
ANALYSIS AND PREDICTION OF SET-TOP-BOX RELIABILITY IN
MULTI-APPLICATION ENVIRONMENTS USING

ARTIFICIAL INTELLIGENCE TECHNIQUES

Louis P. Slothouber
BIAP Systems, Inc.

 Abstract

 We present an Artificial Intelligence based
method for improving the reliability of soft-
ware applications, especially in digital cable
TV set-top-box and other embedded environ-
ments. Initially a small finite state model of
the software system and all relevant applica-
tions is constructed to define all user input
events and application states of interest. A
small set of expert system rules is then defined
that analyzes state transitions in testing data.
When these rules are applied to actual testing
data a quantitative measure of suspicion is
assigned to all event transitions in the origi-
nal finite state model. Analysis of this anno-
tated model can then uncover the source of
otherwise intermittent inter-application fail-
ures.

INTRODUCTION

No amount of software testing can guaran-
tee the quality of an application outside of the
environment in which it is tested [4]. How-
ever, it is often prohibitively expensive or dif-
ficult to exactly replicate the software and
hardware environment during testing that will
be present once an application is deployed.
This is especially true in some embedded en-
vironments, like those found inside most digi-
tal cable TV set-top-boxes (STB).

Software applications designed to operate
in such constrained computational environ-
ments must provide a highly reliable, quality,
interactive user-experience while simultane-
ously coexisting with other applications —
usually from multiple vendors— and sharing

the limited computational resources available.
In such environments, applications that oper-
ate flawlessly by themselves may wreak
havoc in a system where limited memory,
CPU cycles or network bandwidth must be
shared amongst several applications. Such
software incompatibilities can occur inter-
mittently and be difficult to trace. Often the
actual source of a fault is elusive and may not
be obviously related to the point of failure.

The results of such inter-application fail-
ures can be disastrous in a highly distributed
service-oriented industry, like the digital cable
TV industry, where one software failure might
be replicated throughout all devices in a sys-
tem, rendering the service (i.e., TV) inoper-
able for millions of customers. Despite the
very real possibility of adverse interactions
between applications, it is often logistically
impossible or prohibitively expensive to test
inter-application interactions prior to installa-
tion in an actual deployment environment. In
the case of digital cable TV applications,
software vendors rarely have access to each
other’s products, nor can they easily afford
the cost of the hardware and software
infrastructure required by another vendor’s
product. Laboratory environments provided
by a system operator do help this situation,
but individual systems are often quite unique
in terms of hardware and software versions,
the mix of deployed applications, and other
subtle but important differences.

Inter-application testing in an environment
of many distributed, embedded devices —like
that found in a digital cable TV system— in-
volves a normal installation of the application

on a live system or lab. The actual testing
process is rarely fully automated because —at
least in the TV environment— application
results are often visual, and human interpreta-
tion is required to detect defects. Further, the
services provided by such applications (e.g.,
TV programming) often have relatively long
durations, so testing cycles may be prolonged.
Given these limitations and the large variety
of possible adverse interactions between ap-
plications, no practical testing plan can be ex-
pected to uncover all problems [4].

We present a different approach. Rather
than attempting to design and execute large,
comprehensive testing plans our method gath-
ers test data from a series of random user
events, and employs a combination of Artifi-
cial Intelligence techniques to automatically
analyze the data and deduce the likely sources
of faults and defects.

The method we present has been employed
successfully to identify the sources of inter-
application failures and to predict system reli-
ability during a recent software trial with a
leading digital cable TV operator. The exam-
ples presented below are abstracted from that
real world case study.

METHOD

The method we present is designed to de-
duce the sources of software failures from the
sequences of user actions that are likely to
induce those failures. It is composed of five
distinct steps, as follows:

STEP 1 - Define a finite state model that
abstracts the relevant software system, appli-
cations, and user events.

STEP 2 - Define a set of IF-THEN rules
with associated certainty factors that identify
sequences of events and states that tend to
lead to failure.

STEP 3 - Gather test data from a number
of randomized testing trials.

