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 Abstract 
 
     We present an Artificial Intelligence based 
method for improving the reliability of soft-
ware applications, especially in digital cable 
TV set-top-box and other embedded environ-
ments. Initially a small finite state model of 
the software system and all relevant applica-
tions is constructed to define all user input 
events and application states of interest. A 
small set of expert system rules is then defined 
that analyzes state transitions in testing data. 
When these rules are applied to actual testing 
data a quantitative measure of suspicion is 
assigned to all event transitions in the origi-
nal finite state model. Analysis of this anno-
tated model can then uncover the source of 
otherwise intermittent inter-application fail-
ures.  

INTRODUCTION 

No amount of software testing can guaran-
tee the quality of an application outside of the 
environment in which it is tested [4]. How-
ever, it is often prohibitively expensive or dif-
ficult to exactly replicate the software and 
hardware environment during testing that will 
be present once an application is deployed. 
This is especially true in some embedded en-
vironments, like those found inside most digi-
tal cable TV set-top-boxes (STB).  

Software applications designed to operate 
in such constrained computational environ-
ments must provide a highly reliable, quality, 
interactive user-experience while simultane-
ously coexisting with other applications —
usually from multiple vendors— and sharing 

the limited computational resources available. 
In such environments, applications that oper-
ate flawlessly by themselves may wreak 
havoc in a system where limited memory, 
CPU cycles or network bandwidth must be 
shared amongst several applications. Such 
software incompatibilities can occur inter-
mittently and be difficult to trace. Often the 
actual source of a fault is elusive and may not 
be obviously related to the point of failure.  

The results of such inter-application fail-
ures can be disastrous in a highly distributed 
service-oriented industry, like the digital cable 
TV industry, where one software failure might 
be replicated throughout all devices in a sys-
tem, rendering the service (i.e., TV) inoper-
able for millions of customers. Despite the 
very real possibility of adverse interactions 
between applications, it is often logistically 
impossible or prohibitively expensive to test 
inter-application interactions prior to installa-
tion in an actual deployment environment. In 
the case of digital cable TV applications, 
software vendors rarely have access to each 
other’s products, nor can they easily afford 
the cost of the hardware and software 
infrastructure required by another vendor’s 
product. Laboratory environments provided 
by a system operator do help this situation, 
but individual systems are often quite unique 
in terms of hardware and software versions, 
the mix of deployed applications, and other 
subtle but important differences. 

Inter-application testing in an environment 
of many distributed, embedded devices —like 
that found in a digital cable TV system— in-
volves a normal installation of the application 



on a live system or lab. The actual testing 
process is rarely fully automated because —at 
least in the TV environment— application 
results are often visual, and human interpreta-
tion is required to detect defects. Further, the 
services provided by such applications (e.g., 
TV programming) often have relatively long 
durations, so testing cycles may be prolonged. 
Given these limitations and the large variety 
of possible adverse interactions between ap-
plications, no practical testing plan can be ex-
pected to uncover all problems [4].  

We present a different approach. Rather 
than attempting to design and execute large, 
comprehensive testing plans our method gath-
ers test data from a series of random user 
events, and employs a combination of Artifi-
cial Intelligence techniques to automatically 
analyze the data and deduce the likely sources 
of faults and defects.  

The method we present has been employed 
successfully to identify the sources of inter-
application failures and to predict system reli-
ability during a recent software trial with a 
leading digital cable TV operator. The exam-
ples presented below are abstracted from that 
real world case study. 

METHOD 

The method we present is designed to de-
duce the sources of software failures from the 
sequences of user actions that are likely to 
induce those failures. It is composed of five 
distinct steps, as follows: 

STEP 1 - Define a finite state model that 
abstracts the relevant software system, appli-
cations, and user events. 

STEP 2 - Define a set of IF-THEN rules 
with associated certainty factors that identify 
sequences of events and states that tend to 
lead to failure.  

STEP 3 - Gather test data from a number 
of randomized testing trials. 

