
 “BUT THE DEMO LOOKED GREAT”
A TECHNICAL PRIMER ON SETTOP SOFTWARE DEVELOPEMENT

 Stephen Johnson
 Coach Media

 Abstract

 Creating effectively designed software—
for any platform—is a complicated and time-
consuming business. Creating software for
digital settops has encountered challenges
unique to the cable industry: scarce
applicable design precedence, a thankfully
temporary mania of inflated expectations for
“interactive television,” and a paucity of
basic technical knowledge about how
applications are created and deployed. While
the first two issues have largely faded, the
last continues to hamper effective application
deployment. Without a general
understanding of the issues involved in settop
software design, cable operators will
inevitably experience frustration and disap
pointment with their deployments.
 This paper addresses five topics in
software design applicable to digital settops,
providing a brief technical background of
each issue followed by their individual effects
on software performance—and ultimately
viewer comprehension and acceptance.
While illustrated by real-world examples,
this discussion does not focus on a particular
settop box manufacturer or set of features;
rather, the principles discussed here apply to
all platforms. The topics cover the following:

• Middleware Usage
• Memory Allocation
• Settop Performance
• Viewer Interface Details
• TV Display Technology

 While not comprehensive, this list
nevertheless covers a range of technical
issues collectively having a large impact on
successful software deployment. Armed with

this knowledge, cable operators and other
gatekeepers can ask the right questions and
thereby create—or procure—better
applications to meet their ever-expanding
needs.

MIDDLEWARE: FLEXIBILITY VS.
SPEED

 Middleware refers to a software
application that runs programs—but also runs
on top of an existing operating system (OS).
Think of a web browser, e.g., Internet
Explorer™ running “on top of” Windows™
and you get the idea. A middleware
application uses code—or even just files of
text or formatted data—written according to
its own languages and syntax rather than that
of the OS. The diagram below illustrates
how these various applications stack up:

SETTOP SOFTWARE STACK

OPERATING SYSTEM

MIDDLEWARE

MIDDLEWARE APPLICATION(S)

NATIVE
APPLICATION(S)

DATA & GRAPHICS

DATA & GRAPHICS

Schematic diagram of typical digital settop box
software stack

Current Examples

 How and where is middleware used? The
most prominent use today is probably the
OpenCable™ Application Platform (OCAP),
which uses middleware called the Java
Virtual Machine™ (JVM). Java™ was
originally developed by Sun Microsystems as
an Internet-friendly programming language

that could execute code using a JVM on any
operating system. OCAP applications,
therefore, are written in Java and could
potentially run on any settop operating
system; the JVM would handle all the
underlying operating system routines.

 While OCAP remains the most prominent
middleware example, the settop box
development world has also seen the
introduction of middleware applications from
companies like OpenTV, Liberate, and
Microsoft. With so many companies offering
middleware solutions to settop development,
why consider any competing strategy?
Indeed, in addition to the promise of OCAP
middleware offers some very tempting
advantages.

The Best of All Worlds?

 Start with labor. Given the latent
popularity of Internet-based programming a
relatively large pool of trained candidates has
become available to code middleware
applications—at least of the browser-based
or JVM variety. Since middleware
programmers don’t write code directly to the
operating system, developers are additionally
free to “script” quick applications and test
them without enduring the rigor of compiling
and linking code. Think of an HTML
scripter doing a quick web page layout
compared to a C++ programmer writing
proprietary code and you can appreciate this
difference.

 With deployment flexibility and an
available labor pool on its side, what
disadvantages could there be to middleware
development? Why suffer through hiring
programmers to work in a very specific and
unforgiving development environment—on
code that can’t be used elsewhere?
 In a word: speed. Programs written
without middleware overhead simply run

faster. Sometimes much faster. The reasons
for this are simple: fewer instructions to
translate and direct, customized code. Think
of the stack diagram above; when a
middleware program runs its code it has to be
continually translated for the operating
system. The difference is as dramatic as
speaking English to an English speaker
versus speaking Italian to the same speaker
and attempting to translate it in real-time.
While the translation will generally work, no
one can reasonably argue it will be as fast or
as clear.

