
DIVERSITY VIA CODE TRANSFORMATIONS: A SOLUTION FOR NGNA
RENEWABLE SECURITY

Yongxin Zhou, Alec Main
Cloakware Inc

Abstract

The Next Generation Network
Architecture (NGNA) has been designed to
dynamically download and renew secure
software components. Such renewability has
reduced effectiveness without code diversity,
which is the creation of semantically
equivalent yet structurally different code
components.

A promising solution for diversity is

code transformation technology, which
provides a large number of highly
obfuscated, different representations of the
same digital system. Such transformations
provide protection of secret information and
operations and effectively hide small
updates, while preventing automated
attacks. This forces attackers into time-
consuming manual reverse engineering to
break each diverse instance. When
components are renewed faster than the
time it takes to break an instance, then a
truly secure and flexible system has been
created.

We outline a mathematical foundation of

generating code transformations based upon
rich algebra systems, including finite
modular ring, finite Galois ring, 2-adic
algebra, and Boolean algebra. Then we give
some functional properties of Boolean
Arithmetic (BA) algebras and show that
Mixed Boolean and Arithmetic (MBA)
transforms provide efficient and secure
methods for data and operation hiding.
Lastly, we provide concrete examples of
data transforms, operation transforms, and
their compositions to generate diversity.

INTRODUCTION

The Need for Renewable and Diverse
Software

Software – although often considered the
weakest link when creating a secure content
protection system – is unavoidable in
content protection devices and systems of
the future. Ever-more powerful processors
and the supply of free, powerful operating
systems means that designers will continue
to leverage the flexibility of software to
future-proof designs and devices while
standards change and markets evolve.

The notion that software is insecure is
also under debate – especially for network
connected devices. IPTV networks have
largely chosen lower cost, software-
renewable-based security over traditional
smart cards. DirecTV, the largest satellite
digital broadcaster, is also fighting piracy
via software updates. Of course, their
system would have been more effective if it
had been designed for such countermeasures
from the beginning.

Most security experts now accept that a
defense in depth is required. You cannot
build one, super strong defense and expect it
to withstand attack forever. Technology
changes and defenses will fail. Similarly, the
reality is that neither hardware nor software
is immune to being hacked. The more
important questions are:

• How do you recover from an attack?

• How do you mitigate the impact of a
successful attack?

The simple answer is to renew the
security. Since hardware is by nature more
costly to replace, this ultimately means
renewing the software. Microsoft’s
Windows Media Digital Rights
Management (WMDRM) has remained
hack-free for a number of years, largely due
to Microsoft’s software renewability
strategy. While smart cards are also
renewable, the cost has proven unacceptable
and arguably their form factor has made it
easier for pirates to distribute their product.

Downloadable and renewable software
is a key component of the Next Generation
Network Architecture (NGNA) [1] project
and its new Downloadable Conditional
Access System (DCAS) [2]. A secure yet
generic microprocessor combined with
renewable software allows for future
flexibility and portability across Multiple
Service Operator (MSO) networks, while
improving security.

However, the software must also change
when it is renewed. This is the basic premise
behind software aging to prevent piracy of
consumer software [Anck] and DirecTV’s
approach toward piracy. But the time
between updates and the nature of the
changes are also critical factors: i) if it takes
months between software updates, then the
hacker (and his millions of closest friends on
the Internet) will have free content until the
next update; and ii) if the change to the
security is minimal, the hacker will perform
a differential analysis on the new software
and quickly isolate the changes and re-hack
the system.

Software diversity is the creation of

semantically equivalent yet structurally
diverse software – the key to solving piracy.
Software diversity can be deployed across
an installed base (spatial diversity) to
mitigate the effect of a successful attack to a
subset of the users. In addition, software

diversity can be deployed over time
(temporal diversity). Software obfuscation
and diversity is vital to hiding small changes
between software releases and preventing
differential analysis attacks against the
software.

The resistance of a system against attack
is a function of both initial resistance and
diversity (Figure 1). While well-designed
hardware provides higher initial resistance,
it typically lacks diversity. Software has
lower initial resistance but can easily be
diversified and renewed at low cost [Main].

Figure 1. Resistance of a System vs.

