is low because the connection 
was bidirectional and but there were periods 
of time when data was flowing in only one 
direction. This “idle” time is reflected in the 
TCP throughput estimate. The TCP RTT 
matches the value we saw in the calibration 
tests (refer to Table 2). Once the client 
becomes a seed the RTT becomes 
significantly higher. However, the TCP loss 
rate gets lower. Further investigation is 
required to explain this. 
 
Simulation Analysis  
 

In prior work we implemented a 
simulation model of a DOCSIS network 
using the NS-2 simulation tool [MW05, 
ns2]. We have extended this model to 
support a simple BitTorrent traffic model. 
Figure 1 illustrates the simulated network. 
There are 200 cable modems (labeled CM-1 
through CM-n) that share one downstream 
channel and one upstream channel. Fifty 
CMs are configured with the client side of a 
web traffic model. A simulated web user at 
the CM generates requests to web servers 
(nodes S-1 through S-x) following the 
model described in [BC98]. Figure 2 
identifies the DOCSIS network 
configuration parameters and the web model 
settings that were used in the experiments. 
Refer to [MW05] for further details of the 
model.   

 

 
 

100Mbps, 18ms 
prop delay

5.121mbps upstream, 
30.34Mbps downstream

CM-1
CM-2

CM-n  ……………..

CMTS Node

S-2

100Mbps links
(1-3ms delay)

Node

100Mbps, .5ms 
prop delay

S-x

S-1

.

.

.

.

.

.

.

.

.

.

.

.

10Mbps links
(1-5ms delay)

Test client 1

Test client 2

Test server 1

Test server 2

Web Response Time 
(WRT) probe

TCP Analysis Connection

Figure 1. Simulation Network Model 



 
 

Figure 2. DOCSIS Network and Web 
Traffic Model Simulation Parameters 

 
A varying number of the CMs are 

configured with the client side of a 
BitTorrent traffic model. In the model one 
or more TCP connections transfer data in the 
upstream direction and one or more 
additional TCP connections transfer data in 
the downstream direction. An on/off traffic 
source is attached to each TCP sender 
associated with the client. For US traffic, the 
senders are located at the designated CM 
and interact with the TCP sinks located at 
the servers (S-1 through S-x). For DS traffic, 
TCP senders are located at the servers and 
the sinks are attached to the CMs. A 
BitTorrent source periodically transfers a 
large amount of data to the server. The 
message size is exponentially distributed 
with a mean of 1 Gbyte. This value is based 
on a measurement study that found an 
average torrent size of about 800 Mbytes 
[BLS04]. The off time of the traffic source 
is exponentially distributed with a mean of 2 
seconds. To model n concurrent TCP 
connections at a BitTorrent client, we create 
n TCP flows between the server and the 
client but reduce the amount of data sent by 
each traffic source by a factor of 1/n.  
 

We ran four sets of simulation 
experiments. In each set, the number of 

simulated BitTorrent clients in the HFC 
network was increased from 0 to 50 in 
increments of 10 over 6 different runs. The 
four sets are summarized as follows: 

Model Parameters
Upstream bandwidth 5.12Mbps 
Preamble 80 bits
Downstream bandwidth 30.34Mbps 
4 ticks per minislot
Default map time: 2 milliseconds (80 minislots per map)
Fragmentation Off,  MAP_LOOKAHEAD = 255 slots
Concatenation ON
Backoff Start: 8 slots,  Backoff stop: 128 slots
12 contention slots (minimum), 3 management slots

Web Traffic Model Parameters
Inter-page:  pareto model, mean 10 and shape 2
Objects/page: pareto model, mean 3 and shape 1.5
Inter-object: pareto model, mean .5 and shape 1.5
Object size: pareto model, mean 12 (segments) shape 1.2

 
Symmetric: For each BitTorrent client, 

there was one upstream and one downstream 
flow.  

 
Downstream asymmetric: The total 

number of upstream BitTorrent file transfers 
is limited to five streams. We increase the 
ratio of downstream BitTorrent traffic to 
upstream traffic by increasing the number of 
downstream connections from 5 to 50.  

 
Upstream asymmetric: The total 

number of downstream BitTorrent file 
transfers is limited to five streams while the 
number of upstream connections increases 
from 5 to 50.  

 
Symmetric and parallel connections: 

For each BitTorrent client, instead of one 
upstream flow and one downstream flow, 
we adjust the traffic source accordingly and 
use four concurrent connections upstream 
and four concurrent connections 
downstream.  
 

To calibrate our simulation model with 
observed behavior, we compare the 
symmetric simulation results (summarized 
in Table 6) with the results from measured 
traces 7 and 8 shown in Table 5. The 
average TCP connection throughput, the 
loss rates and the aggregate US bandwidth 
are similar. The most significant difference 
is that the aggregate downstream bandwidth 
is much higher in the simulation. This is due 
in part because our BitTorrent model does 
not capture the application ‘tit-for-tat’ 
dynamics, nor does the model support user 
specified rate limits that are available on 
most BitTorrent clients. However, the more 
significant reason for the asymmetry is 



because our simulation network model 
assumes peers are connected to the network 
with very high speed links (10Mbps). 
 