 While it’s certainly the most important
reason to avoid middleware development,
lack of speed alone unfortunately doesn’t
exhaust the disadvantages. Middleware is
also very large. Since it translates
instructions for many different operating
systems—and needs to be resident in the
settop’s memory to execute commands at
anything approaching reasonable speed—by
necessity it often requires generous amounts
of precious memory. Many middleware
applications simply cannot run on older
digital boxes due to memory restrictions.

 In addition to its other difficulties,
middleware platforms also aren’t—alas—as
flexible as advertised. Even Sun’s touted
Java, once marketed as “write once, run
anywhere” has occasionally been derided as
“write once, debug everywhere.” Even
discounting the jokes, Java developers often
find they have to adapt code for JVMs to
their particular use.

 So use of middleware—a key decision
point in settop software development—really
comes down to flexibility versus speed, with
a sizeable caveat on the former and little
argument over the latter.

MEMORY: BE LEAN, MEAN, AND PLAY
WELL WITH OTHERS

 Whether an application uses a middleware
platform or not (see previous section), it still
loads into the settop’s memory when
launched—not unlike how a program loads
on your PC. Compared to an average PC,
however, settop memory is severely limited.
The first issue confronting application
memory usage, therefore, is simple: how
much room do you need? Many developers
equivocate on this issue—and not without
good reason. The raw code size specified for
an executable application may be misleading
for at least three (3) reasons:

• The additional data the application

requires (e.g., program guide data) might
be even larger than the code that
manipulates it;

• Graphics and other large non-code
components might not be included (for
good reason) in an application’s memory
footprint; and

• An application may be sharing memory
space with several other applications—
about which it has no knowledge—and
might be unstable at any size.

 Why do developers need to address these
issues? Program guide data, for example, can
be enormous. One day of TV listing data
uses up to 250 kilobytes of memory. Doing
the math it’s not hard to see why loading two
weeks of guide data (14 x 250K, or 3.5
megabytes) into settops with free memory
sizes of a few megabytes presents some
difficulties. Graphics are arguable worse:
one high-resolution (uncompressed) full
screen background requires almost a
megabyte of data. And lack of vigilance
about several different applications
(regardless of size) residing in memory has
very high costs: settop crashes (and reboots)
correlate very well with this situation.

 Developers recognize these issues and
devise appropriate strategies to save memory
space, but the resulting tradeoffs are far from
painless. Memory-related challenges
confronting developers—along with
accompanying strategies and tradeoffs—are
noted in the table below:

Challenge Strategy Tradeoff(s)
Large application
size (including
supporting data)
vs. limited
memory

• Store unused
components
on server

• Distinguish
between
launch-ready
and full
application

• Interactive
performance
when
uploading
new data

Large application
graphics vs.
limited memory

• Store unused
components
on server

• Compress
graphics

• Use settop-
based
graphics

• Interactive
performance
when
uploading
new graphics

• Graphic
degradation

• Customized
graphic
programmin
g

Multiple
applications
residing in
memory

• Limit
number of
simultaneous
running
applications

• Certify
deployed
applications

• Application
Swapping

• Extensive
Quality
Assurance
(QA)

 To save memory many developers keep a
subset of application code, data, and/or
graphics stored on a remote server and only
load it when required (e.g., on viewer
request) to do so. While this strategy saves
space, the process of swapping in code and
data might create some awkward
performance delays when contacting a
remote server. Delays become acutely painful
when loading graphics as viewers wait for an
interface to “arrive” and a screen is not yet
visually “complete.”

 A related memory-saving strategy
effectively divides an application into parts,
allowing a smaller version to launch (e.g.,
initially display on-screen) while the full
version is stored remotely (e.g., on a server,
as described above) and downloaded later.
While requiring some programming subtlety,
this strategy mitigates performance delays
by: 1) launching application faster; and 2)
allowing other applications parts to be loaded
into memory while the initial launched
application runs.

 Compressing graphics also saves space,
but tradeoffs beyond the obvious—potential
visual degradation—should be considered.
Depending on the compression schemes (e.g.,
MPEG, JPEG, BMP, IMG) supported by the
settop operating system or middleware,
graphics may require decompression time to
be properly displayed—adding to
performance delays. If compressed graphics
can be shown as-is the inherent low-
resolution NTSC display standard for
television often hides ugly artifacts—to a
point. The rapid deployment of High
Definition (HD) capable settops—and their
demand for high-resolution imagery—will
likely eliminate this advantage very soon.

