
OpenCable APPLICATION PLATFORM – STATUS AND ROADMAP
Allen R. Schmitt-Gordon, Ph.D.

Frank Sandoval
Cable Television Laboratories, Inc.

 ABSTRACT

 The OpenCable Application Platform
(OCAPTM) is a software middleware layer that
resides functionally on top of the operating
system of an OpenCableTM terminal. It
provides an interface and enables application
portability. A fundamental requirement is
that applications written for OCAP be
capable of running on any OpenCable
hardware, without recompilation.

Two profiles of OCAP have been identified.
OCAP 1.0 is a minimal platform that supports
procedural applications with an Execution
Engine (EE). OCAP 2.0 is a super set of
OCAP 1.0, and includes support for
declarative content with the inclusion of a
Presentation Engine (PE), that supports
HTML, XML, ECMAScript, and a bridge
between the PE and the EE. The bridge
enables PE applications to obtain privileges
and directly perform EE operations.

OCAP 1.0 has been publically released,
OCAP 2.0 is scheduled for around 1Q02.
CableLabs plans to draft a family of OCAP
specifications, each being backward
compatible and defining different feature sets.

The OCAP specifications are based upon the
DVB MHP specifications with modifications
for the North American Cable environment
that includes a full time return channel.
OCAP 1.0 corresponds to MHP 1.0.2, and
OCAP 2.0 will correspond to MHP 1.1.

INTRODUCTION

OCAP is part of a concerted effort, called
OpenCable, by North American cable

operators to provide the next generation
digital device, encourage supplier
competition, and create a retail hardware
platform. A cable receiver provided at retail
must provide portability of content and
applications across networks and platforms,
and be geared towards the full range of
interactive services. Current devices are
network specific and operate proprietary
software that is not portable across platforms
or networks. With OCAP, applications are
written to a middleware API so that a single
application can be deployed on any
OpenCable host device. Such applications
might include:

• Electronic Program Guide (EPG)
• Impulse Pay Per View (IPPV)
• Video On Demand (VOD)
• Interactive sports, game shows
• E-mail, Chat, Instant messaging
• Games
• Web Browser: Shopping, Home banking
• Personal Video Recorder (PVR)

OCAP provides applications an abstracted
view of the receiver and network, hiding
vendor and network specific characteristics
that would tie an application to a given
system. OCAP is operating system and
hardware agnostic, so that applications can be
run on a variety of CPUs and operating
systems. The OCAP middleware also
simplifies content development by
encapsulating common operations within the
API. Another essential requirement is that the
middleware be secure and robust. Stability in
the cable terminal or receiver is imperative as
resets are not acceptible.

Background

The OCAP specifications include Application
Programming Interfaces (API) as well as
definitions regarding platform behaviors. The
APIs define the syntax of the platform, while
normative text define semantic guarantees.

The architecture of the OCAP 2.0 middleware
comprises two parts: a Presentation Engine
(PE) and an Execution Engine (EE). The PE
is generally composed of an HTML engine
and ECMAScript. The EE includes a Java
virtual machine. This architecture is shown in
Figure Figure 1. It shows that native
applications are supported as well as
applications written to the middleware via the
OCAP interface.

In order to expedite development of the
OCAP specifications, it was necessary to
utilize existing standards and architectures as
much as possible.

A key decision was to base the OCAP EE on
standard Java APIs. In particular, the OCAP
EE comprises pertinent portions of Sun’s Java
Virtual Machine (JVM) and JavaTV API
specifications. The Sun technology is
licensed by CableLabs and is available to all
implementers of OCAP royalty-free.
CableLabs will also incorporate the Sun
Technology Compatibility Kit as part of the
OCAP compliance test suite.

Another key decision was to adopt the DVB
project’s Multimedia Home Platform (MHP)
specification. The DVB Project is a European
consortium of manufacturers, content
developers, broadcasters, governmental
agencies, and system operators. MHP is
designed to apply to a wide set of networks
and devices, including cable networks.
CableLab’s recognized that DVB was trying
to solve a similar set of problems. OCAP 1.0
is a delta from MHP 1.0.2, that is, the OCAP
1.0 document identifies conformance with
MHP 1.0.2 section by section, and includes

material to identify differences and
extensions.

OCAP Roadmap

Rationale for Middleware

The current software model used by the cable
industry is similar to the more general pattern
in which applications are developed for a
specific operating system (OS) and compilied
for a specific device. This model does not
lend itself to application portability where a
variety of devices can be attached to several
different network infrastructures. Currently,
applications such as EPG, VOD, mail, etc. are
compiled to the application programming
interface determined by the operating system
and associated hardware.

By providing a middleware layer that
abstracts the functionality of the OS, hardware
device and network interfaces, applications
can be written that will run on any conformant
platform. Java was chosen in order to avoid
recompilation of source code as would be the
case with languages such as C or C++.

