
 A METHOD OF ANALYZING MPEG DATA IN ENCAPSULATED STREAMS

 F. Eugene Rohling
 DVA Group, Inc.

 Abstract

 This paper describes a method of analyzing
encapsulated binary data streams for the
purposes of performing detailed message
analysis. This method evolved from a general
purpose analysis tool used to analyze radar
data. It is now being applied to the analysis
of MPEG-2 content and access control data
delivered both in-band and out-of-band. It is
particularly useful for compartmentalizing the
details of sensitive control and encryption
information within the MPEG data strea of an
access control system..

 The method allows users to describe
encapsulated framed data, parsing a binary
data stream, and generating human readable
output that can be used to analyze and resolve
problems. The template files can be tailored
and customized to reveal varying levels of
proprietary and confidential data within the
binary stream.

INTRODUCTION

 This paper identifies a solution that helps
test and field engineers analyze complex
MPEG data streams. It uses the familiar NAS
access control service as an example of data
that has been encapsulated four times when it
is received within a headend system. Finally,
it discusses the need for these tools as new
technologies emerge.

 This paper specifically discusses access
control data. Many off-the-shelf tools exist
for analyzing standard MPEG-2 video and
DOCSIS services. However, access control
systems are by their nature proprietary, and

tools for looking at stream usage of Motorola
Broadband DigiCipher, Scientific Atlanta
 Power Key, and other access control
streams are usually held close. This makes it
difficult for an MSO to find problems in his
local system, especially when he is
responsible for operating it.

Encapsulated MPEG Data

 The National Access Control Service
(NAS) owned by Motorola Broadband and
operated by AT&T (now Comcast) is an
excellent example of MPEG encapsulated
data. Figure 1 shows the various layers of
MPEG data. First, the DigiCipher OOB data
is encapsulated into MPEG private data
message packets. When it arrives in the
headend, data is then sent from the satellite
receiving device (IRT) across Ethernet to the
out of band modulator (OM). That is, the
OOB data is carried as an encapsulated MPEG
data stream within a HITS multiplex through
the satellite system. [1]

HITS Transport Stream
MPEG Packets

Digicipher OOB Traffic
MPEG Packets

Digicipher AC Messages
MPEG Messages

Visible Layer

Level 1
Encapsulation

Level 2
Encapsulation

Figure 1 - NAS Encapsulation

 A standard MPEG recording tool such as
the DSTS by Logic Innovations allows you to
record the data stream as it is received by the
IRT. But if you want to recover only the data

seen by the set-top, then you must remove the
HITS transport stream.

 Several one-off tools have been built to
detunnel the data, but they are all considered
proprietary by the AC provider. Sometimes
an MSO has legitimate reasons to determine if
his access control system is operating properly
or if he is receiving all the data his contract
with NAS provides.

 Similar problems exist with Motorola
DAC based local access controllers. In this
case, the problem becomes more urgent
because the MSO is responsible for the
operation of the DAC.

 In many systems, access control data is
encapsulated on a TCP/IP network and sent to
a modulating device. Rather than data being
MPEG encapsulated in MPEG, it is now
MPEG encapsulated within IP. While good
Ethernet tools exist, they to not provide
utilities to integrate with MPEG tools. [1]

Compartmenting Data

 To give the MSO the tools Motorola
originally used to develop DigiCipher would
be giving away the keys to their access control
kingdom. But to give MSO’s tools that help
identify if code objects are spinning, or if TV
Guide data is still online, or to identify if
channel maps are being provided to their
facility are all reasonable requests.

 A legitimate need exists to compartment
the visibility of MPEG access control
implementation so legitimate users can
visualize it operationally without
compromising the access control system.

Processing Binary Data

 Many processing programs exist for
processing text. Unix has a wealth of tools

such as awk, sed, grep, lex, and perl. But
converting a 100 MByte file from binary to
readable text becomes unwieldy when the
result can generate many Gigabytes of data
and take significant time to sort through and
filter that data.

 It is significantly less time consuming for
analysts to process binary data and extract
only the information they need to do their
task.

HISTORY

 The problem of analyzing a complex data
stream that has been multiplexed into many
layers is not unique to the cable or MPEG
industries. Instrumentation systems during the
1980 to 1995 time frame commonly mixed
and multiplexed dissimilar data from many
sources within a telemetry or tape recorded
data stream.

The Link to Radars

 A good example was a radar
instrumentation system developed for the F-
15, F-16, and B-1 aircraft by Lockheed
Georgia under the Advanced Radar Test Bed
(ARTB) program. The requirements for that
system required it to visualize and record
traffic from up to four MIL-STD-1553 data
bus streams, up to four streams of telemetry
data, several custom low, medium, and high
speed data streams at an aggregate rate of up
to 12 Mbytes/sec. This was a feat for the
1989 designed system. They also required the
system to be versatile and instrument any of
five radars on the three aircraft. The
requirements finally required time stamping
the data to +/- 10 microseconds.