STEP 4 - Apply the rules from step 2 to the
testing data from step 3 to annotate the model
from step 1 with certainty factors.

STEP 5 - Analyze the annotated model
produced in step 4 to deduce likely sources of
failure and problem user event sequences.

Each of these steps will be discussed in de-
tail below.

STEP 1 - The Finite State Model

The first necessary element in this process
is the definition of a simple finite state model1
that abstracts the relevant system and applica-
tion states along with the user input events
that cause transitions from one state to an-
other. Initially, this model may be quite sim-
ple, with only a handful of states representing
the applications involved. Later, once the
method deduces specific states as the sources
of failure, these problem states may be ex-
panded into more complex sub-models to fur-
ther refine the source of the failures. Table 1
below depicts a finite state model that will be
used later in Example 1.

In this table each row depicts a state with
the state name in the first column followed by
the state transitions for the five user key-press
events named at the head of the columns.
Events that have no effect in the various ap-
plications have no transitions listed in the cor-
responding rows of the model. Pictorially, this
same finite state model can be depicted by the
directed graph in Figure 1. The “Power Off”
state is the start state of the model, but no
states are identified as final states. The only
final state is the “REBOOT!” or failure state,

1 Also known as a Finite State Automaton (FSA),
Finite State Machine (FSM), or Deterministic
FSA. [2]

which is accessible from all other states, and
is therefore not shown.

Given a finite state model of a system, test
results for that system may be represented by
a sequence of (state, event, state) triples that

define the transitions from state to state
caused by a sequence of user input events. For
example:

(Power Off, Pwr Key, Watch TV)
 (Watch TV, A Key, App1)
 (App1, Guide Key, IPG App)
 (IPG App, A Key, App2)
 (App2, Exit Key, REBOOT!)

This depicts a sample transition sequence that
culminates in failure. All sequences are as-
sumed to start in the initial state (e.g., “Power
Off”) and end in the final, failure state (e.g.,
“REBOOT!”).

STEP 2 - IF-THEN Rules & Certainty Factors

Next, a set of simple IF-THEN rules is de-
fined that, when applied to a sequence of fi-

nite state transitions, will assign a numerical
value to all transitions that estimates the like-
lihood of that transition is plays a part in an
inter-application failure. For example, using
the finite state model of Table 1, one sample
rule might be:

IF (transition doesn’t appear in a sequence)
THEN likelihood is -0.8.

Notice that the state transition:

(PowerOff, Pwr Key, Watch TV)

appears in the testing sequence above. Thus,
the sample rule above would not apply to that
transition for that sequence. However, the
transition:

(App3, Exit Key, Watch TV)

is not found in the test data sequence, and
therefore it is highly unlikely that the transi-
tion is involved in the failure. This reasoning
is quantified and represented by the likelihood
value of -0.8 in the sample rule.

A collection of IF-THEN rules defines a
simple form of Artificial Intelligence expert
system, a programming paradigm that is par-
ticularly adept at encoding and applying im-
precise expert knowledge about a very narrow
topic [1,3]. In this case, the rules assess the
likelihood that the transitions found in testing
sequences play a part in software failures.
Most real world expert systems contain hun-
dreds or thousands of rules, and require spe-
cialized software language support. However,
the expert systems defined in this paper are
quite simple, containing only a handful of
simple rules, and are easily implemented by
conventional programming languages.

Similarly, the “likelihood” numeric values
in rules are actually certainty factors (CF), a
mechanism for quantifying uncertainty
[1,3,5]. Unlike probabilities, which are often
difficult to apply to real world situations, cer-

Pwr Key A Key B Key Exit Key Guide Key
Power Off Watch TV
Watch TV Power Off App1 IPG App
IPG App Power Off App2 App3 Watch TV Watch TV

App1 Power Off Watch TV IPG App
App2 Power Off Watch TV IPG App
App3 Power Off Watch TV IPG App