 The process of creating graphics directly
from code available in the settop’s operating
system (if available) offers the promise of
avoiding speed and compression issues
altogether. Already available from the OS,
settop-generated graphics display very
quickly and require no compression. Creating
these graphics, however, requires hyper-
specific programming skills and generous
development time; working at the level of
individual screen pixels is not uncommon.

 Memory management issues unfortunately
aren’t limited to those relating to application
size; keeping several applications—
regardless of their size(s)—simultaneously in

a settop’s memory creates challenges of its
own. Furthermore, these challenges directly
affect the cable operator since individual
developers may have no prior knowledge of
other applications with which their programs
need to co-exist.

 As noted above, having a large number of
applications in memory often creates settop
crashes for a variety of technical reasons
beyond the scope of this paper. With this
unpleasant fact in mind, cable operators need
to address two challenges in this area: 1)
keeping applications from running
simultaneously as much as possible; and/or
2) testing multiple application combinations
before deployment. The first challenge places
restrictions on application features and user
interfaces while the second potentially
imposes testing costs on the operator.

 Settop boxes will probably never have
enough memory for every deployed
application—or combination of applications.
Even with the current tradeoffs operators
have deployed dozens of stable and robust
interactive products. Intimate knowledge of
these issues often makes the difference
between deployable and “demo”
applications.

SETTOP PERFORMANCE: FASTER IS
GOOD, ROOMY IS BETTER

 Many standards are available to gauge
settop hardware performance. The previous
section discussed memory management; this
section covers two other issues: processor
speed and permanent, or non-volatile,
memory.

 Compared to similar hardware in PCs,
settop microprocessor speeds are
frighteningly slow. Even accounting for
settop box economics, the numbers are
startling: for example, the MicroSparc

processor in a baseline Scientific Atlanta
3000-series settop clocks in at 166
Megahertz. In non-geekspeak that’s about
four to six times slower than an Intel or AMD
microprocessor in a cheap PC.

 Fortunately, raw processor speed pales in
importance to how well a settop is optimized
to use it—and how well developers make use
of it. Current settops are generally optimized
to play digital video; relatively speaking, the
processing power devoted to running
interactive applications doesn’t need to be
nearly as fast as that for a PC. Settop
applications display graphics and data to
viewers and respond to interactive commands
but have little need for the number crunching
power PCs require for their word processing
and spreadsheet tasks.

 The amount of available memory—both
volatile (lost without power) and non-volatile
(or NVRAM, maintained without power) in a
settop actually has a stronger impact on
application speed and stability than its
microprocessor clock speed. NVRAM
contains data that a developer doesn’t want
his application to lose if the settop loses
power. Pay per View purchase (secured) data
is an obvious example; settops have been
storing this data since the days of analog
boxes. Applications also use NVRAM for
parameters like viewer preferences (e.g.,
favorite channels) and code-critical data
(e.g., patches and updates).

 NVRAM is also expensive and therefore
scarce. The aforementioned Scientific
Atlanta box contains all of 2000 bytes of it.
Developers who run out of room are forced
to store this important data on a server, via
sending it at regular intervals and correlating
the data with individual settops.

 Settop hardware performance therefore
boils down to both suggestive and definitive
numbers. Raw processor speed can be
overrated—but all the memory in the world
probably isn’t enough
.

VIEWER INTERFACE: THE DEVIL IN
THE DETAILS

 Even when a settop application runs
quickly, uses memory efficiently, doesn’t tax
the network or local storage, it still may not
look very good. Obviously this is often due
to aesthetics, but this paper leaves that
hornet’s nest to the legion of TV graphic
designers. Rather, the primary focus here is
on the technical details of the viewer
interface display. While this subject is nearly
inexhaustible, a survey of three (3) general
areas—graphics, video, and on-screen text—
suffices as a primer.

Getting Graphic

 While graphics may be compressed in
several creative ways, their resolution is
ultimately dictated by the settop’s operating
system. Resolution is actually made up of
two separate parameters: size and color
depth. The supported sizes and color depths
of some typical settop boxes are shown
below:

Settop Class/
Manufacturer

Graphic
Resolution

Color Depth

Explorer 2000/
Scientific Atlanta

320 x 240* at 72
dpi

16 bits

Explorer 8000/
Scientific Atlanta

640 x 480** 16 bits

DCT-2000/
Motorola

352 x 240 Up to 8 bits

DCT-5100/
Motorola

704 x 480 Up to 24 bits

*640 x 480 supported, but not typically used due to memory
constraints** Typical use; up to 720 x 480 supported

(Motorola) settop boxes presents a developer
with some intriguing differences. Notice
from the table above that resolutions and
color depth vary on both systems on almost a
box-by-box basis. Developing for lower-end
settops has attendant difficulties: low
resolution graphics must be recreated for the
same application on a higher-end box.