OCAP 1.0

The primary architectural component of
OCAP 1.0 is the Execution Engine (EE). It is
composed of a Java Virtual Machine and a set
of Java packages. Application portability is
achieved through the “write once, run
anywhere” nature of Java. Java source code is
compiled into bytecode, and the JVM
interprets the bytecode in real time on the
target machine. Once the JVM is ported to a
target machine, any EE application will run.
The Java packages that comprise the EE
include basic support functionality from Sun,
such as net, io, util, and lang packages, and
JavaTV and Java Media Framework. The EE
also includes Java APIs identified in DAVIC,
HAVi, and MHP 1.0.2. In addition, there are
OCAP specific APIs.

This collection of APIs allows access to
system resources, such as the cable tuner and
input events, and access to network resources,
such as System Information, in-band and out-
of-band resources, and IP flows.

Because of the interpreted nature of Java,
application security is easily maintained.
Applications by default are given limited
access to system resources. An application
can gain extended access by requesting
resources via a permissions file, and by being
authenticated by the operator.

OCAP 1.0 specific APIs have been designed
to address the business requirements of the
cable industry. Unbound applications can
exist outside of the context of a given service,
or channel. Also, an optional monitor
application can be created by the system
operator. The monitor application allows to
operator to control the execution lifecycle of
other applications, and perform some simple
resource management functions, in order to
prevent harm to the cable network.

OCAP 2.0

OCAP 2.0 refers to OCAP 1.0 for core
functionality and adds features found in MHP
1.1. A Presentation Engine and Bridge are
included to support so-called declarative
applications. The PE renders content such as
graphics, text, animations and audio based on
formatting rules in the PE itself and
formatting instructions contained in markup
language. The PE enables the use of tools that
have been widely used for internet content.

OCAP 2.0 primary components consist of
XHTML 4, XML 1.0, CSS 2, DOM 2, and
ECMAScript.

In order to extend the functionality of the PE
without adding the burden of requiring
extensive plugins, a bridge is defined between
the two environments. The bridge allows PE
applications, through ECMAScript calls, to
access functionality defined in the EE.
Conversely, EE applications, through the
DOM interface, can interact with concurrently
running PE applications.

Network Protocol

Operating System and Device Drivers

OCAP Application Programming Interface

Baseline
Applications

MSO Monitor
Application

Execution Engine

Application
Manager JVM

All Other
Applications

Native
Application

representation

Native Application
Environment

Ocap Host Device Hardware

Resource
Management JNI

Figure 1 - OCAP 1.0 Software Architecture

For example, as part of the EE that is
accessible via the bridge, JavaTV offers a
common point of control and management of
various system resources, includeing tuning.
Thus, a PE application will access device
resources through the bridge. This ensures
that device resource contention is managed
through a common control point for a PE and
EE application that may be vying for the
same resources.

Execution Engine

The EE provides a general application
programming evironment for networking,

file I/O, graphics, etc. The OCAP EE
provides a full TV application environment.
OCAP specific extensions have been added
to MHP to cover elements such as a full time
return channel, application management,
resource contention mangement, and service
information.

Major elements of the EE include control of
application management through the pJava
APIs, service information and selection
through the JavaTV API's, media control
through the JMF, and broadcast data through
the MHP DSMCC APIs. Native applications
are supported by creating an OCAP

application that calls into native code via the
Java Native Interface (JNI). In addition, the
EE provides network management and IP
data access and extensions from HAVI,
DAVIC and DASE.

A fundamental feature of the EE utilizing
Java is that security is built into the
architecture from the ground up.

The components of the EE, some of which
are shown in Figure 1, are described in detail
in the OCAP 1.0 specification. In order to
understand one of the key features of OCAP
1.0, which distinguishes itself from MHP
1.0.2, a discussion of the OCAP Application
Model is warranted.

Application Model

OCAP 1.0 relies very heavily on the
Application Listing and Launching APIs
defined by DVB-MHP. This set of APIs
enables lifecycle management of those
applications that are bound to a service or
program. OCAP 1.0 extends this model to
include management of unbound applications
or those applications that are not bound to a
service or program. Signalling of such
applications is done by a mechanism similar
to the AIT specified by MHP 1.0.2, called
the XAIT that is delivered via the traditional
OOB or the DOCSIS channel (when
available).

A special unbound application is called the
Monitor Application The monitor
application has a number of specific
capabilities that can over-ride baseline
functionality of the the OCAP 1.0
implementation (see Figure 1).

This functionality includes:

• Registration of unbound applications

with the applications database.

• Validation of the starting of all
applications through the setting of
application filters.

• Registration of system errors that are
propagated from the OS middleware,
and/or OCAP 1.0 implementation,
including OCAP applications.