Summary of simulation results 
 

For each of the four sets of simulation 
experiments, we obtain a number of 
performance measures that fall into two 
categories. 
 
• Those that assess performance of CMs 

that are not running BitTorrent. We ran 
several network performance monitor 
applications on the Test client 1 and Test 
server 1 nodes. These nodes were not 
running the BitTorrent or the web traffic 
generators. For brevity we report only 
the results of a CBR flow between these 
two nodes. The objective of the monitor 
is to simulate a best effort VoIP flow 
and to monitor the UDP packet jitter, 
latency and loss. The CBR source is 
attached to the Test client 1 node and is 
configured to send a 350 byte message 
every .05 seconds (i.e., 56Kbps). Figures 
3, 4 and 5 visualize these results for each 
of the four sets of experiments. 

 
• Those that assess DOCSIS network 

dynamics. Figure 9 visualizes the mean 
collision rates reported by the CM’s. 
Figures 6, 7 and 8 provide insight to how 
the CMs obtained upstream bandwidth. 
Figure 6 plots the percentage that 
contention requests were used for all 
packets (IP packets, fragments and 
management messages) that were sent 
upstream. Figure 7 plots the percentage 
of upstream packets that were sent in a 
concatenated frame. Figure 8 plots the 
average number of packets per 
concatenated frame.  

 
Figures 3 through 9 plot the performance 

measures. Each figure contains four plots 

representing the results of the experiments. 
The following observations apply to all four 
sets: 
 
• As expected, the load on the upstream 

channel increased linearly as the number 
of BitTorrent clients grew. Over a 5.12 
Mbps upstream channel, as few as 10 
BitTorrent clients caused the access 
delay experienced by other users to 
double. When 10 BitTorrent clients were 
active, the US channel was 55% utilized. 
This result was observed with no service 
rate limits and also when 384 Kbps 
upstream service rates were imposed. 

 
• As the BitTorrent load increased, the 

majority of bandwidth requests was 
accomplished using concatenation with 
an average of 3.5 IP packets (primarily 
TCP acknowledgement packets) inserted 
into each concatenated frame. If 
concatenation was disabled, most 
bandwidth requests would rely on 
piggybacking which is not as efficient 
and would lead to significantly higher 
mean access delays. 

 
We note the following differences between 
the experiments: 
 
• The UDP packet jitter and latency is 

double for the symmetric, parallel 
connections compared to the symmetric, 
single connection runs (i.e., Figures 3 
and 4). At the same time, the collision 
rate is lower by roughly 20% once the 
network becomes congested (Figure 9). 
More study is required to explain this 
behavior. However, the result suggests 
that BitTorrent’s use of concurrent 
connections might have a greater 
detrimental impact on real-time traffic 
such as voice and video.  

 



• All statistics confirm that performance is 
significantly worse when BitTorrent 
traffic is bi-directional rather than 
asymmetric.  

 
• The downstream asymmetric 

configuration delivers upstream data by 
concatenation less often (by 50%) than 
the other sets. This is because the US 
utilization was lower than in the 
symmetric experiments.  

 
CONCLUSIONS  

 
The objective of this study was to gain 

insight in how varying levels of BitTorrent 
traffic on an HFC network impacts other 
CMs and on the dynamics of a DOCSIS 
network. Different parameters and model 
assumptions will change the results. In 
particular, the availability and locality of the 
torrent, peer behaviors, and network loads 
all determine the impact on the network and 
subsequently, on subscriber’s perceived 
performance. Our goal was to obtain 
sufficient data permitting us to build a 
simulation model of a BitTorrent traffic 
generator. Our simulation model is most 
similar to the behavior observed in a 
residential network. We configured four 
concurrent upstream and downstream flows 
that consumed symmetric levels of 
bandwidth. 
 

Based on simulation we have shown that 
a small number of BitTorrent users can 
impact other users, even when CMs are 
provisioned with low upstream service rates. 
Cable companies can no longer rely on static 
rules of thumb when provisioning an HFC 
network. This issue becomes more urgent if 
the provider plans to reliably support best 
effort VoIP and video applications. The 
provider must monitor network performance 
and adapt the network as needed.  
 