 Graphic resolution is often dictated by the
largest image size accommodated, then
scaling back if necessary. For example, the
settops listed above use so-called “full” and
“half” resolutions, meaning the fullest
resolution uses twice the horizontal and
vertical pixel count as the lowest. By some
simple visualization one can see these labels
are somewhat misleading: a full resolution
image (at the same color depth) actually
requires four times the memory capacity as a
half resolution image (see below).

"Full" Resolution
Explorer / 640 x 480

DCT / 704 x 480

"Half" Resolution
Explorer / 320 x 240

DCT / 352x 240

Comparison of “Half” and “Full” Graphic Resolutions

 Use of low resolution graphics is often an
attractive tradeoff when memory space is a
consideration. In this case graphics are
expanded (“stretched”) at twice their
horizontal and vertical resolution to fill the
screen. Fortunately the NTSC television
display standard—which relies on flickering
interlaced lines rather than pixels—often
compensates for the low resolutions artifacts
(or “stretch marks”).

Video: Scale with Caution

 Settop applications have little control over
full-screen video playback resolution; the
MPEG video compression standard (used in
all digital settops) uses its own display
parameters. However, when video plays back
at less-than-full-screen, e.g., in a quarter
screen “window”, the settop application
chooses the “scaled” video window size.

 Since settops scale video by simply
removing pixels, video playback in windows
at non-fractional sizes can introduce visual
anomalies: “pixelated” objects and jagged
diagonal edges. In this case the relatively
low resolution of NTSC television doesn’t
help and often hurts: degraded video images
still move at 30 frames/second and are more
likely than graphics to be noticed by viewers.

What’s Your Type?

 Like graphics and video, on-screen type
must abide by resolutions largely set by the
settop operating system. Unlike these other
visual criteria, however, type resolution is
determined by how it is rendered to the
screen rather than the number of pixels or
color depth of its characters.

 Most operating systems support both
vector-based and anti-aliased fonts; the
difference can be seen in the images below:

f

Vector-based Anti-aliased Bitmapped

 Vector-based fonts rely on mathematical
formulas to print characters with smooth
edges, not unlike a standard laser printer.
Although these formulas take up very little
space (approximately 32 kilobytes per
typeface; bold and italic versions not
included) many settops exclude them because
developers don’t tend to use the same
typeface—and including more than a few
creates storage difficulties.

 Anti-aliased fonts typically take up less
space than vector-based fonts—and
surprisingly look better at some resolutions—
but have two non-trivial drawbacks: 1) they
must be adjusted—sometimes pixel-by-
pixel—at low resolutions to read properly;
and 2) the “fuzzy” edges of their characters
must be legible against every background on
which they’re rendered.

 If an application cannot use either vector-
based or anti-aliased fonts, settops typically
provide several bitmapped fonts as a
fallback. Characters from this font type have
very rough edges but some typefaces
rendered in this fashion can be reasonably
legible and acceptable for limited application
use.

TV DISPLAY TECHNOLOGY:
“ART IS NOTHING
WITHOUT LIMITS”i

 Since settop applications focus primarily
on displaying images to viewers (and
occasionally receiving feedback) developers
need a thorough understanding of television
visual technology. Ignorance of these
constraints doesn’t necessitate catastrophic

consequences—but the resulting applications
can look pretty ugly. Interfaces that flout
technical constraints exhibit overly bright
colors, distorted images, and illegible or off-
screen text and graphics.
 Two basic technical constraints on
displays come straight from the arcane world
of television post-production: title safety and
color limits.

Better Safe Than (Really) Sorry

 Commercial televisionsii do not show an
entire video signal; rather, the TV monitor
itself visually cuts off the outside edges.
Images and colors at the edge of the display
appear to “bleed off” the border of a TV.
The reasons for this are complex, but this
type of display has some advantages, e.g.,
allowing certain unsightly video artifacts like
the vertical blanking interval, or VBI, (where
closed-captioning information is transmitted)
to be hidden off-screen.