REBOOT! Power Off

User EventsModel
States

Table 1. Simple finite state model for Example 1

App 3

Watch
TV

Power
 Off

Guide
(IPG)

App 1
App 2

Power Key

Exit
Key

Guide
Key

Guide
Key

B
Key

Guide
Key

A
Key

Exit
Key

Exit
Key

Guide
Key

A
Key

Exit
Key

Figure 1. Graph of finite state model of Example 1

tainty factors are quite easy to implement. In
addition, certainty factors can also quantify a
lack of knowledge, which probability values
cannot. Certainty factors are real numbers
ranging between -1.0, meaning total disbelief
in a conclusion, to +1.0, which denotes total
belief. Any value in between denotes some
measure of uncertainty. For example, a cer-
tainty factor of +0.5 means the corresponding
conclusion is probably true, while a certainty
factor of –0.9 means it is almost certainly not
true. A certainty factor of 0.0 denotes no
knowledge either way (i.e., unknown) and is
used to initialize all CFs.

To combine two certainty factors CF1 and
CF2, that are derived for the same transition
by two different rules, we use the following
formula [1,5]:

CF1 ⊕ CF2 = CF1 + CF2* (1 – CF2) if both are positive
 = CF1 + CF2* (1 + CF2) if both negative
 = CF1 +CF2

1−min(CF1 , CF2)
 otherwise.

One important reason for choosing cer-
tainty factors to represent potentially inconsis-
tent test data is that certainty factors are both
commutative and asymptotic [1,3,5]. The for-
mer means that it does not matter in what or-
der we combine certainty factors, the same
result is obtained. This implies that it does not
matter what in order our rules are applied,
which greatly simplifies implementation. The
asymptotic property implies that as new evi-
dence is found to support (or discredit) a con-
clusion, we increase (decrease) the CF value
incrementally. Fore example, if two distinct
rules both generate a strong belief in a given
transition (e.g., 0.7 and 0.8) we will tend to
believe somewhat more strongly (e.g.,
0.7+0.8*[1–0.7] = 0.94). The asymptotic
property also keeps certainty factors nicely
between -1.0 and +1.0.

Some of the rules that have been most use-
ful to date appear to be generally applicable to

almost any type of failure. Two of the most
important are:

RULE 1:
IF (s1,e,s2) does not appear in a sequence
THEN CF(s1,e,s2) = CF(s1,e,s2) ⊕ -0.9

RULE 2:
IF a test sequence enters a state si N times
THEN ∀j | (sj,e,si) is in the sequence
 CF(s1,e,s2) = CF (s1,e,s2) ⊕ (+0.2 / N)

Because we are only interested in transi-
tion sequences that end in failure, and we as-
sume that the number of inter-application
problems is small, it is logical to assume that
a transition that appears in the test data may
be related to that failure. Unfortunately, this
deduction doesn’t help much, because many
transitions that are not related to the failure
may also be in the test data sequences. How-
ever, by reversing that same logic, a transition
that does not appear in the test data is most
likely not related to the failure. This is codi-
fied in RULE 1, where the “most likely not
related” translates into a CF of -0.9.

RULE 2 is based on the supposition that a
state that appears many times in a test data
sequence that ends in failure has more oppor-
tunities to cause problems. A small CF value
(i.e., +0.2) is thus distributed amongst the
transitions in the test data that exit from the
suspect state.

Other rules are more effective for certain
types of failures. Multiple, different sets of
rules may be applied to the same test data se-
quences to deduce different types of errors.
Consider RULE 3, which is effective when
one application is suspected of starving an-
other of a computational resource (e.g., a
memory leak).

RULE 3:
IF transition t appears in the test data
THEN CF(t) = CF(t) ⊕ (+0.5 * (1 - P(t))

In this rule, P(t) denotes the probability esti-
mate any random transition will be t. While a
true probability value would be difficult to
calculate, an acceptable estimate can be de-
rived easily as follows:

Let t = (s1, e, s2). Let Tfsm be the number of
non-empty transitions in the finite state
model, and Ts1 be the number of transitions
that lead to state s1. Finally, let Ts2 be the
number of transitions that leave state s2. We
then define P(t) as follows:

P(t) = Ts1

Tfsm *Ts2

Finally, consider RULE 4, which helps to de-
duce the state in which an inter-application
failure originates, even though the actual fail-
ure may occur many transitions later.