Diversity

Another effect to consider is that the
incentive of a hacker to attack a system (e.g.
fame, monetary gain, impact) increases as
diversity decreases (Figure 2). This is the
corollary of the Microsoft “monoculture”
described by some security experts [Greer].
It is also the effect of mass produced
hardware security (e.g. smartcards, Xbox
and PSP).

Figure 2. Hacker Incentive

Total Resistance

of the system

Diversity of Installed Base

R
es

is
ta

nc
e

to
 A

tta
ck

Diversity of Install Base

H
ac

ke
r I

nc
en

tiv
es

Automated Diversity

Code transformation is an automated
approach to generating a large number of
highly diverse and obfuscated software
instances that is fundamental to any
renewable software security.

Based on computational complexity
theory, such transformations provide
protection of secret information and
operations and hide small code changes
between updates, while preventing
automated attacks via diversity. This forces
the attacker into time-consuming manual
reverse engineering to break each diverse
instance. When components are renewed
faster than the time it takes to break the
instance, then a truly secure and flexible
system has been created [Schn]. Clearly,
automated techniques are required to allow
for fast updates when necessary.

In this paper, first we build our
mathematical foundation for generation of
code transformations over existing electrical
architectures, which inherit rich algebra
systems, including finite modular ring, finite
Galois ring, 2-adic algebra, and Boolean
algebra.

Then, by selecting the closed algebra
systems, we define Boolean Arithmetic
(BA) algebras, which applies to real
machine computations. We then show that
Mixed Boolean Arithmetic (MBA) functions
defined over these BA algebra provide an
efficient and secure method for data and
operation hiding.

Thirdly, we provide concrete examples
of code transformations using MBA
functions applied to data transforms,
operation transforms, and their compositions
to obfuscate some common operations, such
as addition.

Finally, we briefly discuss general
methods of attacking transformed code and
counterattacks.

Note that since crypto software
components in Conditional Access and
Digital Rights Management (DRM) systems
are related to integer computations only, we
will not discuss floating-point computations.
Floating point does not preserve the
algebraic structure discussed and more
hybrid and practical approaches are
required.

THE MATHEMATICAL FOUNDATION

Basic Binary Data Operations in Processors

Since binary code contains all
functionality of software and is what is
exposed to the hostile environment, it is
natural to address software security from
this level of code. Almost all processors,
both real time and general purpose, have a
set of common binary integer instructions.
This set includes basic arithmetic
operations, bitwise operations, comparison
operations, branch operations, and memory
access operations.

Arithmetic operations are addition +,
subtraction -, multiplication *, and division
/. Bitwise operations are and &, or |,
exclusive or ^, not ~, bit shift right >> and
left <<. Comparison operations include
greater than >, greater than or equal >=, less
than <, less or equal than <=, not equal !=,
and equal ==. In most systems, comparisons
are built together with branch operations.
Since memory access operations involve no
computation, they can simply be regarded as
value assignments, which can impact the
resulting code, but does not impact the
mathematical theory.

Introduction of Boolean Aritmetic Algebra

Software is composed of those basic
operations computing on binary data. The
most common data format used in all
operation systems is two’s complement
format [Dornhoff].

In this paper, we assume all data has a

fixed bit size n. We use Bn to represent all n-
bit binary data, where B = {0, 1}. For
example, B32 is the set of all 32-bit binary
values. To simplify the discussion, we
assume the address space of the digital
system is also n-bit, which is the case of real
machines with a 32-bit address space.

We have defined a new term called

Boolean Arithmetic (BA) algebra to
encapsulate all concepts above. BA algebra
is defined on set Bn with arithmetic, bitwise,
and comparison operations, thus, the algebra
is defined as (Bn, +, -, *, &, |, ^, ~, >>, <<,
>, >=, <, <=, ==, !=). For simplicity,
hereafter, we use Bn to represent this algebra
system.

Digital machines work on BA algebras.

That is, a binary program can be regarded as
a mathematical function from domain Bn X
Bn X … X Bn to co-domain Bn. A large
number of diversified code formats can be
generated for a given BA algebra function.

Algebra Systems over a BA Algebra

For a BA algebra, Bn, there are several
known algebraic systems as its subsystems.
Here we mention some of them, which are
useful for our code transformations:

(Bn, &, |, ~) is a Boolean algebra

structure. It is isomorphic to the one-bit
Boolean algebra and has all identities of
logical relationships [Dornhoff].

