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Abstract 
 

The Next Generation Network 
Architecture (NGNA) has been designed to 
dynamically download and renew secure 
software components. Such renewability has 
reduced effectiveness without code diversity, 
which is the creation of semantically 
equivalent yet structurally different code 
components. 

 
A promising solution for diversity is 

code transformation technology, which 
provides a large number of highly 
obfuscated, different representations of the 
same digital system. Such transformations 
provide protection of secret information and 
operations and effectively hide small 
updates, while preventing automated 
attacks. This forces attackers into time-
consuming manual reverse engineering to 
break each diverse instance. When 
components are renewed faster than the 
time it takes to break an instance, then a 
truly secure and flexible system has been 
created. 

 
We outline a mathematical foundation of 

generating code transformations based upon 
rich algebra systems, including finite 
modular ring, finite Galois ring, 2-adic 
algebra, and Boolean algebra. Then we give 
some functional properties of Boolean 
Arithmetic (BA) algebras and show that 
Mixed Boolean and Arithmetic (MBA) 
transforms provide efficient and secure 
methods for data and operation hiding.  
Lastly, we provide concrete examples of 
data transforms, operation transforms, and 
their compositions to generate diversity.  

INTRODUCTION 
 
The Need for Renewable and Diverse 
Software  
 

Software – although often considered the 
weakest link when creating a secure content 
protection system – is unavoidable in 
content protection devices and systems of 
the future. Ever-more powerful processors 
and the supply of free, powerful operating 
systems means that designers will continue 
to leverage the flexibility of software to 
future-proof designs and devices while 
standards change and markets evolve.  
 

The notion that software is insecure is 
also under debate – especially for network 
connected devices. IPTV networks have 
largely chosen lower cost, software-
renewable-based security over traditional 
smart cards. DirecTV, the largest satellite 
digital broadcaster, is also fighting piracy 
via software updates. Of course, their 
system would have been more effective if it 
had been designed for such countermeasures 
from the beginning.  
 

Most security experts now accept that a 
defense in depth is required. You cannot 
build one, super strong defense and expect it 
to withstand attack forever. Technology 
changes and defenses will fail. Similarly, the 
reality is that neither hardware nor software 
is immune to being hacked. The more 
important questions are: 
 

• How do you recover from an attack? 
 

• How do you mitigate the impact of a 
successful attack? 



The simple answer is to renew the 
security. Since hardware is by nature more 
costly to replace, this ultimately means 
renewing the software. Microsoft’s 
Windows Media Digital Rights 
Management (WMDRM) has remained 
hack-free for a number of years, largely due 
to Microsoft’s software renewability 
strategy. While smart cards are also 
renewable, the cost has proven unacceptable 
and arguably their form factor has made it 
easier for pirates to distribute their product. 
 

Downloadable and renewable software 
is a key component of the Next Generation 
Network Architecture (NGNA) [1] project 
and its new Downloadable Conditional 
Access System (DCAS) [2]. A secure yet 
generic microprocessor combined with 
renewable software allows for future 
flexibility and portability across Multiple 
Service Operator (MSO) networks, while 
improving security. 
 

However, the software must also change 
when it is renewed. This is the basic premise 
behind software aging to prevent piracy of 
consumer software [Anck] and DirecTV’s 
approach toward piracy. But the time 
between updates and the nature of the 
changes are also critical factors: i) if it takes 
months between software updates, then the 
hacker (and his millions of closest friends on 
the Internet) will have free content until the 
next update; and ii) if the change to the 
security is minimal, the hacker will perform 
a differential analysis on the new software 
and quickly isolate the changes and re-hack 
the system. 

 
Software diversity is the creation of 

semantically equivalent yet structurally 
diverse software – the key to solving piracy. 
Software diversity can be deployed across 
an installed base (spatial diversity) to 
mitigate the effect of a successful attack to a 
subset of the users. In addition, software 

diversity can be deployed over time 
(temporal diversity). Software obfuscation 
and diversity is vital to hiding small changes 
between software releases and preventing 
differential analysis attacks against the 
software. 
 