RULE 4:
IF transition t is one of the last N transitions
 in the test sequence
THEN CF(t) = CF(t) ⊕ +0.5

This rule is predicated on the assumption that
the detrimental situation precipitated by the
first adversely interacting state is severe
enough to produce a failure soon after. For
example, if one digital cable TV application
corrupts the video heap in a set-top-box, a
crash will often occur the next time something
changes on the screen.

STEP 3 - Gather Test Data

The next step is to gather test data in the
form of state-event-state transition triples as
defined in the finite state model. The actual
testing may be performed at any time. Old
testing results generated for other purposes

may also be converted to the necessary transi-
tion triples, as long as the test data still repre-
sents the current system and applications. It is
understood that the initial model may be quite
abstract and simplistic, and that many of the
actual states and events exhibited by the sys-
tem and applications are not represented by
the model. But the test data must be modified
to fit the model, removing extraneous transi-
tions if necessary.

Ideally, no strict testing plan will be used
to drive the sequence of user events that are
input to the tested system. Rather, a random
sequence of user input events is preferred.
There are several reasons for this
counterintuitive preference. First, a non-
random test plan embodies an implicit bias
toward one or more a priori results. While this
is a good thing if the bias is in the right
direction, test results would be useless if the
bias is in the wrong direction; important state
transitions might never be seen. Second,
because the rules apply to a domain of
uncertain data, and are statistical in nature, we
suspect that many of the most effective rules
work best with random test sequences.
Finally, in some of the supplementary
probability analyses performed on the test
results, the mathematics require randomized
test sequences.

Implicitly, all test sequences will begin in
the start state. For all practical purposes only
test sequences that end in a failure state are of
interest. Because most failures are intermittent
in nature, little useful information about fail-
ures can be deduced from a sequence that
does not fail.

STEP 4 - Apply Rules to Test Data

This step is a straightforward application
of the rules from step 2 to the testing se-
quences gathered in step 3. All certainty fac-
tors are initialized to 0.0 before applying any

rules2. As rules are applied the certainty fac-
tors associated with the various transitions of
the finite state model (e.g., Table 1) are modi-
fied accordingly. Once all rule processing is
complete, two certainty factors should be
computed for each state (e.g., s). The first
combines the certainty factors for all transi-
tions leaving state s for another different state.
Similarly, the second certainty factor is a
combination of the certainty factors of all
transitions that are entering state s from other
states. Ignore transitions from state s back to
itself.

STEP 5 - Analyze the Results

This is a very interesting step, and at the
time of this writing, we continue to find new
and interesting results in the data produced by
this process. However, several observations
are generally applicable to all annotated finite
state models:

(1) Positive CFs (e.g., ≥ +0.2) suggest
that a transition is somehow associ-
ated with a failure.

(2) Negative CFs (e.g., ≤ -0.2) suggest
that a transition is not associated with
a failure.

(3) Many transitions with positive CFs
merely provide a path connecting the
original source state of the failure to
the state in which it fails. These states
do not appear to contribute to the
failure. Along such transition paths
the transition CFs tend to increase.
However, the corresponding entry
and exit CFs of the states along this
path tend to be nearly equal.

2 If substantial prior evidence exists to implicate
one or more transitions, the initial certainty factors
may be initialized accordingly. Regardless of the
evidence small initial certainty factors are recom-
mended.

(4) States that actually fail tend to have a
high entry CF and a low exit CF, be-
cause the likelihood of failure de-
creases after passing through the state.

(5) Most importantly, states that are
likely to be an original source of fail-
ure, but seldom fail themselves, tend
to have a much lower entry CF than
exit CF, because the likelihood of
failure increases after passing
through the state. This type of result
is often very hard to find using con-
ventional testing techniques.

