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Abstract 

This paper describes a discrete-event 
simulation model of VOD traffic in a 
system with a server and hierarchical 
network. The model predicts the 
magnitude and location of blocking as a 
function of the demand for VOD sessions 
and their durations.  We found that an 
Erlang-B model may overestimate the 
blocking probability, since it is based on 
a statistical equilibrium that may not be 
reached with time-varying VOD traffic. 

The model provides an inexpensive 
way to explore various network 
configurations and modulation schemes.  
As such, it can be very useful for VOD 
capacity planning. 

INTRODUCTION 

Interactive cable traffic such as video-
on-demand (VOD) content presents 
fascinating capacity planning issues.  For 
example, VOD systems must be sized so 
that there is only a small probability of a 
subscriber being unable to initiate a 
session.  Demand for sessions varies by 
time of day and day of week.  Also, the 
duration of a VOD session depends on 
the content selected, the time spent 
selecting the content, and on the use of 

VCR-like features such as pause, rewind 
and fast-forward. 

In some respects network traffic 
associated with video on demand is 
similar to telephony traffic.  Requests for 
new sessions arrive randomly over time, 
and the duration of each session is 
random.  Furthermore, the average arrival 
rate of new requests is not constant over 
time, but rather there is a peak period 
during any given day, and this peak will 
vary on different days.  For example, the 
peak demand for VOD will probably be 
on a cold and rainy Friday night.  
However, there is an important difference 
in the nature of the traffic:  the average 
length of a VOD session is long relative 
to the duration of the peak period.  In 
contrast, the duration of a typical phone 
call is short relative to the duration of the 
peak calling period. 

Figure 1 is a stylized representation of 
VOD traffic.  Suppose that the peak 
period lasts for 3 hours, and that movies 
are only requested during the peak 
period, at a uniform rate of 10 per hour.  
Suppose also, that each VOD session 
lasts for exactly 2 hours.  The solid curve 
in the figure shows the arrival rate of 
requests. The dashed curve shows the rate 
at which movies end:  it is the same as 
the arrival rate curve but delayed by 2 
hours.  
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Figure 1  Stylized Video on Demand Traffic 

The dash-dotted curve shows the 
number of sessions that are active, 
assuming that there are no capacity 
constraints.  During the first two hours 
the number of active sessions grows at a 
rate of 10 per hour, reaching a maximum 
of 20 sessions.  Beginning at hour 2, 
movies finish that had started earlier.  
Simultaneously, new requests for movies 
arrive, so there is no change in the 
number of active sessions between hour 2 
and hour 3.  The peak period ends at hour 
3, after which there is no demand for new 
sessions.  From hour 3 to 5 movies finish 
which had started previously, and the 
number of active sessions falls to zero. 

By way of contrast, Figure 2 shows 
the number of active sessions for stylized 
telephony traffic assuming that the peak 
period runs for one hour with a uniform 
arrival rate of 400 calls per hour, and that 
each phone call lasts for exactly 3 
minutes. 
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Figure 2  Stylized Telephony Traffic 

The number of active sessions (phone 
calls) over time has a similar shape to 
that for the VOD traffic, but there is an 
important qualitative difference.  The 
number of active phone calls is at a 
sustained maximum level for almost all 
of the peak period.  In contrast, the 
maximum number of active VOD 
sessions is at its maximum level for only 
a small part of the duration of the peak 
period.  This is a direct consequence of 
the relatively long length of a VOD 
session compared to the duration of peak 
demand for VOD. 

This qualitative difference has 
important implications for modeling 
VOD traffic.  The Erlang-B model that 
predicts blocking of telephony traffic is 
based on a stochastic equilibrium, which 
corresponds roughly to the long sustained 
period of maximum sessions in Figure 2.  
Under typical conditions, VOD traffic 
may not reach such a stochastic 
equilibrium, and hence the Erlang-B 
model [Wall] may not provide a good 
approximation of blocking.  In fact, if the 
network is initially empty, then no 
blocking will occur at the beginning of 
the peak period.  Blocking will only 
occur after the network has filled to a 
level where a capacity constraint is 
reached. 