The resistance of a system against attack 
is a function of both initial resistance and 
diversity (Figure 1). While well-designed 
hardware provides higher initial resistance, 
it typically lacks diversity. Software has 
lower initial resistance but can easily be 
diversified and renewed at low cost [Main]. 

 
Figure 1. Resistance of a System vs. 

Diversity 
 

Another effect to consider is that the 
incentive of a hacker to attack a system (e.g. 
fame, monetary gain, impact) increases as 
diversity decreases (Figure 2). This is the 
corollary of the Microsoft “monoculture” 
described by some security experts [Greer]. 
It is also the effect of mass produced 
hardware security (e.g. smartcards, Xbox 
and PSP). 

 
Figure 2. Hacker Incentive 
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Automated Diversity  
 

Code transformation is an automated 
approach to generating a large number of 
highly diverse and obfuscated software 
instances that is fundamental to any 
renewable software security.  
 

Based on computational complexity 
theory, such transformations provide 
protection of secret information and 
operations and hide small code changes 
between updates, while preventing 
automated attacks via diversity. This forces 
the attacker into time-consuming manual 
reverse engineering to break each diverse 
instance. When components are renewed 
faster than the time it takes to break the 
instance, then a truly secure and flexible 
system has been created [Schn]. Clearly, 
automated techniques are required to allow 
for fast updates when necessary. 
 

In this paper, first we build our 
mathematical foundation for generation of 
code transformations over existing electrical 
architectures, which inherit rich algebra 
systems, including finite modular ring, finite 
Galois ring, 2-adic algebra, and Boolean 
algebra.  
 

Then, by selecting the closed algebra 
systems, we define Boolean Arithmetic 
(BA) algebras, which applies to real 
machine computations. We then show that 
Mixed Boolean Arithmetic (MBA) functions 
defined over these BA algebra provide an 
efficient and secure method for data and 
operation hiding.   
 

Thirdly, we provide concrete examples 
of code transformations using MBA 
functions applied to data transforms, 
operation transforms, and their compositions 
to obfuscate some common operations, such 
as addition.  

Finally, we briefly discuss general 
methods of attacking transformed code and 
counterattacks.  
 

Note that since crypto software 
components in Conditional Access and 
Digital Rights Management (DRM) systems 
are related to integer computations only, we 
will not discuss floating-point computations. 
Floating point does not preserve the 
algebraic structure discussed and more 
hybrid and practical approaches are 
required. 
 
THE MATHEMATICAL FOUNDATION 

 
Basic Binary Data Operations in Processors 
 

Since binary code contains all 
functionality of software and is what is 
exposed to the hostile environment, it is 
natural to address software security from 
this level of code.  Almost all processors, 
both real time and general purpose, have a 
set of common binary integer instructions. 
This set includes basic arithmetic 
operations, bitwise operations, comparison 
operations, branch operations, and memory 
access operations.  
 

Arithmetic operations are addition +, 
subtraction -, multiplication *, and division 
/. Bitwise operations are and &, or |, 
exclusive or ^, not ~, bit shift right >> and 
left <<. Comparison operations include 
greater than >, greater than or equal >=, less 
than <, less or equal than <=, not equal !=, 
and equal ==. In most systems, comparisons 
are built together with branch operations.  
Since memory access operations involve no 
computation, they can simply be regarded as 
value assignments, which can impact the 
resulting code, but does not impact the 
mathematical theory.  
 
 



Introduction of Boolean Aritmetic Algebra  
 

Software is composed of those basic 
operations computing on binary data.  The 
most common data format used in all 
operation systems is two’s complement 
format [Dornhoff]. 

 
In this paper, we assume all data has a 

fixed bit size n. We use Bn to represent all n-
bit binary data, where B = {0, 1}.  For 
example, B32 is the set of all 32-bit binary 
values. To simplify the discussion, we 
assume the address space of the digital 
system is also n-bit, which is the case of real 
machines with a 32-bit address space. 

 
We have defined a new term called 

Boolean Arithmetic (BA) algebra to 
encapsulate all concepts above.  BA algebra 
is defined on set Bn with arithmetic, bitwise, 
and comparison operations, thus, the algebra 
is defined as (Bn, +, -, *, &, |, ^, ~, >>, <<, 
>, >=, <, <=, ==, !=). For simplicity, 
hereafter, we use Bn to represent this algebra 
system.   