EXAMPLES

The examples in this section present results
derived via the method presented above. The
test data used has been generated by probabil-
istic simulation software to simplify the prob-
lem for purposes of example, while retaining
the salient features of real world test data.

Example 1: Memory Leak

The test data generator was constructed to simu-
late the system defined by the finite state model
of Table 1 and Figure 1. Five applications of
varying characteristics, including two system
applications and three third-party applications
were simulated. Each application had different
memory usage patterns and requirements. Each
exit from state “App2” to another state generated
a small simulated memory leak of random size.
The simulation was sensitive to both memory
exhaustion and fragmentation, and would enter
the “REBOOT!” state whenever insufficient
memory was available for an application to func-
tion.

Test data files containing 500, 1000, and
2000 legal transitions were generated by the
simulation, each file containing a variable
number of test sequences that end in failure
states.

RULES 1, 2, and 3 were applied to these
test files to annotate the states and transitions
of the finite state model. Optimum results
were obtained by the files containing 1000
transitions. Files with fewer transitions re-
sulted in less clear distinctions between high
and low CFs. Files with more than 1000 tran-
sitions tended to wash out the CFs, so that all
values were approximately +1.0 or -1.0, thus
obliterating valuable information about rela-
tive certainties.

 The resulting annotated finite state model
appears below in Table 2. Entry and exit CFs
for the states are shown in Table 3.

Notice that the high CFs associated with
transitions out of state “App2” (i.e., +0.98)
indicate that this state is almost certainly re-
lated to the failure. The “Watch TV” and
“IPG App” states also have several substantial
CFs associated with transitions. These transi-
tions tend to be on the path from state “App2”
to the actual failure transition. Because fail-
ures happen in a variety of states and transi-

tions, CF values are distributed amongst the
transitions on the paths from “App2” to the
failing states. Additional evidence pointing at
state “App2” as the source of the failure are
the entry and exit CF values for that state. No-
tice that the entry CF is significantly less than
the exit CF. From this evidence we conclude
that the memory leak originates in “App2”.

Additional simulations were generated that
assigned the memory leak to random applica-
tions to remove any experimental bias. The
results were similar, clearly pointing to the
offending state in each case.

Example 2: Adverse Interaction

Another test data generator was con-
structed to simulate the system defined by the
finite state model of Table 4, below. In this
example, we expand the finite state model
from Table 1 to add additional sub-states and
transitions within the previous “App1” state.
The simulation then generated random fail-
ures with a 25% chance whenever state
“App1.2” was entered sometime after exiting
from state “App3”. In other words, the system
simulates an inter-application failure with the
source of the failure in “App3”, but the actual
failure occurring eventually in “App1.2”.

Test data files containing 1000 valid transi-
tions were generated by the simulation. Each
file contained many actual test sequences end-
ing in a failure state.

CF(s, e)
Pwr
Key A Key B Key

Exit
Key

Guide
Key

Power Off 0.000 N/A N/A N/A N/A
Watch TV 0.000 0.766 N/A N/A 0.649
IPG App 0.000 0.734 0.175 -0.604 -0.932

App1 0.000 -0.998 -0.982 -0.899 -0.980
App2 0.000 N/A N/A 0.984 0.977
App3 0.000 N/A N/A -0.934 -0.964

REBOOT! 0.000 N/A N/A N/A N/A

Table 2. Transition CFs for Memory Leak

CF(s) CF(s)
ENTRY

CF(s)
EXIT

Power Off 0.000 0.000
Watch TV -0.999 0.917
IPG App -0.999 -0.878

App1 -0.998 -0.998
App2 0.734 0.998
App3 0.175 -0.996

REBOOT! 0.000 0.000

Table 3. State entry and exit CFs

Pwr Key A Key B Key Exit Key Guide Key
Power Off Watch TV
Watch TV Power Off App1.1 IPG App
IPG App Power Off App2 App3 Watch TV Watch TV
App1.1 Power Off App1.2 App1.4 Watch TV IPG App
App1.2 Power Off App1.3 App1.1 Watch TV IPG App
App1.3 Power Off App1.4 App1.2 Watch TV IPG App
App1.4 Power Off App1.1 App1.3 Watch TV IPG App
App2 Power Off Watch TV IPG App
App3 Power Off Watch TV IPG App

REBOOT! Power Off

User EventsModel
States

Table 4. Simple finite state model for Example 2

RULES 1, 2, and 4 as defined above were
applied to this test files to annotate the states
and transitions of the finite state model.