(Bn, ^, &) is a Boolean ring [Dornhoff].
(Bn, +, *) is isomorphic to the modular
integer ring Z/(2n), where Z is the integer
ring. Since this is two’s complement format,
then we define the Abelian group (Bn, +).
The modular ring (Bn, +, *) can also be
regarded as a Galois ring GR(2s,,2st), where
s and t are integers such that s*t=n [Wan].

(Bn, +, *, /) can be interpreted as a

truncation of the 2-adic ring Z2.

Over the binary data values Bn, we can

define a finite field GF(2n) = (Bn, ^, #)
algebra system, where # is the multiplication
of the field [Lidl].

Over rings Z/(2n), GF(2n) and

GR(2s,,2st), we have polynomial rings
Z/(2n)[x], GF(2n)[x], and GR(2s,,2st)[x], as
well as multivariate polynomial rings
[Jacobson]. More algebra structures can be
defined over those rings, such as group rings
Z/(2n)G, GF(2n)G and GR(2s,,2st)G, and loop
rings Z/(2n)L, GF(2n)L and GR(2s,,2st)L,
where G is a group and L is a loop
[Passman] [Goodaire]. Matrix rings can also
be defined over all these rings as can many
more algebra systems [Jacobson].

In summary, we demonstrated that over

the set Bn, a large number of algebra
systems is defined and can be represented by
operations in BA algebra. This fact is the
theoretical foundation for us to create
diversified code. This is a huge area to
explore further and apply to software, but in
the remainder of this paper, we restrict
ourselves to the algebra properties from
Boolean (Bn, &, |, ^, ~) and modular ring
(Bn, +, *) and use them to create examples
of code transformations.

CODE TRANSFORMATIONS

Transforms for Operands and Operators

Software is defined by its operations and
orders of the execution of those operations.
Code transformations are transforms of
operands, called data transforms; and
transforms of operators, called operation
transforms; and rearrangements of the
execution order, most likely related to
different basic blocks, called control flow
transforms.

This paper focuses on the first two
transforms and does not discuss control flow
transforms. Specifically, we explore
protection and diversity by applying bitwise
and arithmetic operations of a BA algebra.

Data Transforms

To generate functionally equivalent
code, the requirement of invertibility of a
data transform is necessary. Any one-to-one
mapping f(x) from Bn to Bn can be used as
data transforms. For simplicity, we will not
consider multivariate cases, such as matrix
transforms, in this paper.

To illustrate data transforms, let’s start

with linear transforms. Suppose a is an odd
number and b is any integer of Z/(2n).
Define a linear transform f(x) = a*x + b.
Then f(x) is an invertible data transform
with inverse g(x) = a-1*x + (-a-1*b). For
instance, for 32-bit words:

f(x) = 674529845*x + 944280100

is a data transform with inverse function

g(x) = 998260765 *x + 490631660

It is easy to verify that f(g(x))=x and
gf(x)=x, for any x in Z/(2n).

We also have invertible quadratic
polynomial transforms over Z/(2n). Let a, b,
c be three integers and define function f(x) =
a*x2 + b*x + c. f(x) is invertible if a is even
and b is odd [Rivest]. To have an invertible
quadratic function g(x) = u*x2 + v*x + w
with integer u, v, w, solve equation over
Z/(2n) based on the condition g(f(x))=x. It
gives us a formula for u, v and w:

u = -ab-3,
v = 2a*b-3*c+b-1,
w = -b-1*c – a*b-3*c2,

if we assume the coefficient a of f(x)
satisfies the condition 2*a2 = 0. For 32-bit
words, a concrete example is:

f(x) = 1502216192*x2 + 3387143129*x +
1221118466

with inverse function:

g(x) = 113639424*x2 + 841194601*x +
3173903662.

Again, it is easy to verify f(g(x)) =
g(f(x)) = x , for any x in Z/(2n).

In general, for any invertible polynomial
function f(x) of degree n, we can construct
its inverse in polynomial format with the
given degree n under certain conditions of
coefficients of f(x).

Other than polynomial functions, there
exist enormous invertible functions with
MBA expressions over BA algebra, as
shown in [Klimov]. All those transforms
can be used as data transforms.