High Speed Analysis Becomes Key
 Instrumenting the aircraft, multiplexing
data, recording data, and time tagging data
was straightforward. Much of it was

performed in hardware. But the system
proved that reducing and analyzing the data
became a significant labor intensive task.
U.S. Air Force engineers likened the task of
finding a needle in a hay stack.

 This system evolved into the bench top
Radar Instrumentation System (RIM-68)
developed by Flexible Engineering Resources,
Inc. (FER). This company developed a
method of encapsulating the data in a common
format and a method of parsing the data at
high speeds so a small number of parameters
could be visualized in both text and graphic
format. The method was coined “MAcq” for
Modular Acquisition.

MACQ FILTERING [3]

 The “macq_filter” program performed the
analysis side of this task was called the
“MAcq_filter”. It analyzed data for both real-
time and post processing. It used “filters” that
described the encapsulated nature of the data
stream to both extract and process the stream
into either human readable form or into
derivative streams for off-the-shelf graphic
programs to process as shown in Figure 2.

macq_
filter

Input
Data

Stream
(File)

Output
Data

Stream
(File)

MAcq
Filter
File
(.flt)

Figure 2 - MAcq Filter Process

Processing Frames of Data

 The MAcq filter input description was
designed to process nested frames of variable
length data in a serial data stream. Figure 3
shows the format of the filter file. Note that
the format of the filter file allows recursion.
That is, optional filter frames can be nested
within a top level scope frame to create the
same data recursion effect often found with
software recursion. This is the primary
benefit of applying MAcq filters to
encapsulated data problems.

FRAME DESCRIPTOR

LENGTH DESCRIPTOR

Function = How to
determine frame length

Pass Filter

Function = How to
determine whether this

frame is of interest.

DATA DESCRIPTION
Describes Fields within Frame

How to output data
(Binary, Text, ...)

Default = pass binary

Optional recursive frame

Figure 3 - Filter File Format

Access Control
Message to Digicipher

Devices

PID = NAS OOB

PID = Other Services

HITS STREAM
MPEG PACKETS

PID = NAS OOB

PID = NAS OOB

PID = NAS OOB

PID = NAS OOB

PID = Other Services

PID = Other Services

PID = Other Services

PID = Other Services

PID = Other Services

PID = Other Services

PID = Other Services

PID = Other Services

PID = Other Services

PID = Other Services

NAS OOB
MPEG MESSAGE

NAS OOB
MPEG PACKETS

CA Stream
MPEG Packets

CA Stream
MPEG Packets

HITS STREAM FILTER FILE
hits_filter.flt

FRAME = MPEG PACKET
 <MPEG Packet Description>
 ...
 FILTER
 <When PIDS=NAS OOB>
 <Output HITS time est.>
 END FILTER
 ...
 #include oob_ip.flt
 ...
END FRAME

PAT
pat_info.flt

FILTER
 #ifdef SHOW_PAT
 <When PID = 0>
 <Output PID information>
 #endif
END FILTER

NAS OOB FILTER FILE
nas_mpeg_pkt.flt

FRAME = MPEG PACKET
 <MPEG Packet Description>
 ...
 #include pat_info.flt
 #include pmt_info.flt
 #include cat_info.flt
 #include code_obj_info.flt
 ...
 END FILTER
 ...
END FRAME

CA Stream
MPEG Packets

CA Stream
MPEG Packets

CA Stream
MPEG Packets

Access Control
Message to Digicipher

Devices

CAT
cat_info.flt

FILTER
 #ifdef SHOW_CAT
 <When PID = 1>
 <Output PID information>
 #endif
END FILTER

CODE OBJECT
code_obj_info.flt

FILTER
 #ifdef SHOW_CODE_OBJ
 #include code_obj_pids.def
 <When PID = OBJ1>
 <Output information>
 ...
 #endif
END FILTER

Figure 4 - Representing Encapsulation

Data Description

 Each of the fields within a frame must be
defined. The data description block within the
filter identifies fields of data, such as the
packet sync (47 Hex), the continuity counter,
or the PID fields of an MPEG packet.

Variable Length Data

 While MPEG packets are fixed format
(188 bytes or 204 bytes), UDP / IP data is not.
The length, however, can be readily
determined from the contents of the UDP
packet. Note the length clause contains a
function used to establish the length of the
arbitrary frame.

Selecting Data to be Processed

 One or more pass filters look at frame
headers and establish whether data needs to be
passed. For MPEG data, the pass filter would
likely select PIDS. For UDP data, it might
select UDP source and/or destination ports.

 Once data is selected, it is then processed.
The output section defines what data is to be
output. Output can be formatted text such as:

 PID=234 TIME=88:99

or it can be binary data. Outputting binary
data is quite useful for simple extraction of
encapsulated data. That is, if all you want are
the MPEG packets from a NAS IP OOB
stream going to an OM-1000, you simply
detunnel the UDP packets to that device.