 To complicate matters, TVs differ—
sometimes drastically—in the actual amount
of signal they cut off; that is, two TVs may
display different amounts of the same signal.

 Televisions uses two cut-off display
conventions: title safe, meaning the area
where no TV will ever cut off any portion of
an image and action safe, meaning the area
where on-screen action (e.g., something
moving) must be contained. Action safe is
slightly larger than title safe since viewers
are not especially bothered by moving
objects occasionally disappearing at the
edges of the screen; their eyes can
compensate for the

movement. The image below shows how the
safety areas work on a standard 4:3 television
display.

��
��
��

Clear 55

Tonight

1515
NewsNews

ACTION SAFE
TITLE SAFE

John Smith WeatherJohn Smith Weather

Comparison of Full-Screen Signal, Action Safety, and
Title Safety

 So how much should images be reduced
to “fit” into these safety areas? Many rules-
of-thumb exist, but a good conservative
standard is 20% less than full-screen for title
safety and 15% less for action safety.

NTSC: Never Twice (the) Same Color

 As for color limits, televisions display a
rather narrow range. Historical precedent is
at work here: color usage was nearly an
afterthought when televisions were initially
developed. When black-and-white television
was the standard, video was recorded at a
speed of 29.97 frames-per-second; the
remaining 0.03 cycles (to fill-out the 30
frames/second standard) were reserved for
the (future) color spectrum. This range—
0.03 Hz—is not large, and favors blue and
green hues at the expense of other colors.

 Settop developers wrestling with color
should be aware that televisions—unlike
standard computer monitors—are not
calibrated to saturation values. A PC display
typically uses colors in mixed values of red,
green, and blue (or R/G/B); these are color
saturation values, describing a linear scale of
how much of each color is included to create
a final value. (This technology largely
mimics the process used for printing, which
uses a mixture of four colors: Cyan,
Magenta, Yellow, and Black, or CMYK.)

 Television, however, create colors based
on chroma, luminance and other values that
are not direct mixes of saturated colors. This
process makes television sets very sensitive
to sharp changes in brightness and contrast,
especially with highly saturated colors, e.g.,
rich red, pure black and white. Offending
this sensitivity leads to displays that bleed or
“buzz” at the edges of colored areas of text.
And strong contrasting colors aligned
vertically create a bowing effect, e.g., the
vertical separated image appears to curve
inward or outward, depending on its on-
screen placement.

 Armed with technical knowledge about
television display constraints, developers
should also consider conforming to less-
formal design limitations:
• Conform to standard television graphic

conventions. These include how screen
objects move or animate, how images are
rendered against other images, and how
screens of information or video transition
from one to the next (e.g., via visual
effects like “wipes” and “dissolves”).

• Avoid inactivity. While an interface that
must be addressed by a viewer may be
“held” for a short time, never forget
television is a visual, moving medium.

• Make text BIG and BOLD—and ensure
messages stand out from the background
on which they’re rendered.

 This paper merely scratches the surface of
the rich subject of TV display technology;
the principles delineated here only aim to
starting a design on a firm technological
foundation.

CONCLUSION: EMBRACE YOUR

LIMITS—YOU’LL ALWAYS HAVE
THEM

 We can all dream of settops with
unlimited memory and blisteringly fast
processors supporting perfectly flexible
middleware, full-resolution graphics and
pixel-perfect video. But until then we have to
make choices. The limitations involved in
settop software development won’t go away
tomorrow. Even if they did—mirroring the
evolution of the PC development world—
new limitations would surely replace them.

 Asking the right questions before
development begins keeps application
requirements and expectations in perspective.
While demonstrations often provide a nice
preview of application features, knowing the
technical tradeoffs in deployable settop
software is crucial now and will soon be
indispensable. The number of settop
technologies—and software to support
them—shows no signs of abating.

i A paraphrased quote, ascribed variously to
Beethoven, Picasso, and Goethe, among many others.

ii Note this discussion presumes a standard, interlace-
scan, analog display television. Televisions
displaying a true digital or high definition signal—
whether progressive- or interlace-scan—are outside
the scope of this discussion.

Stephen Johnson is technology consultant
specializing in television interface design. He
can be reached at steve@coachmedia.com.