Operation Transforms

Operation transforms replace one
operation or multiple operations by some
other operations. For example, over BA

algebra Bn, addition x + y can be replaced
by expression x^y + 2*(x&y), because they
are equal over Bn. This is an example of
MBA expression, and there are other
interesting MBA identities that can also be
used, some of which have been used in
hardware implementation, such as x^y =
(x|y)–(x&y). [Warren]

Such identities are quite useful for operation
transforms, and we think they deserve a new
definition. Over Bn, identities of the format

∑ ai*ei = 0, where ai are non-zero
constant integers and ei are bitwise
expressions of certain variables, are linear
MBA (Mixed Boolean and Arithmetic)
identities. Linear MBA identities can be
generated as follows.

For a fixed number of variables, if the
columns of the truth tables of some Boolean
expressions ei of these variables form a set
of linearly dependent vectors over modular
ring Z/(2n) with coefficients ai, we can
construct a linear MBA identity ∑ ai*ei = 0.

For any given singular (0,1)-matrix M,
we have a linear MBA identity ∑ ai*ei = 0,
where ei are Boolean expressions whose
truth tables are columns of M, and vector ai
is the non-zero solution from the linear
system M*X = 0 over Z/(2n).

Since there exists a large number of
singular (0,1)-matrices, the number of linear
MBA identities is enormous. Following
methods mentioned above, we can also
show that any bitwise expressions can be
replaced by a nontrivial linear MBA
expression from a linear MBA identity.

For two variables x, y from Bn, here we
list more linear MBA identities:

x + y = (x^(~y)) + 2*(x|y) + 1;
x | y = x + y + 1 + ((-x-1)|(-y-1));

x & y = ((~x)|y) + x + 1;
x ^ y = x – y - 2*(x |~ y) - 2.

We encourage readers to write code to
verify an interesting non-linear
multiplication MBA identity:

x*y = (x&y)*(x|y) + (x&~y)*(~x&y).

EXAMPLES OF CODE
TRANSFORMATIONS

Compositions for Arithmetic and Bitwise
Operations

By using functional compositions of data
and operation transforms, a given function
can be reformatted into a new one with the
same functionality. Because of the large
number of diversified data and operation
transforms, diversified code of different
formats can be created.

In this section, we give examples of
transformed code for some basic operations
of a BA algebra. These examples are over
BA algebra system B32 of 32-bit data and
operations. They are generated based on the
data transform f(x) = a*x + b and some
linear MBA identities of two variables.
Some random coefficients are assigned for
integers a and b which are either split or
folded with other constants in the
expression. All code can be easily verified
using computer programs, while noting that
signed and unsigned data types make no
difference in binary code.

In the following examples, we assume x
and y are two input operands and z is the
output operand of the given operation. Other
variables are intermediate ones with the
same variable size.

ADDITION, z is x + y:

t1 = (4211719010 ^ 2937410391 * x) + 2 *
(2937410391 * x | 83248285) +
4064867995;

t2 = (2937410391 * x | 3393925841) +
638264265 * y - ((2937410391 * x) &
901041454);

z = 519915623 * t1 - ((3383387769 * t2 +
129219187) ^ 2756971371) – 2 *
((911579527 * t2 + 4165748108) |
2756971371) + 4137204492;

SUBTRACTION, z is x - y:

t1 = (268586306 ^ (904621911 * x)) + 2 *
((904621911*x) |4026380989) +
3383600763;

t2 = (904621911 * x | 898293889) +
961858761 * y - ((904621911 * x) &
3396673406);

z = 2385439847 * t1 -((673378951 * t2 +
2646655957) ^ 4036393323) -2 *
((3621588345 * t2 + 1648311338) |
4036393323) + 2704000620;

OR, z is x | y:

t1 = (223550072 ^ 1783698419 * x) + 2 *
(1783698419 * x |4071417223) +
865773809;

t2 = (1783698419 * x | 3200160250) +
3498694157*y - ((1783698419 * x) &
1094807045);

z = 1905442107 * t1 -((94202053 * t2 +
1827854967) ^ 1206196916) +
((2389525189 * t1 + 1837740140) |
(4200765243 * t2 + 2621826401)) -2 *
((4200765243 * t2 + 2467112328) |
1206196916) + 3508709997;