 
Digital machines work on BA algebras. 

That is, a binary program can be regarded as 
a mathematical function from domain Bn X 
Bn X … X  Bn to co-domain Bn. A large 
number of diversified code formats can be 
generated for a given BA algebra function. 
 
Algebra Systems over a BA Algebra 
 

For a BA algebra, Bn, there are several 
known algebraic systems as its subsystems. 
Here we mention some of them, which are 
useful for our code transformations: 

 
(Bn, &, |, ~) is a Boolean algebra 

structure. It is isomorphic to the one-bit 
Boolean algebra and has all identities of 
logical relationships [Dornhoff].   

 

(Bn, ^, &) is a Boolean ring [Dornhoff]. 
(Bn, +, *) is isomorphic to the modular 
integer ring Z/(2n), where Z is the integer 
ring. Since this is two’s complement format, 
then we define the Abelian group (Bn, +).  
The modular ring (Bn, +, *) can also be 
regarded as a Galois ring GR(2s,,2st), where 
s and t are integers such that s*t=n  [Wan].   

 
(Bn, +, *, /) can be interpreted as a 

truncation of the 2-adic ring Z2.   
 
Over the binary data values Bn, we can 

define a finite field GF(2n) = (Bn, ^, # ) 
algebra system, where # is the multiplication 
of the field  [Lidl].  

 
Over rings Z/(2n), GF(2n) and 

GR(2s,,2st), we have polynomial rings 
Z/(2n)[x], GF(2n)[x], and GR(2s,,2st)[x], as 
well as multivariate polynomial rings 
[Jacobson]. More algebra structures can be 
defined over those rings, such as group rings 
Z/(2n)G, GF(2n)G and GR(2s,,2st)G, and loop 
rings Z/(2n)L, GF(2n)L and GR(2s,,2st)L, 
where G is a group and L is a loop 
[Passman] [Goodaire]. Matrix rings can also 
be defined over all these rings as can many 
more algebra systems [Jacobson].   

 
In summary, we demonstrated that over 

the set Bn, a large number of algebra 
systems is defined and can be represented by 
operations in BA algebra.  This fact is the 
theoretical foundation for us to create 
diversified code.  This is a huge area to 
explore further and apply to software, but in 
the remainder of this paper, we restrict 
ourselves to the algebra properties from 
Boolean (Bn, &, |, ^, ~) and modular ring 
(Bn, +, *) and use them to create examples 
of code transformations. 

 



CODE TRANSFORMATIONS 
 
Transforms for Operands and Operators 
 

Software is defined by its operations and 
orders of the execution of those operations. 
Code transformations are transforms of 
operands, called data transforms; and 
transforms of operators, called operation 
transforms; and rearrangements of the 
execution order, most likely related to 
different basic blocks, called control flow 
transforms.  
 

This paper focuses on the first two 
transforms and does not discuss control flow 
transforms. Specifically, we explore 
protection and diversity by applying bitwise 
and arithmetic operations of a BA algebra.  
 
Data Transforms 
 

To generate functionally equivalent 
code, the requirement of invertibility of a 
data transform is necessary. Any one-to-one 
mapping f(x) from Bn to Bn can be used as 
data transforms.  For simplicity, we will not 
consider multivariate cases, such as matrix 
transforms, in this paper.  

 
To illustrate data transforms, let’s start 

with linear transforms. Suppose a is an odd 
number and b is any integer of Z/(2n). 
Define a linear transform f(x) = a*x + b. 
Then f(x) is an invertible data transform 
with inverse g(x) = a-1*x + (-a-1*b).   For 
instance, for 32-bit words:  
 
f(x) = 674529845*x + 944280100 
 
is a data transform with inverse function  
 
g(x) = 998260765 *x + 490631660 
 

It is easy to verify that f(g(x))=x and 
gf(x)=x, for any x in Z/(2n). 