This paper describes a numerical 
simulation model of VOD traffic that 
predicts blocking.  It shows that 
• blocking increases rapidly when the 

demand for VOD sessions exceeds a 
threshold, 

• blocking is sensitive to the average 
duration of a VOD session, and 

• the Erlang-B model may overestimate 
blocking. 



SIMULATION FRAMEWORK 

Network configuration 
We modeled a network architecture 

with a central VOD server that supports 
several hubs.  Video streams are carried 
from the VOD server to each hub on 
fiber.  Each hub delivers VOD traffic 
modulated onto RF channels to several 
nodes.  The RF channels are shared 
among groups of three nodes, called 
supernodes.  Thus there are three 
potential locations for blocking:  at the 
server, in the fiber between the server and 
the hub, or in the RF. 

The results in this paper are for a 
network with 1 server, 12 hubs, 217 
supernodes and 4 RF channels per 
supernode.  The number of supernodes 
per hub ranged from 6 to 27.  The 
modulation of each RF channel was 64 
QAM, providing 8 digital streams at 
3.375 Mbps. 

Characteristics of VOD sessions 
For the purposes of traffic modeling 

the relevant characteristic of a VOD 
session is its duration.2  This is 
determined by  

• the length of the content,  
• the time used while selecting the 

content,  
• the proportion of sessions which 

are terminated before the end of 
the content, and  

• the time used for VCR-like 
features such as pause, fast-
forward and rewind.   

We modeled two distinct types of 
sessions:  long and short, corresponding 
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VOD content.  There is also out-of-band traffic 
associated with control of a VOD session, such as 
ordering, pause, fast-forward and rewind. 

to feature length films and shorter content 
such as children’s programs.  We 
assumed that the durations of each type 
of session are normally distributed with 
means of 120 and 55 minutes 
respectively, and standard deviations of 
25 and 5 minutes respectively. 

Demand for VOD sessions 
The demand for each type of session 

varies by day and by time of day.  Our 
simulations cover a single day, which for 
capacity planning purposes should be the 
busiest day anticipated.  A natural unit 
for demand is the number of buys per 
subscriber per month.  However, for the 
purposes of simulation, it is necessary to 
specify how these buys are distributed 
over time.  We assumed that session 
requests are distributed according to a 
Poisson distribution, and that the demand 
is the same for each supernode.  Demand 
is specified in terms of an average arrival 
rate of session requests. Different 
demand can be specified for each type of 
session. 

Demand for each type varies by time 
of day.  For each type the day was 
divided into four phases.  The average 
arrival rate in each phase was specified as 
a percentage of the rate during the peak 
phase, as shown in Table 1.  The table 
shows time based on a 24 hour clock.  
We assumed that the peak rate was the 
same for both long and short sessions 
(although the peak for each occurs at 
different times, as shown on Table 1.) 

 



Type Time Demand Time Demand Time Demand Time Demand
Long 0300-1700 5% 1700-1900 30% 1900-2200 100% 2200-0300 5%
Short 0300-1400 5% 1400-1600 30% 1600-1900 100% 1900-0300 5%

Early Pre-peak Peak Late

 

Table 1   Average arrival rates (as a percentage of peak rate) 
 

We considered peak average arrival 
rates requests (for each type) between 2 
and 5 per hour per node. Based on the 
time varying demand, a peak rate of 2 
requests per hour per node is equivalent 
to 18.2 requests per node per day.  For a 
node with 500 homes passed and 11% 
digital penetration, this means that the 
average number of session requests per 
digital home in that day is 0.33.  If the 
total demand over all of the other days in 
the week were ½ of that on this busy day, 
then the monthly buy rate would be 
4*1.5*0.33 = 2 buys per digital 
household, based on a four week month.  
The buy rate scales linearly with the peak 
rate.  So a peak rate of 4 requests per 
hour per node corresponds to 4 buys per 
month given these assumptions. 

Network performance 
There are two aspects of blocking that 

are of interest 
• a customer perspective: the 

percentage of session requests 
which are not granted, i.e., 
blocked, because of capacity 
constraints, and 

• a network perspective:  the 
location of blocks in the network, 
which can be at the server, in the 
fiber between the server and the 
hub, or in the RF. 

