
MIDDLEWARE: A KEY COMPONENT FOR BROADBAND

Dr. Ken Morse, Azita Manson

PowerTV, Inc.

Abstract

There are many discussions in the
digital interactive cable television
community regarding middleware.
Debate rages over requirements,
technology choices and even
terminology and definition. This paper
presents an overview of the design
decisions and engineering challenges
faced during the development of the pTV
Software Platform by PowerTV, Inc.
While the paper’s focus is primarily
client-based, it also addresses the
approach adopted on the server side of
the equation.

INTRODUCTION

This paper presents an overview of
the engineering challenges of the pTV
Software Platform from inception to
delivery and subsequent evolution
through seven years of development by
PowerTV, Inc. The hardware target for
this software platform is interactive
Digital Home Communications
Terminals (DHCTs) of the Explorer
2000 class and above. Alternative
software approaches have been followed
by vendors addressing the DCT 2000
class DHCTs and is not in the scope of
this paper.

Before discussing the software
architecture it is important to review the
target DHCT capabilities and network

infrastructure in which the DHCT
resides.

THE DHCT

The Explorer 2000 DHCT provides
support for digital services and
traditional analog services delivered
through a hybrid fiber/coax (HFC)
network. The first version of the 2000
shipped in 1998 and was equipped with
a 54MHz RISC microprocessor, 4MB of
FLASH memory for system software,
2MB of memory for MPEG
decompression and graphics, and 8MB
of DRAM for system and application
use.

The DHCT is equipped with 64 and
256 ITU J.83 [1] Annex B QAM
demodulation support and a service
tuner enabling both analog and MPEG 2
digital channels to be tuned and
displayed. A DAVIC 1.1 [2] compatible
out-of-band (OOB) system, operating at
1.544 Mbps is included to enable
instantaneous, IP-based, “real-time”
two-way communications between the
DHCT and the headend.

Digital services are secured using the
PowerKEY conditional access system
provided through an on-board security
microprocessor.

Local devices may be attached to the
DHCT through the Universal Serial Bus
(USB) interface or an optional Ethernet

10BaseT interface. Together these
support the connection of devices
ranging from printers and digital
cameras to personal computers.

DIGITAL BROADBAND DELIVERY
SYSTEM

The DHCT terminates the digital
broadband delivery system (DBDS) that
combines video, audio, and data content
from a variety of sources and distributes
them to the subscribers’ home. Given the
scope of this paper, it is important only
to understand the network connectivity
as viewed by the DHCT.

Figure 1 illustrates the
communications channels between the
DBDS and the DHCT.

DHCT

FAT Channel

FDC

RDC

Hybrid
Fiber
Coax

Network

Figure 1 – Network Connectivity

• Forward Application Transport
(FAT) channels. The DHCT can
select any FAT channel by
tuning to it.

• Forward Data Channel (FDC).
The DHCT can always receive
the FDC, even while tuned to
analog services.

• Reverse Data Channels (RDC).
The DHCT can only transmit in
one RDC. However, more than
one RDC may be defined per
node for capacity reasons.

With the baseline understanding of
the DHCT and the network connectivity
a discussion of the software platform is
presented.

SOFTWARE PLATFORM
OVERVIEW

Once the DHCT platform and
network were defined, it was possible to
address the software architecture in the
DHCT. The architecture follows a
layered approach with clearly defined
interfaces and responsibilities. Figure 2
provides a block diagram of the software
components.

Figure 2 – Software Components

The items in gray make up the pTV
Software Platform presented in this
paper and are discussed in the following
sections.

Bootloader

The bootloader is the gatekeeper of
the DHCT and ensures the integrity of
the system software stored in the

DHCT

Bootloader Device Drivers

Operating System

Presentation
Engine

Execution
Engine

Resident
Application

Services

FLASH memory. It listens for
communications from the headend to
ascertain whether software updates are
available for the particular hardware
revision of the DHCT and also
automatically recovers the correct
version of software in the rare case of
corruption in the DHCT image.