STEP 4 - Apply the rules from step 2 to the 
testing data from step 3 to annotate the model 
from step 1 with certainty factors. 

STEP 5 - Analyze the annotated model 
produced in step 4 to deduce likely sources of 
failure and problem user event sequences. 

Each of these steps will be discussed in de-
tail below. 

STEP 1 - The Finite State Model 

The first necessary element in this process 
is the definition of a simple finite state model1 
that abstracts the relevant system and applica-
tion states along with the user input events 
that cause transitions from one state to an-
other. Initially, this model may be quite sim-
ple, with only a handful of states representing 
the applications involved. Later, once the 
method deduces specific states as the sources 
of failure, these problem states may be ex-
panded into more complex sub-models to fur-
ther refine the source of the failures. Table 1 
below depicts a finite state model that will be 
used later in Example 1. 

In this table each row depicts a state with 
the state name in the first column followed by 
the state transitions for the five user key-press 
events named at the head of the columns. 
Events that have no effect in the various ap-
plications have no transitions listed in the cor-
responding rows of the model. Pictorially, this 
same finite state model can be depicted by the 
directed graph in Figure 1. The “Power Off” 
state is the start state of the model, but no 
states are identified as final states. The only 
final state is the “REBOOT!” or failure state, 

                     
1 Also known as a Finite State Automaton (FSA), 
Finite State Machine (FSM), or Deterministic 
FSA. [2] 



which is accessible from all other states, and 
is therefore not shown. 

Given a finite state model of a system, test 
results for that system may be represented by 
a sequence of (state, event, state) triples that 

define the transitions from state to state 
caused by a sequence of user input events. For 
example: 

(Power Off, Pwr Key, Watch TV )  
 (Watch TV, A Key, App1 ) 
 (App1, Guide Key, IPG App ) 
 (IPG App, A Key, App2 ) 
 (App2, Exit Key, REBOOT! ) 

This depicts a sample transition sequence that 
culminates in failure. All sequences are as-
sumed to start in the initial state (e.g., “Power 
Off”) and end in the final, failure state (e.g., 
“REBOOT!”). 

STEP 2 - IF-THEN Rules & Certainty Factors 

Next, a set of simple IF-THEN rules is de-
fined that, when applied to a sequence of fi-

nite state transitions, will assign a numerical 
value to all transitions that estimates the like-
lihood of that transition is plays a part in an 
inter-application failure. For example, using 
the finite state model of Table 1, one sample 
rule might be: 

IF (transition doesn’t appear in a sequence) 
THEN likelihood is -0.8. 

Notice that the state transition: 

(PowerOff, Pwr Key, Watch TV) 

appears in the testing sequence above. Thus, 
the sample rule above would not apply to that 
transition for that sequence. However, the 
transition: 

(App3, Exit Key, Watch TV) 

is not found in the test data sequence, and 
therefore it is highly unlikely that the transi-
tion is involved in the failure. This reasoning 
is quantified and represented by the likelihood 
value of -0.8 in the sample rule. 

A collection of IF-THEN rules defines a 
simple form of Artificial Intelligence expert 
system, a programming paradigm that is par-
ticularly adept at encoding and applying im-
precise expert knowledge about a very narrow 
topic [1,3]. In this case, the rules assess the 
likelihood that the transitions found in testing 
sequences play a part in software failures. 
Most real world expert systems contain hun-
dreds or thousands of rules, and require spe-
cialized software language support. However, 
the expert systems defined in this paper are 
quite simple, containing only a handful of 
simple rules, and are easily implemented by 
conventional programming languages.  