We also have invertible quadratic 
polynomial transforms over Z/(2n). Let a, b, 
c be three integers and define function f(x) = 
a*x2 + b*x + c. f(x) is invertible if a is even 
and b is odd [Rivest]. To have an invertible 
quadratic function g(x) = u*x2 + v*x + w 
with integer u, v, w, solve equation over 
Z/(2n) based on the condition g(f(x))=x. It 
gives us a formula for u, v and w: 
 
u = -ab-3,  
v = 2a*b-3*c+b-1,  
w = -b-1*c – a*b-3*c2,  
 
if we assume the coefficient a of f(x) 
satisfies the condition 2*a2 = 0.  For 32-bit 
words, a concrete example is: 
 
f(x) = 1502216192*x2 + 3387143129*x + 
1221118466  
 
with inverse function: 
 
g(x) = 113639424*x2 + 841194601*x + 
3173903662.  
 

Again, it is easy to verify f(g(x)) = 
g(f(x)) = x , for any x in Z/(2n). 
 

In general, for any invertible polynomial 
function f(x) of degree n, we can construct 
its inverse in polynomial format with the 
given degree n under certain conditions of 
coefficients of f(x). 
 

Other than polynomial functions, there 
exist enormous invertible functions with 
MBA expressions over BA algebra, as 
shown in [Klimov].  All those transforms 
can be used as data transforms. 
 
Operation Transforms 
 

Operation transforms replace one 
operation or multiple operations by some 
other operations. For example, over BA 



algebra Bn, addition x + y can be replaced 
by expression x^y + 2*(x&y), because they 
are equal over Bn. This is an example of 
MBA expression, and there are other 
interesting MBA identities that can also be 
used, some of which have been used in 
hardware implementation, such as x^y = 
(x|y)–(x&y). [Warren]  
 
Such identities are quite useful for operation 
transforms, and we think they deserve a new 
definition.  Over Bn, identities of the format  

∑ ai*ei = 0, where ai are non-zero 
constant integers and ei are bitwise 
expressions of certain variables, are linear 
MBA (Mixed Boolean and Arithmetic) 
identities. Linear MBA identities can be 
generated as follows.  
 

For a fixed number of variables, if the 
columns of the truth tables of some Boolean 
expressions ei of these variables form a set 
of linearly dependent vectors over modular 
ring Z/(2n) with coefficients ai, we can 
construct a linear MBA identity ∑ ai*ei = 0. 
 

For any given singular (0,1)-matrix M, 
we have a linear MBA identity ∑ ai*ei  = 0, 
where ei are Boolean expressions whose 
truth tables are columns of M, and vector ai 
is the non-zero solution from the linear 
system M*X = 0 over Z/(2n). 
 

Since there exists a large number of 
singular (0,1)-matrices, the number of linear 
MBA identities is enormous. Following 
methods mentioned above, we can also 
show that any bitwise expressions can be 
replaced by a nontrivial linear MBA 
expression from  a linear MBA identity.  
 

For two variables x, y from Bn, here we 
list more linear MBA identities: 
 
x + y =  (x^(~y)) + 2*(x|y) + 1; 
x | y = x + y + 1 + ((-x-1)|(-y-1)); 

x & y =  ( (~x)|y )  + x + 1; 
x ^ y = x – y - 2*(x |~ y)  - 2. 
 

We encourage readers to write code to 
verify an interesting non-linear 
multiplication MBA identity: 
 
x*y = (x&y)*(x|y) + (x&~y)*(~x&y). 
 
 

EXAMPLES OF CODE 
TRANSFORMATIONS 

 
Compositions for Arithmetic and Bitwise 
Operations 
 

By using functional compositions of data 
and operation transforms, a given function 
can be reformatted into a new one with the 
same functionality. Because of the large 
number of diversified data and operation 
transforms, diversified code of different 
formats can be created. 
 

In this section, we give examples of 
transformed code for some basic operations 
of a BA algebra. These examples are over 
BA algebra system B32 of 32-bit data and 
operations. They are generated based on the 
data transform f(x) = a*x + b and some 
linear MBA identities of two variables. 
Some random coefficients are assigned for 
integers a and b which are either split or 
folded with other constants in the 
expression.  All code can be easily verified 
using computer programs, while noting that 
signed and unsigned data types make no 
difference in binary code. 
 