Device Drivers

Each instance of a DHCT (from the
same or different manufacturers) may
contain different components such as
processor, memory, and custom
semiconductors. To ensure that the
software platform can operate across a
range of DHCTs, a Hardware
Abstraction Layer (HAL) is provided.
This HAL is an Application
Programming Interface (API)
specification to which DHCT
manufacturers author their device drivers
to ensure compatibility with the software
platform. It is important to note that the
device driver implementation is the first
layer of the software stack. Design and
implementation decisions made at this
level ripple through the entire software
stack. Key implementations guidelines
have to be provided at the device driver
layer to address the efficient use of
memory, interrupts, and thread
prioritization. For example, since the
DHCT deals with high bandwidth data
flows, it is important to minimize the
number of times a piece of data is copied
as it traverses the software stack. In
addition, information, such as
diagnostics that may be required at
higher levels in the software stack, is
often generated within the device drivers
and must be exported.

OPERATING SYSTEM
COMPONENTS.

The Operating System (OS) provides
the foundation on which all other
software components are built. For this
reason, it has three clear non-negotiable
requirements.

Make the DHCT work

The DHCT must be robust and
reliable as it is delivering core television
services to the subscriber. Hence, the
operating system must be designed to
deal with the high data processing
requirements in conjunction with the
constrained memory environment while
maintaining a high quality of service. In
addition, the local interfaces on the box
must be supported, such as USB and
Ethernet.

Make the network work

The DHCT is the termination point in
the network and as such the OS must
support all the necessary protocols for
interfacing with the rest of the network.
This includes, but is not limited to,
conditional access, system information
table management, session management,
carousel delivery and network
management.

Provide a software platform

Since all other software components
are built on top of the OS, it must
provide an extensive API that provides
access to all the functionality contained
within the DHCT. For multiple software
components to concurrently operate
against the OS in a constrained DHCT, it
must provide a comprehensive resource
management environment enabling

policy decisions to be made by higher-
level components.

Core Services

The core OS services are used by all
software components in the system
including all other OS components. A
real-time, pre-emptive and multi-tasking
kernel is required to ensure the
deterministic operation of the DHCT
when dealing with high bandwidth data
flows. The kernel is optimized to
manage low context switch times and
low latency response to interrupts. In
some DHCT designs there can be
upwards of two hundred different
interrupt sources – clearly identifying
the complex design within a DHCT. In
addition, several kernel modifications
were made by the team based on the
requirements of higher-level software
components, such as Java to ensure
efficient operation of the overall system.

Many DHCTs, including Explorer
2000, do not include a Memory
Management Unit (MMU). This makes
the task of ensuring the integrity and
availability of memory a larger problem.
The OS addresses this through a range of
memory management processes applied
to different types of memory in the
DHCT – application, graphics, MPEG –
in addition to algorithms to minimize
memory fragmentation. As part of the
resource management architecture,
different software components may be
asked to yield memory resources when
memory availability becomes critical.
This implementation maximizes the
number of concurrent software tasks that
may be operating on the DHCT.

It is important to note that the
services in the OS must be multi-thread
safe and re-entrant as necessary.

Multimedia Services

Another often-misused term is
Multimedia and in the scope of the
support from the OS this incorporates
video, audio and graphics display.
Video services are provided at the
MPEG transport level in the OS, other
video format support may be built in
higher-level software components.
Similarly, MPEG and Dolby AC-3 audio
streams are managed as part of the
MPEG transport stream. Additional
support is provided for PCM and
ADPCM audio sources in the OS.

Graphics functionality is split into
three layers. basic graphics management
provides access to the frame buffer(s) of
the DHCT and supports multiple color
depths basic graphics primitives in
addition to pixel operations. These
constructs are then used by the Window
Manager to interface with the resource
management architecture to allow
multiple software components to share
the television display concurrently. This
includes combining graphics and the
video plane of the DHCT.