Similarly, the “likelihood” numeric values 
in rules are actually certainty factors (CF), a 
mechanism for quantifying uncertainty 
[1,3,5]. Unlike probabilities, which are often 
difficult to apply to real world situations, cer-

Pwr Key A Key B Key Exit Key Guide Key
Power Off Watch TV
Watch TV Power Off App1 IPG App
IPG App Power Off App2 App3 Watch TV Watch TV

App1 Power Off Watch TV IPG App
App2 Power Off Watch TV IPG App
App3 Power Off Watch TV IPG App

REBOOT! Power Off

User EventsModel 
States

Table 1. Simple finite state model for Example 1
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tainty factors are quite easy to implement. In 
addition, certainty factors can also quantify a 
lack of knowledge, which probability values 
cannot. Certainty factors are real numbers 
ranging between -1.0, meaning total disbelief 
in a conclusion, to +1.0, which denotes total 
belief. Any value in between denotes some 
measure of uncertainty. For example, a cer-
tainty factor of +0.5 means the corresponding 
conclusion is probably true, while a certainty 
factor of –0.9 means it is almost certainly not 
true. A certainty factor of 0.0 denotes no 
knowledge either way (i.e., unknown) and is 
used to initialize all CFs. 

To combine two certainty factors CF1 and 
CF2, that are derived for the same transition 
by two different rules, we use the following 
formula [1,5]: 

CF1 ⊕ CF2 = CF1 + CF2* (1 – CF2) if both are positive 
                   = CF1 + CF2* (1 + CF2) if both negative 
                   = CF1 +CF2

1−min(CF1 , CF2 )
 otherwise. 

One important reason for choosing cer-
tainty factors to represent potentially inconsis-
tent test data is that certainty factors are both 
commutative and asymptotic [1,3,5]. The for-
mer means that it does not matter in what or-
der we combine certainty factors, the same 
result is obtained. This implies that it does not 
matter what in order our rules are applied, 
which greatly simplifies implementation. The 
asymptotic property implies that as new evi-
dence is found to support (or discredit) a con-
clusion, we increase (decrease) the CF value 
incrementally. Fore example, if two distinct 
rules both generate a strong belief in a given 
transition (e.g., 0.7 and 0.8) we will tend to 
believe somewhat more strongly (e.g., 
0.7+0.8*[1–0.7] = 0.94). The asymptotic 
property also keeps certainty factors nicely 
between -1.0 and +1.0. 

Some of the rules that have been most use-
ful to date appear to be generally applicable to 

almost any type of failure. Two of the most 
important are: 

RULE 1: 
IF (s1,e,s2) does not appear in a sequence 
THEN CF(s1,e,s2) = CF(s1,e,s2) ⊕ -0.9 

RULE 2:  
IF a test sequence enters a state si N times 
THEN ∀j | (sj,e,si) is in the sequence 
            CF(s1,e,s2) = CF (s1,e,s2) ⊕ (+0.2 / N) 

Because we are only interested in transi-
tion sequences that end in failure, and we as-
sume that the number of inter-application 
problems is small, it is logical to assume that 
a transition that appears in the test data may 
be related to that failure. Unfortunately, this 
deduction doesn’t help much, because many 
transitions that are not related to the failure 
may also be in the test data sequences. How-
ever, by reversing that same logic, a transition 
that does not appear in the test data is most 
likely not related to the failure. This is codi-
fied in RULE 1, where the “most likely not 
related” translates into a CF of -0.9. 

RULE 2 is based on the supposition that a 
state that appears many times in a test data 
sequence that ends in failure has more oppor-
tunities to cause problems. A small CF value 
(i.e., +0.2) is thus distributed amongst the 
transitions in the test data that exit from the 
suspect state.  

Other rules are more effective for certain 
types of failures. Multiple, different sets of 
rules may be applied to the same test data se-
quences to deduce different types of errors. 
Consider RULE 3, which is effective when 
one application is suspected of starving an-
other of a computational resource (e.g., a 
memory leak). 