AND, z is x & y:

t1 = (543752565 ^ 3040826005 * x) + 2 *
(3040826005 *x|3751214730) +
3865950549;

t2 = (3040826005 * x | 3870539833) +
1950617889*y - ((3040826005 * x) &
424427462);

z = ((830084931 * t1 + 2725441253) &
(2151370015 * t2 + 843551768)) +
3464882365 * t1 - ((2143597281 * t2 +
1431133401) ^ 2824232692) -2 *
((2151370015 * t2 + 2863833894) |
2824232692) + 2119073563;

XOR, z is x ^ y:

t1 = (913079019 ^ 864001891 * x) + 2 *
(864001891 * x |3381888276) +
1912011113;

t2 = (864001891 * x | 1111987895) +
3067869469 * y - ((864001891 * x) &
3182979400);

z = 4281784907 * t1 - ((722243893 * t2 +
758131618) ^ 2456696338) – 2 *
((3572723403 * t2 + 3536835677) |
2456696338) + 3205073209 + 2 *
((13182389 * t1 + 2473633363) |
(3572723403 * t2 + 314825442));

Compositions for Comparison Operations

Comparison operations are used as
decision makers in the execution path of the
code. For example, in a Conditional Access
application, it plays an important role for
policy checks.

Here we use equal == comparison as an
example to show how to use MBA functions
to transform the code. We also apply the
comparison results into a computation with

linear MBA functions such that inequality of
the two values will cause malfunction of the
original computations.

Suppose we have two variables p1 and
p2. In the following example, if p1 equals
p2 the output z is x + y, otherwise it has a
very high probability that the value of z is
not x + y:

t1 = (224336580 ^ 1271166401 * x) -
((~p2) | (3572723403*x)) + 2 *
(1271166401 * x | 4070630715) + (p1 &
(3572723403 * x)) + 3753888605 - p1;

t2 = (1570335793 * p1 | 3302094725) +
1182396209 * y - ((1570335793 * p2) &
992872570);

z = 4131953217 * t1 -((687540689 * t2 +
3822681666) ^ 3209267133) – 2 *
((3607426607 * t2 + 472285629) |
3209267133)+ 56754764;

By saying high probability, we
recognize that in some special cases (e.g. for
x = 0 or -1), then the equation may still
compute. These cases can be avoided in
practice, or added to create further
ambiguity and frustration for the attacker.

Again, interested readers can verify this
with a computer program.

Attacks and Counterattacks

In a hostile environment, where the
cryptographic keys and code of Conditional
Access (CA) systems operate, there exist
many possible attacks. Common ones are
static and dynamic code analysis, powered
with sophisticated debug tools, as well as
tampering and emulation type attacks
[Oorschot].

Although many attacks exist and more
will be developed, we have focused on
analysis and tampering attacks designed to
either recover secrets or algorithms or
change the behavior of the software. These
types of attacks (as opposed to emulation
type attacks) require reverse engineering (or
analysis) of the code.

Reverse engineering attacks fall into two
basic types: automated and non-automated.
The first one is using general algorithms to
attack code, while the second one is the
combination of using some algorithms and
manual tools to determine the functionality
of a given program.

It can been proven that the code
recognition problem, that is, to classify
different code formats based on their
functionalities, is an NP-complete problem.
Therefore, it would be difficult, if not
impossible, for attackers to find an efficient
general algorithm to determine the
functionalities of all possible code.

Since creating a general automated
attack is difficult, attackers would focus on
special properties of the code and tools in an
attempt to simplify portions of the code.
Taking examples in the previous section that
use Boolean arithmetic operations, an
attacker could try to use symbolic
simplification packages in computer algebra
systems, such as commercial products
Maple [3], or Mathematica [4]. It is easy to
find that those examples cannot be
simplified because of the mixture of
arithmetic and bitwise operations. These
tools would need to be adapted to treat this
special situation, but countermeasures need
to either apply more algebra structures into
the code expression, or to inject more MBA
identities into the code. Determining such
identities is a hard problem.

Only highly skilled individuals can
attempt a manual attack against diversified
code generated from code transformations
based on different algebraic systems. While
they may learn certain techniques when
reverse engineering the first instance, the
ability to generate specialized helper tools or
utilities will be difficult. The variety of
algebra systems available is extensive and
the composition of such systems result in an
extraordinarily high number of
combinations. If the only viable attack is to
manually reverse engineer the resulting
code, then clearly we have achieved our
objective.