Since demand varies over time, the 
blocking probability also varies over 
time.  The simulations generated 

blocking probabilities for each hour.  The 
blocking probabilities reported in this 
paper are for the hour with the greatest 
blocking.  For most of the runs this was 
from 9 to 10 pm.  For some of the runs it 
was between 8 and 9 pm.  Based on 
Table 1, the highest average arrival rates 
occurred from 5 to 7 pm.  The highest 
blocking occurs later than the period of 
peak demand, since the network is 
relatively empty at the beginning of the 
peak request period, but fills as session 
requests are granted.  As shown on 
Figure 1, it takes some time for the 
number of active sessions to grow to a 
point where a capacity limit is reached. 

MODELING APPROACH  

The model was implemented using a 
discrete event Monte Carlo simulation 
written in Microsoft Excel and Visual 
Basic for Applications.  The user has the 
option to enter up to five network 
configurations and three demand 
scenarios.  Each unique network 
configuration – demand scenario pair is 
called a case, and the user must select the 
specific cases to study.  The model treats 
each case independently – this 
mechanism simply allows for more 
efficient processing of multiple cases.   

The model is designed to simulate a 
peak day in the system.  Movie demands 
are defined for a 24-hour day, starting at 
3 am.  The model considers 3 am to 7 am 



to be a warm-up period to initialize the 
network, so no statistics are collected 
during this time.  At 7 am, the model 
begins collecting statistics for the next 20 
hours.  Two types of statistics are 
collected:  blocked requests and active 
sessions. 

Because this is a Monte Carlo 
simulation, multiple trials must be run for 
each case.  At the beginning of each trial, 
movie requests are generated according 
to a Poisson process for each type of 
movie at each node in the network.  
These requests are then sorted by arrival 
time and processed in turn.  Processing a 
request has three steps:  clearing out 
completed movies, assessing the network 
for capacity and reacting to the result of 
the assessment.  First, the entire network 
is checked to see if any movies have 
completed since the last movie request 
was processed.  If so, the capacity 
counters in each network element are 
updated to reflect the newly released 
capacity.  Next, the supernode at which 
the movie arrives is identified.  This 
supernode, the fiber that serves it, and the 
VOD server are all checked for available 
capacity.  If sufficient capacity exists in 
all of these network elements, then the 
movie request is granted and the duration 
of the movie is obtained according to a 
predefined statistical distribution.  The 
movie is recorded in the network and 
capacity counters are updated.  If there is 
not enough capacity, then the location of 
the block is recorded.  This process 
repeats until all of the requests are 
handled.  The active sessions data is 
recorded by evaluating the state of the 
network at user-specified intervals 
throughout the course of the trial. 

Once all of the trials are completed, 
summary reports, which include the 
averages over all of the trials as well as 

individual trial results, are output for later 
analysis.3 

Validation 
Validating the model is essential to 

insure that it accurately represents the 
system under consideration.  For this 
model, an analytic benchmark is 
available for validation.  A VOD system 
resembles an M/M/m/m queue, which has 
multiple servers that block requests if no 
server is idle when the requests arrive.  
Applying this to the VOD simulation 
model is something of a generalization, 
since a VOD system is a hierarchical 
network.  However, for the network we 
modeled, the vast majority of the 
blocking occurs at the supernode level, so 
it is a reasonable approximation.  For an 
M/M/m/m queue, the blocking 
probability (i.e. likelihood the request is 
lost) is simply an Erlang-B function 
[Tanner].  We compared the analytic 
benchmark to the VOD simulation model 
for a system with only one movie type.  
Table 2 illustrates the comparison 
between the analytical blocking and the 
VOD simulation model blocking for 
three different cases, varying only the 
movie request arrival rates.  The arrival 
rates were kept constant over time in the 
simulations to satisfy the stochastic 
equilibrium assumption implicit in the 
Erlang-B model.  Note that our 
simulation model shows excellent 
agreement with the analytic results. 
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level of blocking may be higher or lower than the 
average.  There are other criteria besides average 
blocking that might be used for network design, 
such as a 5% chance that more than 1% of session 
requests are blocked. 