Storing Data

 The MAcq filter allows “scratchpads” to be
used to temporarily store data. This initially

became very useful when analyzing F-16 radar
data.

APPLYING MACQ TO MPEG DATA

 DVA Group began a research program in
2002 known as “Crown Royal” or CR to
identify whether MAcq could be used to parse
MPEG data and generate text output files.

Processing Frames of Data

 Figure 4 shows how MAcq filter files can
be used to describe and process the NAS
satellite transport stream and extract the
conditional access table (CAT). This shows a
simple case of extracting OOB messages.

Need for Storage

 Note that MPEG packets contain MPEG
messages, and that MPEG messages can span
multiple MPEG packets. When analyzing an
MPEG stream in the general case, MPEG
messages on multiple PIDs may interleave
themselves in the temporal sequence of the
MPEG stream. The MAcq scratchpad is
useful for this case.

 However, the MAcq implementation only
allows statically defined scratchpads. This
was fine for only detunneling OOB data, but
was not adequate for cross PID correlation
problems. As such, the general case of
providing a general PID storage for
detunneling MPEG messages was not
adequate. Indexed scratchpads need to be
added to the MAcq filter syntax.

Compartmenting Knowledge

 In this context, compartmentalization
refers to the Department of Defense (DoD)
style security compartmentalization used
during the cold war. That is, everything is on
a “need-to-know” basis.

 Access control providers have been
reticent to only provide necessary information
outside (and often inside) their corporate
control. Providing MSOs and vendors with
too much detail places the acces control
provider at risk, and makes the MSO
vulnerable to attack.

 The MAcq filter provides a method of only
providing information on a “need-to-know”
basis. That is, filters that describe MPEG
formatted information, or that simply
announce the presence of a channel map, code
object, or conditional access table may be
appropriate for an MSO to obtain. However,
the details of conditional access, especially
key exchanges can be hidden by simply
omitting the filters that are not needed.

PUTTING IT ALL TOGETHER

 Engineers in the cable industry have many
tools at their disposal. Many off-the-shelf
products will parse Ethernet and IP packets,
and others parse MPEG packets. Use of
MAcq should take advantage of the strengths
of existing tools.

Analyzing Local Access Control Data

 Local AC data is often encapsulated on an
Ethernet IP network. Off-the-shelf tools such
as Etherpeek and the Unix tcpdump utility
provide historical recording of Ethernet IP
network in text or binary form. To make
sense of the MPEG packets, however, requires
the content to be detunneled.

 The MAcq_filter can be used to detunnel
the MPEG packets and put them in a form that
MPEG analyzers can use. They can then be
analyzed in native MPEG forms.

 The same solution addresses
instrumentation of systems in which video is
transported across an Ethernet IP network.

Many new MPEG re-multiplexors are being
introduced that accept video streams across IP
networks.

Using with Unix Pipes

 Visualizing the delivery of code objects,
VOD content, channel maps, and other
necessary components of a cable system
requires a tool that can output data in
graphical form.

 The macq_filter has been used in the radar
community to visualize its effectiveness. The
tool filters, processes, and then streams
selected data in both real-time and playback
instances into off-the-shelf 3-dimensional
analysis tools.

 The same can be applied to monitoring the
OOB data within a headend. That is, MAcq
can filter and process the access control
stream and stream data into commercially
(and sometimes free) third party software
tools that display arbitrary bar graphs. This
can be used to build tools that show code
objects, channel maps, and other access
control data as a percentage of bandwidth.

Work to Date

 DVA Group has successfully used the
original macq_filter program for simple tasks.
The original program worked because 188
byte packets were long word aligned. It
enabled analysis of PID distribution,
continuity counts, and extraction of PIDS in
binary form. It also allowed an encapsulated
IP layer to be extracted from a given PID in an
MPEG transport stream.

 But extracting an OOB stream
encapsulated within IP data could not be
performed without being able to parse frames
in byte word alignment.

SUMMARY

 We have proven the underlying technology
behind the macq_filter tool can help fill the
gaps in commercial MPEG analysis tools.
DVA Group continues to evolve the filter tool
so it properly supports the needs of embedded
cable systems in the future.

MANY THANKS

 The author extends his appreciation to
Michael Adams and all the people who helped
write “OpenCable Architecture”. By showing
a top level view of how Motorola Broadband
and Scientific Atlanta conditional access
systems work, we can discuss real world cable
industry applications in a public forum.

REFERENCES

1. Michael Adams, “OpenCable
Architecture”, 2000, Cisco Press.

2. Dr. Keith Montierth Jr, Todd Jahng, Lisa
Chiang, Greg Rohling, Gene Rohling, “Three
Dimensional Data Visualization System for
the F-16 Program”, JAWS S3 Conference,
June 10, 1997.

3. Flexible Engineering Resources, Inc.
“MAcq User Manual”, September 13, 1997.