Furthermore, code obfuscation
techniques have been developed to
seamlessly inject instances of NP complete
problems, such as 3SAT, into transformed
code. This makes it impossible to perform
manual attacks on individual instances.

CONCLUSION

Rich algebraic structures compatible
with digital processors guarantee the
existence of a large number of code
transforms.

As demonstrated in our examples, code
transformations introduce obfuscation and
diversity, which are vital for hiding secrets,
hiding small code changes and preventing
automated analysis which in turn prevents
automated attacks against the installed base
of devices.

By using Mixed Boolean Arithmetic
transformations to data and operators, the
resulting diverse code can be renewed and
be expected to withstand attack for a
reasonable period of time. These
transformations are not susceptible to
analysis using commercial tools such as
Mathematica or Maple.

While the new DCAS system allows for
renewable software, this must be diverse to
prevent piracy. Hardware does not provide
suitable diversity, leaving this role to
software. Total system resistance to attack is
a function of resistance and diversity. Code
transformations provide a practical
automated solution for such low-cost,
renewable, software security.

ACKNOWLEDGEMENTS

The authors thank Phil Eisen, Song Chen
and Heather MacIntosh for their helpful
comments and remarks.

END NOTES

[1] Next Generation Network Architecture
(NGNA):www.cabledatacomnews.com/ngna
/ngnaprimer.html

[2] CableLabs: www.opencable.com/dcas/

[3] Maple: www.maplesoft.com

[4] Mathematica: www.wolfram.com

REFERENCES

[Anck] Anckaert, Bertrand; De Sutter,
Bjorn; and De Bosschere, Koen. Software
Piracy Prevention through Diversity. In
Proceedings of the 4th ACM Workshop on
Digital Rights Management, 2004.

[Dornhoff] Dornhoff, L.L., Hohn, F.E.,
Applied Modern Algebra, Macmillan
Publishing Co., Inc., 1978.

[Goodaire] Goodaire, E. G., Jespers, E.,
Polcino Milies, C., Alternative Loop Rings,
North Holland, 1996.

[Greer] Greer, Dan, et al. Cyber Insecurity:
The Cost of Monopoly. September 23, 2003.

[Jacobson] Jacobson, N., Basic Algebra I, W
H Freeman & Co 2nd edition, 1985.

[Klimov] Klimov, A., Shamir, A., A New
Class of Invertible Mappings, in
Cryptographic Hardware and Embedded
Systems - CHES 2002, Lecture Notes in
Computer Science, Vol 2523, pp 470-483,
2003.

[Lidl] Lidl, R., Niederreiter, H., Finite
Fields, Second edition, Cambridge
University Press, 1997.

[Main] Main, Alec. Security and savings:
Going digital and getting both, NCTA
Technical Papers. May 2004.

[Oorschot] Main, A. and van Oorschot, P.C.
Software Protection and Application
Security: Understanding the Battleground.
Springer LNCS. June 2003.

[Passman] Passman, D. S., The Algebraic
Structure of Group Rings, Wiley-
Interscience, 1977.

[Rivest] Rivest, R. L., Permutation
Polynomials modulo 2w, in Finite Fields and
their Applications, Vol7 (2001), pp287-292.

[Schn] Schneider, F. B., Zhou, L.
Implementing Trustworthy Services Using
Replicated State Machines, IEEE Security
and Privacy, Vol3 (5), pp 34—43,2005.

[Wan] Wan, Zhe-Xian, Lectures on Finite
Fields and Galois Rings, World Scientific
Pub Co Inc, 2003.

[Warren] Warren, H. S., Hacker’s Delight,
Addison- Wesley, 2003.

About the Authors

Yongxin Zhou is a senior mathematician at
Cloakware. His name is on the author list of
two published US patents on software
security and 12 research papers on algebra
theory. He holds a PhD in Mathematics from
Memorial University of Newfoundland,
Canada.
(yongxin.zhou@cloakware.com)

Alec Main is Cloakware’s Chief Technology
Officer. He has published numerous papers
and articles on software protection and has
spoken at key conferences including The
National Show, RSA Conference, Intel
Developer Forum, Information Highways,
DRM Strategies, Mobile DRM and
Certicom-PKCS.
(alec.main@cloakware.com)