Average session request 
arrival rate per 

supernode per hour
Analytical 
blocking

VOD simulation 
model blocking

% of blocking 
occurring at 
supernodes

15.9 4.8% 5.0% 100%
17.7 8.8% 9.2% 100%
19.2 12.9% 13.4% 99.8%  

Table 2  Model Validation 

MODELING RESULTS 

Table 3 shows how the blocking 
probability varies with the demand for 
VOD sessions.  With time varying 
demand, there is no blocking if the peak 
average arrival rate is 2 requests per type 
per node per hour (or lower). On average, 
3% of requests are blocked if the peak 
rate is 4 requests per type per node per 
hour.4  But if the peak rate rises to 5, then 
blocking reaches an unacceptable level of 
12.7% of session requests. 

Time 
varying Steady

2 0.0% 0.05%
3 0.15% 4.2%
4 3.0% 18.7%
5 12.7% 35.2%

Peak avg. arrival 
rate per type per 

node per hour

Demand

 
Table 3  Blocking probabilities 

(highest hour) 
The table also shows the blocking 

probabilities if demand is constant at the 
peak rate over time, rather than time-

                                                 
4  Blocked requests were not queued in the 

simulations.  They were simply not granted.  In 
reality a blocked request would probably lead a 
subscriber to submit another request immediately.  
This behavior was not modeled. 

varying.  The blocking is significantly 
higher with steady demand.  This shows 
that the Erlang-B model can overestimate 
blocking if the demand for VOD sessions 
varies over time. 

Table 4 shows the location of blocking 
in the network, expressed as a percentage 
of all blocks.  All blocking occurred in 
the RF, except for a small amount of 
blocking at the server when the peak 
average arrival rate was 5.5 

Server Fiber RF
2
3 0% 0% 100%
4 0% 0% 100%
5 0.8% 0% 99.2%

Peak avg. 
arrival rate per 
type per node 

per hour

Location

none

 

Table 4  Blocking locations 
The blocking probability is sensitive 

to the average duration of a VOD session.  
If the average duration of the long 

                                                 
5 It is possible for there to be insufficient 

capacity simultaneously in several parts of the 
network.  We attributed blocking to the lowest 
level of the network where it occurred.  For 
example, if both the RF and the server were full 
when a new request arrived, then the block would 
be attributed to the RF and not to the server. 



sessions is reduced from 120 to 110 
minutes, and that of the short sessions 
from 55 to 50 minutes, then blocking is 
approximately halved.  With time varying 
demand and peak rates of 4 and 5, the 
blocking probabilities are 1.3% and 7.4% 
respectively, compared to the values of 
3.0% and 12.7% in Table 3.  A drop in 
blocking would be expected due to the 
reduction in offered load.  Yet the 
magnitude of the drop is large.  This 
sensitivity demonstrates the potential 
benefit from reducing the average VOD 
session length, perhaps by taking steps to 
reduce session time involved in movie 
selections. 

We also did simulations to explore a 
lower standard deviation of the session 
duration.  Such reduction had only a 
small impact on the blocking probability.  

CONCLUSIONS 

Simulation is a useful tool to assist in 
capacity sizing.  It is flexible, which 
makes it possible to evaluate the 
anticipated performance of many possible 
network configurations, before making 
significant investments. 

The discipline of building a simulation 
model brought to light many crucial 
operational issues, such as  

• the importance of the average 
duration of a VOD session, and  

• the time-varying nature of demand 
and blocking. 

It would be highly desirable to collect 
network data to calibrate the model.  The 
model predictions do match the analytical 
Erlang-B model.  But the Erlang-B model 
is not valid for time-varying traffic on an 
actual hierarchical network.  Calibration 
with actual VOD session traffic would 
increase confidence in the predictions of 
the simulation model.  After such 
calibration, the model can generate 
significant money-saving insights on how 
to achieve a balance between the costs of 
adding VOD capacity and the costs of 
having subscribers frustrated by blocked 
VOD requests. 
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