The resulting annotated finite state model ap-
pears below in Table 5. Entry and exit CFs for
the states are shown in Table 6.

Again, notice the higher CF values in tran-
sitions for state “App3” the disparity between
entry and exit CFs for this state. This evi-
dence again correctly suggests that state
“App3” is the original source of the inter-
application failure.

CONCLUSION

Digital cable TV systems, and other simi-
larly large, distributed computing systems
present unique difficulties for application
vendors and system operators. Time and re-
sources for inter-application testing is often
severely limited, even though the hardware
and software resource constraints within these
computing environments make them suscepti-
ble to inter-application interactions and fail-
ures [4]. We present a new method that ap-
plies two simple techniques from the field of
Artificial Intelligence to the problem. Rather
than generating large complex test plans and
lengthy testing programs, the sometimes in-
consistent results from a relatively small
quantity of randomly generated tests produces
sufficient information for a small A.I. expert
system to deduce various points of failure. In
particular, we have demonstrated how the of-
ten asymptomatic sources of inter-application
failures can be deduced.

This method has been applied to a real
world case in the digital cable TV industry,
and has successfully discovered a previously
unknown memory leak in another vendor’s
application, and also identified an operating
system anomaly that can cause exhaustion of
video memory and a subsequent system crash.

CONTACT INFORMATION

Dr. Louis Slothouber
Chief Scientist,
BIAP Systems, Inc.,
www.biap.com
lpslot@biap.com

CF(s, e) Pwr
Key A Key B Key

Exit
Key

Guide
Key

Power Off 0.000 N/A N/A N/A N/A

Watch TV 0.967 0.151 N/A N/A 0.998
IPG App 0.000 -0.220 0.179 -0.220 0.999
App1.1 0.000 0.999 0.924 -0.166 0.040
App1.2 0.000 0.998 0.147 -0.083 -0.083
App1.3 0.000 -0.089 0.724 -0.111 -0.543
App1.4 0.000 0.398 0.998 -0.468 -0.169
App2 0.000 N/A N/A -0.104 0.106
App3 0.000 N/A N/A 0.529 0.266

REBOOT! 0.000 N/A N/A N/A N/A

Table 5. Transition CFs for Memory Leak

CF(s) CF(s)
ENTRY

CF(s)
EXIT

Power Off 0.000 0.000
Watch TV 0.999 0.998
IPG App 0.998 0.999
App1.1 0.563 0.999
App1.2 0.999 0.998
App1.3 0.998 0.254
App1.4 0.916 0.998
App2 -0.220 0.001
App3 0.179 0.654

REBOOT! 0.000 0.000

Table 6. State entry and exit CFs

REFERENCES

1. Durkin, J., Expert Systems: Design
and Development, Macmillan Publish-
ing Company, New York, NY, 1994.

2. Hopcroft, J.E., and J.D. Ullman, In-
troduction to Automata Theory, Lan-
guages, and Computation, Addison-
Wesley, 1979.

3. Rich, E., and K. Knight, Artificial In-
telligence --2nd ed., pp. 231-239,
McGraw-Hill, Inc., 1991.

4. Schulmeyer, G.G., and McManus, J.I.,
Handbook of Software Quality Assur-
ance --2nd ed., Van Nostrand Reinhold
Publishing, 1992.

5. Shortliffe, E.H., and B.G. Buchannan,
A Model of Inexact Reasoning in
Medicine, Mathematical Biosciences,
vol. 23, pp. 351-379, 1975.