In the following examples, we assume x 
and y are two input operands and z is the 
output operand of the given operation. Other 
variables are intermediate ones with the 
same variable size. 
 
 



ADDITION, z is x + y:   
 
t1 = (4211719010 ^ 2937410391 * x) + 2 * 
(2937410391 * x | 83248285) +  
4064867995; 
 
t2 = (2937410391 * x | 3393925841) + 
638264265 * y - ((2937410391 * x) & 
901041454); 
 
z  = 519915623 * t1 - ((3383387769 * t2 + 
129219187) ^ 2756971371) – 2 * 
((911579527 * t2 + 4165748108) | 
2756971371) + 4137204492; 
 
SUBTRACTION, z is x - y:   
 
t1 = (268586306 ^ (904621911 * x)) + 2 * 
((904621911*x) |4026380989) + 
3383600763; 
 
t2 = (904621911 * x | 898293889) + 
961858761 * y - ((904621911 * x) & 
3396673406);  
 
z  = 2385439847 * t1 -((673378951 * t2 + 
2646655957) ^ 4036393323) -2 * 
((3621588345 * t2 + 1648311338) | 
4036393323) + 2704000620;   
 
OR, z is  x | y: 
 
t1 = (223550072 ^ 1783698419 * x) + 2 * 
(1783698419 * x |4071417223) + 
865773809; 
 
t2 = (1783698419 * x | 3200160250) + 
3498694157*y - ((1783698419 * x) & 
1094807045); 
 
z = 1905442107 * t1 -((94202053 * t2 + 
1827854967) ^ 1206196916) +   
((2389525189 * t1 + 1837740140) | 
(4200765243 * t2 + 2621826401)) -2 * 
((4200765243 * t2 + 2467112328) | 
1206196916) + 3508709997;   

AND, z is x & y: 
 
t1 = (543752565 ^ 3040826005 * x) + 2 * 
(3040826005 *x|3751214730) + 
3865950549; 
 
t2 = (3040826005 * x | 3870539833) + 
1950617889*y - ((3040826005 * x) & 
424427462); 
 
z  = ((830084931 * t1 + 2725441253) & 
(2151370015 * t2 + 843551768)) + 
3464882365 * t1 - ((2143597281 * t2 + 
1431133401) ^ 2824232692) -2 * 
((2151370015 * t2 + 2863833894) | 
2824232692) + 2119073563; 
 
XOR, z is x ^ y: 
 
t1 = (913079019 ^ 864001891 * x) + 2 * 
(864001891 * x |3381888276) + 
1912011113; 
 
t2 = (864001891 * x | 1111987895) + 
3067869469 * y - ((864001891 * x) & 
3182979400); 
 
z = 4281784907 * t1 - ((722243893 * t2 + 
758131618) ^ 2456696338) – 2 * 
((3572723403 * t2 + 3536835677) | 
2456696338) + 3205073209 + 2 * 
((13182389 * t1 + 2473633363) | 
(3572723403 * t2 + 314825442)); 
 
Compositions for Comparison Operations 
 

Comparison operations are used as 
decision makers in the execution path of the 
code. For example, in a Conditional Access 
application, it plays an important role for 
policy checks. 
 

Here we use equal == comparison as an 
example to show how to use MBA functions 
to transform the code. We also apply the 
comparison results into a computation with 



linear MBA functions such that inequality of 
the two values will cause malfunction of the 
original computations.  
 

Suppose we have two variables p1 and 
p2. In the following example, if p1 equals 
p2 the output z is x + y, otherwise it has a 
very high probability that the value of z is 
not x + y: 
 
t1 = (224336580 ^ 1271166401 * x) -  
((~p2) | (3572723403*x)) + 2 * 
(1271166401 * x | 4070630715) + (p1 & 
(3572723403 * x)) + 3753888605 - p1; 
 
t2 = (1570335793 * p1 | 3302094725) + 
1182396209 * y - ((1570335793 * p2) & 
992872570); 
 
z = 4131953217 * t1 -((687540689 * t2 + 
3822681666) ^ 3209267133) – 2 * 
((3607426607 * t2 + 472285629) | 
3209267133)+ 56754764;    
 

By saying high probability, we 
recognize that in some special cases (e.g. for 
x = 0 or -1), then the equation may still 
compute. These cases can be avoided in 
practice, or added to create further 
ambiguity and frustration for the attacker. 
 