There are many directions for future 
work including further development of our 
BitTorrent traffic model and subsequent 
analysis in cable environments. The impact 
that high-bandwidth applications such as 
BitTorrent have on other subscribers 
becomes more problematic as service rates 
increase. Therefore, we are developing 
adaptive bandwidth management techniques 
that implement fairness policies through a 
combination of performance and monetary 
incentives. 
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Set Comment US bandwidth DS bandwidth # Traces in Set 
1 Campus, but rate 

limited 
64 Kbps 64 Kbps 3 

2 Campus, high 
speed 

100 Mbps 100 Mbps 6 

3 DSL home 
network 

256 Kbps 1.5 Mbps 3 

 
Table 1. Summary of the three data sets 

 
Trace Number US Bottleneck 

Link Speed 
Estimate 

AvgCx 
BW (bps) 

Avg TCP RTT Avg Loss Rate (%) 

Calibration US 214484 210161 1.164 0 
Calibration DS 1221614 1123897 * 0 

 
Table 2. Residential Network Calibration Results 

 



Trace 
Number 

US 
Bottle-
neck 
Link 
Speed 
Estimate 

AvgCx 
BW 
(bps) 

Avg 
TCP 
RTT 

Avg 
Loss 
Rate 
(%) 

Avg 
aggregate 
US BW 
(bps) 

Avg 
Aggregate 
DS BW 
(bps) 

US/DS 
BW 
ratio 

US > 
100Kbps, 
40Kbps, 
10Kbps 
flows 

DS > 
100Kbps, 
40Kbps, 
10Kbps 
flows 

1 54873 18655 .554 2.43 326079 129626 2.5 0, 2.8, 7.5 0, .2, 4.9 
2 55523 36705 .407 .431 462271 312500 1.48 0, 6, 10.1 0, 2.6, 8.3 
3 (seed) 63655 47509 .447 .96 1379270 30947 45 0, 22, 28.5 0, 0, 0 

 
Table 3. Set1 BitTorrent Client Measurement Results 

 
Trace 
Number 

US 
Bottle-
neck 
Link 
Speed 
Estimate 

AvgCx 
BW (bps) 

Avg 
TCP 
RTT 

Avg 
Loss 
Rate 
(%) 

Avg 
Aggregate 
US BW 
(bps) 

Avg 
Aggregate 
DS BW 
(bps) 

US/DS 
BW 
ratio 

US > 
100Kbps, 
10Kbps 
flows 

DS > 
100Kbps, 
10K bps 
flows 

4 3948836 191714 .366 2.6 2180090 1292200 1.69 5.8,10.0 4.9,8.4 
5 3809208 211886 .361 2.9 2525240 885066 2.85 5.8, 12.3 3,10.8 
6 (seed) 2425737 203143 .802 1.1 2671200 111122 24 6.4, 16.1 0,3.7 

 
Table 4. Set2 BitTorrent Client Measurement Results 

 
Trace 
Number 

US 
Bottle-
neck 
Link 
Speed 
Estimate 

AvgCx 
BW 
(bps) 

Avg 
TCP 
RTT 

Avg 
Loss 
Rate 
(%) 

Avg 
Aggregate 
US BW 
(bps) 

Avg 
Aggregate 
DS BW 
(bps) 

US/DS 
BW 
ratio 

US > 
100Kbps, 
40Kbps, 
10Kbps 
flows 

DS > 
100Kbps, 
40Kbps, 
10Kbps 
flows 

7 123797 23347 .989 4.35 189623 161176 1.18 .1, 1.2, 3.8 .1, 1.2, 3.8 
8 111115 17840 1.11 4.8 201635 156835 1.28 0, 1.2,4.7 0, .8, 4.4 
9 (seed) 140998 20869 3.93 .013 214107 5851 37 0, .4, 6.2 0, 0, 0 

 
Table 5. Set3 BitTorrent Client Measurement Results 

 
Set 

Identifier 
Avg 

TCP Cx 
BW 

Avg 
TCP Cx 
RTT 

Avg 
TCP Cx 
LR 

Aggregate 
US BW 

Aggregate 
DS BW 

US/DS 
BW 

ratio 

Number of 
concurrent 
US and DS 
flows 

Symmetric 60000 .05 4% 160 Kbps 1.4 Mbps .11 1 
Symmetric 
and 
parallel 
cxs 

17500 .2 6.5% 185 Kbps 1.3 Mbps .14 4 

 
Table 6. Summary of the Symmetric Simulations 
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Figure 3. CBR Jitter as BitTorrent Load Increases 
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Figure 4. CBR One-Way Latency as BitTorrent Load Increases 
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Figure 5. CBR Loss as BitTorrent Load Increases 
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Figure 6. Percent Contention Requests as BitTorrent Load Increases 
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Figure 7. Percent Concatenation Requests as BT Load Increases 
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Figure 8. Mean Number of Pkts in Concatenated Frames as BitTorrent Load Increases 
 



 
 

Symmetric cxs Symmetric and parallel cxs

Downstream asymmetry Upstream asymmetry

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45
Collision rate versus Load

C
ol

lis
io

n 
ra

te
 

Number BT flows

0 5 10 15 20 25 30 35 40 45 50
8

10

12

14

16

18

20

22

24
Collision rate versus Load

C
ol

lis
io

n 
ra

te
 

Number BT flows
0 5 10 15 20 25 30 35 40 45 50

6

8

10

12

14

16

18

20
Collision rate versus Load

C
ol

lis
io

n 
ra

te
 

Number BT flows

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30
Collision rate versus Load

C
ol

lis
io

n 
ra

te
 

Number BT flows

 

Figure 9. Collision rate as BitTorrent load increases 
 
 