• Request system reboot, and regitration of
system reboot event.

• Control of copy protection bits and
output resolution using the
org.ocap.application.CopyControl
interface.

• Filtering of User Input events and change
their value before sending them to their
final destination.

• Management of storage of any MSO
unbound application, including itself
using the persistent storage API, as
defined by MHP 1.0.2 .

• Application lifecycle management,
including that of the Monitor Application

• Resource Contention management of
resource contention deadlocks.

If the Monitor Application implements any
or all of the above functionality, it over-rides
the implementation on a per MSO basis.
Otherwise, the OCAP 1.0 implementation
performs these functions in a generic manner.

OCAP-MHP Comparisons

The table in the appendix was generated by
enumerating all of the java methods specified
by the OCAP 1.0 and MHP 1.0.2
specifications. OCAP 1.0 shares a number of
java packages with MHP 1.0.2. These
packages are listed in section 12 of the
OCAP specification. The packages come
from SUN java JDK 1.1.8, PJAE 1.2,
JavaTV, JMF, DAVIC, HAVi, and DVB-
MHP. It is a useful but daunting task to
enumerate the methods and interfaces that
both OCAP 1.0 and MHP 1.0.2 share in
common. Utilizing the javadoc tool and the
javadoc APIs provided by SUN with the

JDK, the task is made somewhat less
difficult. Doclets were written utilizing the
javadoc APIs to produce custom javadoc
output that list and count the methods in
each package. These results are summarized
in the table attached hereto as an appendix.

It should be noted that the number of MHP-
specific methods is less than 10% of the total
number of methods specified by MHP 1.0.2.
Thus, even if OCAP 1.0 did not utilize any of
the MHP-specific methods, it would still be
highly compliant with the MHP 1.0.2
specification, with an 89% correspondence.
The SUN java, javaTV and JMF components
represent 71% of the total number of
methods. However, the methods specified by
OCAP 1.0 and MHP 1.0.2 add the useful and
necessary functionality needed by
applications.

Both specifications share the following
packages:

org.davic.media
org.davic.mpeg

 org.davic.mpeg.sections
 org.davic.net
 org.davic.net.dvb
 org.davic.resources
 org.havi.ui
 org.havi.ui.event

OCAP 1.0 does not currently utilize the
following packages. Ongoing efforts to
harmonize OCAP with MHP may effect this
list:

org.dvb.net.ca
org.dvb.net.tuning
org.dvb.si
org.davic.net.ca
org.davic.net.tuning

The org.dvb.event package is not currently
specified by OCAP 1.0 but is under
consideration for addition to the specification
via the ECR process.

Conclusions

The OCAP family of specifications were
developed in response to specific needs of
the cable industry. In order to minimize time
to market for new services, and to enable
downward price pressure and facilitate
innovation via a retail market for cable
receivers, OCAP provides a full featured and
robust software platform. It offers a very
high degree of portability and uniformity for
content display as well as offering a platform
for the broadest possible range of application
support. The OCAP architecture ensures
security and robustness.

References

Schmitt-Gordon, A., OpenCabel Application
Platform Architecture. Proceedings NCTA,
June 2001.

OpenCable Application Platform
Specification, OCAP 1.0 Profile, OC-SP-
OCAP1.0-I01-011221, found at
http://www.opencable.com

Kar, M.L., Vang, S., and Brown, R.,
Architecture of Retail Set-Top Box
Application Platform for Digital Cable
Netork, Proc. ICCE, June, 2001.

Zundel, J-P, Emergence of Middleware in
Home Telecommunication Equipment, IEEE
Communications, June, 2001.

Draft Multimedia Home Platform Draft 1.0.2
for review, Document TM2208r7, TAM
232r29, can be found at http://www.dvb.org

Digital Video Broadcasting (DVB)
Multimedia Home Platform (MHP)
Specification 1.1, tm 2485, tam 668r12, can
be found at http://www.dvb.org

ATSC DASE AEE, Doc. T3-530 09, Feb
2001, Rev 1.

Havi Level 2 User Interface, section 2.5.2,
http://www.havi.org

Documents relating to the PE including
DOM, CSS, HTML can be found at
http://www.w3c.org

Documents relating to the Davic
specification can be found at
http://www.davic.org

Appendix – Syntactical Comparison of OCAP 1.0 and DVB-MHP

1.0.2

PACKAGES total methods
methods used
by OCAP

methods used
by DVB-MHP

syntactical
compliance with
DVB-MHP
%

org.dvb.* 488 357 488 73
org.ocap.* 207
javax.* 414 414 414 100
java.* (see note 1) 3440 3440 3440 100
org.havi.* * 785 785 100
org.davic.* * 139 268 52

TOTALS 5135 5395 95

note 1 - number of java.* methods actually used by DVB-MHP is somewhat less than
required by SUN for the implementation