The Window Manager design is the
result of rationalizing the requirements
presented by a diverse set of needs
including higher-level software
components such as Java and the
Abstract Windowing Toolkit (AWT).

Finally, the OS provides a Widget
Manager component enabling consistent
use of Widgets throughout the software
platform. This aids consistency of look
and feel in the higher-level software
components. Once again requirements
on the Widget Manager included the
Java AWT and widgets used in HTML
pages such as buttons, edit fields, and
forms.

Network Services

The DHCT is a network device and
the OS must carry a set of core
networking protocols. Some of these are
generic IP-based protocols; others are
specific to the cable television
environment.

In the system previously described a
DAVIC out-of-band implementation is
employed. The OS carries the DAVIC
signaling implementation and is
responsible for managing the
connectivity to the cable headend. This
is a critical area affecting Quality of
Service (QoS) in the DHCT. Extreme
failures, such as power outages, require
managed sign-on to the network to avoid
congestion and overload. An indication
of the current operational state of the
network is required by all higher-level
software components. The OS works
behind the scenes to manage the
integrity of the network connections and
resources for those components.

Certain services such as Video On-
Demand (VOD) require sessions to be
put in place across the network and
maintained – and on occasion, re-
negotiated. Once again, the OS manages
these connections for the higher-level
components.

IP-based services are supported in the
environment and an optimized TCP/IP
network stack is in place to manage the
IP packet flow. Modifications have been
made to support multiple interfaces to
the stack. This enables in-band IP
support over the FAT channel and local
routing of packets to other physical
interfaces in the box.

A core component of any integrated
design is network management. The OS

provides an extensive SNMP agent
supporting a range of diagnostic
information that may be queried over the
network. It is also extensible and allows
higher-level software components to
dynamically install new Management
Information Bases (MIBs) to report on
items as diverse as QoS to subscriber
patterns. The use of SNMP in the system
greatly reduces the impact of introducing
new services and components into an
existing system.

Given the inherent broadcast nature
of a cable television system, the digital
broadband delivery system provides a
Broadcast File System (BFS) for
delivering data and objects to the set-top.
This is a broadcast, carousel-based
design and the OS maintains the
available file list and retrieves objects as
requested by higher-level components.

Television Services

Television services are the final high-
level category in the feature set
supported by the OS. These include the
ability to acquire System Information
(SI) tables from the network and tune to
A/V programs. Once again, extensive
QoS support is implemented in the case
of SI outage on the network. The SI
database is held in the DHCT and
updated as new tables are delivered over
the network.

Conditional Access (CA) is not
limited to traditional television services
and may be applied to any service
available on the DHCT. CA may also be
used for signing and authenticating
software components delivered over the
network to the DHCT.

Since traditional SI is limited to
video/audio programming selections the

OS architecture was extended to support
the dynamic selection of applications
from remote sources, typically the BFS.
On the client side, the Service Access
Manager (SAM) provides the functions
necessary to load, register, and launch an
application on the DHCT. The API
provides a method for loading an
application into the DHCT memory,
activating the application, and managing
the application after it is loaded

RESIDENT APPLICATION

The Resident Application (RA) is
built on top of the OS and provides the
core digital television services to the
subscriber. These include:

• Navigator

• Interactive Program Guide

• Impulse Pay-Per-View

• General Settings

• Emergency Alert System (EAS)

• Diagnostics

• Digital Music Service

• VCR Commander Support

• Virtual Channels

The RA utilizes the services provided
by the OS to implement policy decisions
for the set-top regarding service
activation, suspension, and removal. The
OS itself does not enforce policy; it
provides the services through which
another party may implement policy.

Resident Applications are available
from Pioneer Digital Technologies and

Scientific-Atlanta for the platform
described in this paper.