RULE 3: 
IF transition t appears in the test data 
THEN CF(t) = CF(t) ⊕ (+0.5 * (1 - P(t)) 

In this rule, P(t) denotes the probability esti-
mate any random transition will be t. While a 
true probability value would be difficult to 
calculate, an acceptable estimate can be de-
rived easily as follows: 

Let t = (s1, e, s2). Let Tfsm be the number of 
non-empty transitions in the finite state 
model, and Ts1 be the number of transitions 
that lead to state s1. Finally, let Ts2 be the 
number of transitions that leave state s2. We 
then define P(t) as follows: 

P(t) = Ts1

Tfsm *Ts2

 

Finally, consider RULE 4, which helps to de-
duce the state in which an inter-application 
failure originates, even though the actual fail-
ure may occur many transitions later. 

RULE 4: 
IF transition t is one of the last N transitions  
  in the test sequence 
THEN CF(t) = CF(t) ⊕ +0.5 

This rule is predicated on the assumption that 
the detrimental situation precipitated by the 
first adversely interacting state is severe 
enough to produce a failure soon after. For 
example, if one digital cable TV application 
corrupts the video heap in a set-top-box, a 
crash will often occur the next time something 
changes on the screen. 

STEP 3 - Gather Test Data 

The next step is to gather test data in the 
form of state-event-state transition triples as 
defined in the finite state model. The actual 
testing may be performed at any time. Old 
testing results generated for other purposes 

may also be converted to the necessary transi-
tion triples, as long as the test data still repre-
sents the current system and applications. It is 
understood that the initial model may be quite 
abstract and simplistic, and that many of the 
actual states and events exhibited by the sys-
tem and applications are not represented by 
the model. But the test data must be modified 
to fit the model, removing extraneous transi-
tions if necessary. 

Ideally, no strict testing plan will be used 
to drive the sequence of user events that are 
input to the tested system. Rather, a random 
sequence of user input events is preferred. 
There are several reasons for this 
counterintuitive preference. First, a non-
random test plan embodies an implicit bias 
toward one or more a priori results. While this 
is a good thing if the bias is in the right 
direction, test results would be useless if the 
bias is in the wrong direction; important state 
transitions might never be seen. Second, 
because the rules apply to a domain of 
uncertain data, and are statistical in nature, we 
suspect that many of the most effective rules 
work best with random test sequences. 
Finally, in some of the supplementary 
probability analyses performed on the test 
results, the mathematics require randomized 
test sequences. 

Implicitly, all test sequences will begin in 
the start state. For all practical purposes only 
test sequences that end in a failure state are of 
interest. Because most failures are intermittent 
in nature, little useful information about fail-
ures can be deduced from a sequence that 
does not fail. 

STEP 4 - Apply Rules to Test Data 

This step is a straightforward application 
of the rules from step 2 to the testing se-
quences gathered in step 3. All certainty fac-
tors are initialized to 0.0 before applying any 



rules2. As rules are applied the certainty fac-
tors associated with the various transitions of 
the finite state model (e.g., Table 1) are modi-
fied accordingly. Once all rule processing is 
complete, two certainty factors should be 
computed for each state (e.g., s). The first 
combines the certainty factors for all transi-
tions leaving state s for another different state. 
Similarly, the second certainty factor is a 
combination of the certainty factors of all 
transitions that are entering state s from other 
states. Ignore transitions from state s back to 
itself.  

STEP 5 - Analyze the Results 

This is a very interesting step, and at the 
time of this writing, we continue to find new 
and interesting results in the data produced by 
this process. However, several observations 
are generally applicable to all annotated finite 
state models: 

(1) Positive CFs (e.g., ≥ +0.2) suggest 
that a transition is somehow associ-
ated with a failure.  

(2) Negative CFs (e.g., ≤ -0.2) suggest 
that a transition is not associated with 
a failure. 

(3) Many transitions with positive CFs 
merely provide a path connecting the 
original source state of the failure to 
the state in which it fails. These states 
do not appear to contribute to the 
failure. Along such transition paths 
the transition CFs tend to increase. 
However, the corresponding entry 
and exit CFs of the states along this 
path tend to be nearly equal. 