Again, interested readers can verify this 
with a computer program. 
 
Attacks and Counterattacks  
 

In a hostile environment, where the 
cryptographic keys and code of Conditional 
Access (CA) systems operate, there exist 
many possible attacks. Common ones are 
static and dynamic code analysis, powered 
with sophisticated debug tools, as well as 
tampering and emulation type attacks 
[Oorschot].  
 

Although many attacks exist and more 
will be developed, we have focused on 
analysis and tampering attacks designed to 
either recover secrets or algorithms or 
change the behavior of the software. These 
types of attacks (as opposed to emulation 
type attacks) require reverse engineering (or 
analysis) of the code.  
 

Reverse engineering attacks fall into two 
basic types: automated and non-automated. 
The first one is using general algorithms to 
attack code, while the second one is the 
combination of using some algorithms and 
manual tools to determine the functionality 
of a given program.  
 

It can been proven that the code 
recognition problem, that is, to classify 
different code formats based on their 
functionalities, is an NP-complete problem. 
Therefore, it would be difficult, if not 
impossible, for attackers to find an efficient 
general algorithm to determine the 
functionalities of all possible code. 
 

Since creating a general automated 
attack is difficult, attackers would focus on 
special properties of the code and tools in an 
attempt to simplify portions of the code. 
Taking examples in the previous section that 
use Boolean arithmetic operations, an 
attacker could try to use symbolic 
simplification packages in computer algebra 
systems, such as commercial products 
Maple [3], or Mathematica [4]. It is easy to 
find that those examples cannot be 
simplified because of the mixture of  
arithmetic and bitwise operations. These 
tools would need to be adapted to treat this 
special situation, but countermeasures need 
to either apply more algebra structures into 
the code expression, or to inject more MBA 
identities into the code. Determining such 
identities is a hard problem.  
 



Only highly skilled individuals can 
attempt a manual attack against diversified 
code generated from code transformations 
based on different algebraic systems. While 
they may learn certain techniques when 
reverse engineering the first instance, the 
ability to generate specialized helper tools or 
utilities will be difficult. The variety of 
algebra systems available is extensive and 
the composition of such systems result in an 
extraordinarily high number of 
combinations. If the only viable attack is to 
manually reverse engineer the resulting 
code, then clearly we have achieved our 
objective.  
 

Furthermore, code obfuscation 
techniques have been developed to 
seamlessly inject instances of NP complete 
problems, such as 3SAT, into transformed 
code. This makes it impossible to perform 
manual attacks on individual instances.  
 

CONCLUSION 
 

Rich algebraic structures compatible 
with digital processors guarantee the 
existence of a large number of code 
transforms.  
 

As demonstrated in our examples, code 
transformations introduce obfuscation and 
diversity, which are vital for hiding secrets, 
hiding small code changes and preventing 
automated analysis which in turn prevents 
automated attacks against the installed base 
of devices.  
 

By using Mixed Boolean Arithmetic 
transformations to data and operators, the 
resulting diverse code can be renewed and 
be expected to withstand attack for a 
reasonable period of time. These 
transformations are not susceptible to 
analysis using commercial tools such as 
Mathematica or Maple. 

While the new DCAS system allows for 
renewable software, this must be diverse to 
prevent piracy. Hardware does not provide 
suitable diversity, leaving this role to 
software. Total system resistance to attack is 
a function of resistance and diversity. Code 
transformations provide a practical 
automated solution for such low-cost, 
renewable, software security.  
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END NOTES 
 
[1] Next Generation Network Architecture  
(NGNA):www.cabledatacomnews.com/ngna
/ngnaprimer.html 
 
[2] CableLabs: www.opencable.com/dcas/ 
 
[3] Maple: www.maplesoft.com 
 
[4] Mathematica: www.wolfram.com 
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