THIRD PARTY DEVELOPMENT

Given the consistent and open API of
the OS, a range of third party developers
have developed and deployed
applications and services against the
core platform. Each deployed
application must go through a
certification phase to ensure it is
interoperable within the end-end system.
Over one hundred companies are
working against the OS today creating
new and innovative services on the
DHCT.

ALTERNATIVE SERVICE
AUTHORING APPROACHES

While C-based services have been
developed and deployed by a wide range
of companies against the OS, it was clear
early on that alternative authoring
environments would have a place in the
DHCT over time. Any authoring
environment will have advantages and
disadvantages. In deciding on alternative
authoring approaches it is necessary to
understand the benefits and deficits of C-
based services. These are outlined
below:

+ Performance

+ Footprint (for a given service)

+ Network utilization (self-
contained)

+ Robustness

- Complexity of authoring

- Not cross-platform (processor-
specific)

- Certification process

Alternative authoring approaches
need to address some of the
shortcomings of C-based services while
not sacrificing some of the key
advantages provided by the native
approach.

As part of an investigation into
alternative service authoring techniques
in 1996, an existing public domain web
browser was ported to the operating
system outlined earlier. At this time the
technologies involved were simple by
today’s standards; HTML 2.0 [8] for
layout, GIF87 image format, and HTTP
1.0 for object requests. To validate the
applicability of the browser environment
an existing service, Video On-Demand,
was modified, along with the browser,
and tested on a real-world cable system.
The modifications consisted of
extending HTTP to provide control of
the video server trick modes and adding
several tags to HTML 2.0 [8] to enable
the overlay of graphics and placement of
MPEG video. It was clear that such a
content authored approach with
extensions for object request and control
could form the basis of a future
environment.

At about the same time, Sun
Microsystems released the first version
of its Java programming language in the
form of a development kit, or JDK. By
working closely with Sun, we were able
to gain access to the source code of the
Java environment and port it against the
current software platform. This activity
and the resulting work is detailed in the
section, Execution Engine.

PRESENTATION ENGINE

Given the initial prototyping work on
an HTML 2.0 [8] based browser,
outlined above, a number of issues
would have to be addressed if an
HTML-leveraged solution was going to
operate in the constraints of a home
communications terminal. The approach
decided upon was to design and develop
a software component for presenting
content driven services on-screen and
communicating with known servers
using modified data representations on
HTTP. For this development, the term
presentation engine (PE) was defined for
the resulting product.

The requirements defined for the
presentation engine are presented in the
following paragraphs along with a
description of the engineering challenges
addressed in bringing the product to
market.

Integrated into environment

The success of a platform is based on
how well integrated the design is. With
this in mind, the presentation engine
must leverage the resource management
architecture provided by the core
platform and follow other good-citizen
style guidelines. This also includes
integrating with the existing Resident
Application infrastructure.

Standards-based, where applicable

The goal of the development was to
leverage existing standards as needed
and extend to support platform-specific
capabilities that were not addressed by
the existing standard.

Meet footprint targets of DHCTs

Memory constraints in a DHCT are
tight, typically 8MB to contain network
buffers, platform state and IPG data with
the remainder available for services and
the use of the presentation engine state
and the service content. The presentation
engine itself would live in FLASH
memory as part of the core platform.

Maximise leverage of existing content

It was clear that in the near-term there
would be a lot of available content
authored for the larger market, i.e., the
Internet, and that there would be distinct
advantages if this content could be
leveraged into the platform in the early
stages.

Enable platform capabilities

The DHCT provides a set of
integrated features unlike other
environments, such as Personal
Computers. The presentation engine
should provide access to these features.

Authoring tool availability

One of the complaints leveled against
development in a standard procedural
programming language is the complexity
of the development. With this in mind it
was important to ensure that the
necessary tool chains were in place for a
successful presentation engine product.

Robust and reliable operation

This is a television product and must
be operational 24 hours a day, 7 days a
week, 52 weeks a year - this cannot be
over-communicated. The television
experience is solid and dependable. The
introduction of new services and
technologies must not affect this in any

way. It was clear from the start of
development that ensuring this
requirement is met would be the
toughest by far. Existing web-leveraged
environments are either unable to meet
this criteria, e.g. personal computer, or
do not address the memory and
processing environment of a DHCT.