                     
2 If substantial prior evidence exists to implicate 
one or more transitions, the initial certainty factors 
may be initialized accordingly. Regardless of the 
evidence small initial certainty factors are recom-
mended. 

(4) States that actually fail tend to have a 
high entry CF and a low exit CF, be-
cause the likelihood of failure de-
creases after passing through the state. 

(5) Most importantly, states that are 
likely to be an original source of fail-
ure, but seldom fail themselves, tend 
to have a much lower entry CF than 
exit CF, because the likelihood of 
failure increases after passing 
through the state. This type of result 
is often very hard to find using con-
ventional testing techniques. 

EXAMPLES 

The examples in this section present results 
derived via the method presented above. The 
test data used has been generated by probabil-
istic simulation software to simplify the prob-
lem for purposes of example, while retaining 
the salient features of real world test data. 

Example 1: Memory Leak 

The test data generator was constructed to simu-
late the system defined by the finite state model 
of Table 1 and Figure 1. Five applications of 
varying characteristics, including two system 
applications and three third-party applications 
were simulated. Each application had different 
memory usage patterns and requirements. Each 
exit from state “App2” to another state generated 
a small simulated memory leak of random size. 
The simulation was sensitive to both memory 
exhaustion and fragmentation, and would enter 
the “REBOOT!” state whenever insufficient 
memory was available for an application to func-
tion. 

Test data files containing 500, 1000, and 
2000 legal transitions were generated by the 
simulation, each file containing a variable 
number of test sequences that end in failure 
states. 



RULES 1, 2, and 3 were applied to these 
test files to annotate the states and transitions 
of the finite state model. Optimum results 
were obtained by the files containing 1000 
transitions. Files with fewer transitions re-
sulted in less clear distinctions between high 
and low CFs. Files with more than 1000 tran-
sitions tended to wash out the CFs, so that all 
values were approximately +1.0 or -1.0, thus 
obliterating valuable information about rela-
tive certainties. 

     The resulting annotated finite state model 
appears below in Table 2. Entry and exit CFs 
for the states are shown in Table 3. 

Notice that the high CFs associated with 
transitions out of state “App2” (i.e., +0.98) 
indicate that this state is almost certainly re-
lated to the failure. The “Watch TV” and 
“IPG App” states also have several substantial 
CFs associated with transitions. These transi-
tions tend to be on the path from state “App2” 
to the actual failure transition. Because fail-
ures happen in a variety of states and transi-

tions, CF values are distributed amongst the 
transitions on the paths from “App2” to the 
failing states. Additional evidence pointing at 
state “App2” as the source of the failure are 
the entry and exit CF values for that state. No-
tice that the entry CF is significantly less than 
the exit CF. From this evidence we conclude 
that the memory leak originates in “App2”.  

Additional simulations were generated that 
assigned the memory leak to random applica-
tions to remove any experimental bias. The 
results were similar, clearly pointing to the 
offending state in each case. 

Example 2: Adverse Interaction 

Another test data generator was con-
structed to simulate the system defined by the 
finite state model of Table 4, below. In this 
example, we expand the finite state model 
from Table 1 to add additional sub-states and 
transitions within the previous “App1” state. 
The simulation then generated random fail-
ures with a 25% chance whenever state 
“App1.2” was entered sometime after exiting 
from state “App3”. In other words, the system 
simulates an inter-application failure with the 
source of the failure in “App3”, but the actual 
failure occurring eventually in “App1.2”.  

Test data files containing 1000 valid transi-
tions were generated by the simulation. Each 
file contained many actual test sequences end-
ing in a failure state. 

CF(s, e)
Pwr 
Key A Key B Key

Exit 
Key

Guide 
Key

Power Off 0.000 N/A N/A N/A N/A
Watch TV 0.000 0.766 N/A N/A 0.649
IPG App 0.000 0.734 0.175 -0.604 -0.932

App1 0.000 -0.998 -0.982 -0.899 -0.980
App2 0.000 N/A N/A 0.984 0.977
App3 0.000 N/A N/A -0.934 -0.964

REBOOT! 0.000 N/A N/A N/A N/A

Table 2. Transition CFs for Memory Leak

CF(s) CF(s) 
ENTRY

CF(s) 
EXIT

Power Off 0.000 0.000
Watch TV -0.999 0.917
IPG App -0.999 -0.878

App1 -0.998 -0.998
App2 0.734 0.998
App3 0.175 -0.996

REBOOT! 0.000 0.000

Table 3. State entry and exit CFs

Pwr Key A Key B Key Exit Key Guide Key
Power Off Watch TV
Watch TV Power Off App1.1 IPG App
IPG App Power Off App2 App3 Watch TV Watch TV
App1.1 Power Off App1.2 App1.4 Watch TV IPG App
App1.2 Power Off App1.3 App1.1 Watch TV IPG App
App1.3 Power Off App1.4 App1.2 Watch TV IPG App
App1.4 Power Off App1.1 App1.3 Watch TV IPG App
App2 Power Off Watch TV IPG App
App3 Power Off Watch TV IPG App

REBOOT! Power Off

User EventsModel 
States

Table 4. Simple finite state model for Example 2



RULES 1, 2, and 4 as defined above were 
applied to this test files to annotate the states 
and transitions of the finite state model. 

The resulting annotated finite state model ap-
pears below in Table 5. Entry and exit CFs for 
the states are shown in Table 6. 

Again, notice the higher CF values in tran-
sitions for state “App3” the disparity between 
entry and exit CFs for this state. This evi-
dence again correctly suggests that state 
“App3” is the original source of the inter-
application failure. 

CONCLUSION 

Digital cable TV systems, and other simi-
larly large, distributed computing systems 
present unique difficulties for application 
vendors and system operators. Time and re-
sources for inter-application testing is often 
severely limited, even though the hardware 
and software resource constraints within these 
computing environments make them suscepti-
ble to inter-application interactions and fail-
ures [4]. We present a new method that ap-
plies two simple techniques from the field of 
Artificial Intelligence to the problem. Rather 
than generating large complex test plans and 
lengthy testing programs, the sometimes in-
consistent results from a relatively small 
quantity of randomly generated tests produces 
sufficient information for a small A.I. expert 
system to deduce various points of failure. In 
particular, we have demonstrated how the of-
ten asymptomatic sources of inter-application 
failures can be deduced.  

This method has been applied to a real 
world case in the digital cable TV industry, 
and has successfully discovered a previously 
unknown memory leak in another vendor’s 
application, and also identified an operating 
system anomaly that can cause exhaustion of 
video memory and a subsequent system crash. 
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CF(s, e) Pwr 
Key A Key B Key

Exit 
Key

Guide 
Key

Power Off 0.000 N/A N/A N/A N/A

Watch TV 0.967 0.151 N/A N/A 0.998
IPG App 0.000 -0.220 0.179 -0.220 0.999
App1.1 0.000 0.999 0.924 -0.166 0.040
App1.2 0.000 0.998 0.147 -0.083 -0.083
App1.3 0.000 -0.089 0.724 -0.111 -0.543
App1.4 0.000 0.398 0.998 -0.468 -0.169
App2 0.000 N/A N/A -0.104 0.106
App3 0.000 N/A N/A 0.529 0.266

REBOOT! 0.000 N/A N/A N/A N/A

Table 5. Transition CFs for Memory Leak

CF(s) CF(s) 
ENTRY

CF(s) 
EXIT

Power Off 0.000 0.000
Watch TV 0.999 0.998
IPG App 0.998 0.999
App1.1 0.563 0.999
App1.2 0.999 0.998
App1.3 0.998 0.254
App1.4 0.916 0.998
App2 -0.220 0.001
App3 0.179 0.654

REBOOT! 0.000 0.000

Table 6. State entry and exit CFs
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