PRESENTATION ENGINE DESIGN

From the previously stated set of
requirements the design of a PE was
undertaken. This section identifies the
design choices made.

Approach

The decision was made early on to
focus on what is meant by an engine.
Even though the majority of content
presentation solutions are based around
some form of browser, the design team
decided to architect the PE along the
lines of the OS; i.e., a set of services that
can be manipulated by higher-level
components through well-defined
interfaces. This approach ensures that
resource management issues (such as
multiple use instances) for the PE are
addressed in the core design.

Content Support

Based on previous experience with
the HTML 2.0 [8] based browser and the
explosive growth of the World Wide
Web in 1996 it was decided to
implement along the lines of an HTML-
based solution. This ensured that the
availability of authoring tools would not
be a problem. In addition the free-form
nature of HTML page definition lends
itself to manipulation to fit the television
display.

Given the decision to utilize HTML
the next question arose of what version
of the specification to implement. This
was decided based on the memory
profiles projected in the DHCT arena
over the initial product lifespan. Based
on assumptions of 8MB DRAM
platforms, HTML 3.2 [8] was chosen.
HTML 3.2 [8] includes feature sets not
normally supported on constrained
memory devices such as frames and
forms but given the expected utilization
of television services (such as t-
commerce and walled gardens) it was
decided to support this feature set. The
use of frames required focus on core
navigation issues such as movement
between different frames.

HTML pages can include a range of
different objects beyond the HTML page
description. These fall into two
categories; MIME types, and scripting.

With a focus on leveraging existing
tools and content within the constraints
of the DHCT, the MIME types
supported include:

• GIF

• JPEG

• AIFF

• WAV

• Text

These MIME types are supportable
across the range of DHCTs deployed.
Additional MIME types such as
Macromedia Flash are supportable on
more capable DHCTs.

HTML provides a very static
environment and given the non-static

nature of the television environment it
was decided that interactivity must be
provided through the addition of
scripting. ECMAScript was chosen due
to its prevalence in the developer
community and historical use on the
World Wide Web. Traditional
implementations of ECMAScript
assumed an environment with extensive
memory and memory management in
place. Modifying ECMAScript to
operate within the constraints of the
DHCT environment provided to be an
extensive task to ensure that no memory
leaks were present and that
ECMAScripts could run robustly.

Content Translation

HTML content may be authored for
arbitrary page sizes; it does not have to
conform to a given constraint since
existing desktop browsers support
scrolling in two dimensions. It was
deemed that asking a subscriber to deal
with two-dimensional scrolling in a
television environment would be
unacceptable. To solve this problem, all
pages would need to be scaled to fit the
available horizontal resolution of the
window on-screen. This operation
potentially involves extensive image
scaling and table re-calculation,
depending on the content. The DHCT is
not equipped with the necessary
processor bandwidth to support such
tasks adequately and so the solution was
to create a proxy/transcoder component
that resides in the network. This
proxy/transcoder intercepts DHCT
requests, acquires the page and
associated assets and scales them
accordingly, passing the results to the
DHCT (and to a local cache to maximize
performance of subsequent requests).

Another key design point was to
ensure that the proxy/transcoder did not
have to scale based on the number of
attached clients. The proxy/transcoder
could be instead placed at the Internet
Point-Of-Presence and scale to the
content pipe, a much simpler task,
resulting in tremendous cost savings to
the operator.

In addition, the proxy/transcoder was
designed to operate in an offline mode
enabling “walled gardens” to be
automatically created from existing
content.

Performance

After robustness, most of the
development activity centered around
performance. This was classified in two
primary areas:

• On-screen display

• Network performance

On-screen drawing performance was
the key metric since this is what the
subscriber sees and determines whether
the product is adopted or not. Standard
techniques such as double buffering
provided difficult at high graphics
resolution given the limited memory
available for graphics buffers. This
resulted in alternative drawing
algorithms being implemented. In two-
way systems, the Proxy/Transcoder
could be utilized to ensure content
delivered to the DHCT was scaled
appropriately, if necessary, resulting in a
performance improvement in perceived
drawing speed.

A caching subsystem was
implemented to handle pages and assets
(in both compressed and decompressed

forms). The caching system increased
the availability of content and therefore
reduced perceived subscriber access
time. Through HTML extensions it is
also possible to assign a caching priority
to pages and assets. In conjunction, a
scheme for pre-fetching was introduced.
These two features, when used in
combination, are useful in “walled
garden” environments to ensure fast
access to frequently used assets and
offers a degree of deterministic content
control in the client.

Finally, the PE can also receive
content delivered through other
mechanisms than HTTP. These include
the BFS, MPEG private sections and the
Vertical Blanking Interval (VBI). Such
broadcast asset delivery mechanisms can
be used to minimize un-necessary
upstream traffic on the network.

Secure Connections

Given the expected use of t-
commerce on the platform a secure
communication mechanism was
required. Once again, the standard of the
Web, Secure Sockets Layer (SSL) was
adopted. SSL is supported in two
versions (2.0 and 3.0) with a range of
different strength ciphers. The
Presentation Engine design enables
selective loading of ciphers and
protocols to address the memory
constraints of current generation
DHCTs.

While the proxy/transcoder can
provide translation facilities for non-
secure pages it cannot translate content
contained on secure web pages (using
SSL). Two approaches were considered
to address this. One approach is to
introduce a proxy that terminates the
SSL connection at the headend. In-the-

clear page content can then be
transcoded and then a separate proxy
may be utilized to form a secure
connection with the DHCT. This
obviously breaks the end-end security
from the merchant to the subscriber and
introduces legal issues that make such a
solution undesirable. The solution
employed is to provide client-side re-
layout of the pages in the case of secure
connections. This has the downside of
potentially affecting performance but
does ensure the integrity of the end-end
security.

ATVEF

The Advanced Television
Enhancement Forum (ATVEF)
specification provides an environment
for program synchronous content
delivery. The content may either be
included with the video/audio content or
stored separately on a remote server.
ATVEF support is designed into the
pTV Software Platform and requires no
specific support from the PE beyond
supporting the tv: URL. As intended, the
PE merely acts as a service to present the
necessary ATVEF content on-screen.

Status

The PE is part of the pTV Software
Platform and has been shipped in over
seven million DHCTs to date. The
memory footprint is configurable from
700KB up to 1.4MB.

EXECUTION ENGINE

The Presentation Engine is designed
to display web content documents to the
users. This model yet useful and simple
to implement cannot accommodate for
all the needs of an interactive

application, so there is need for a
procedural programming language,
which is easy and fast to implement. The
industry has chosen the Personal Java for
the Execution Engine as it is defined by
the DVB-MHP and OCAP.

PowerTV and Sun Microsystem have
collaborated to create a PJava
implementation that is optimized to run
in an interactive two-way cable network.

PJava is designed for a constrained
network connected devices. The small
memory footprint of PowerTV
Operating System combined with
Personal Java enables this design to run
on the low-cost, two-way capable
DHCTs. Write Once, Run Anywhere™
design of PJava allows for the fast and
low cost development of applications.
With PJava design, a prototype may be
built and debugged on computer and
deployed on the DHCTs.

pTV Software Platform is comprised
of the Java Virtual Machine and set of
standard class libraries defined by the
PJava, version 1.1.

By using the common underlying
resource management, pTV Software
Platform has been able to achieve an
environment, which allows for both
presentation engine and execution
engine to coexist harmoniously.

Some of the enhancements made to
the pTV Software Platform, while
implementing the JVM, was to increase
the support for additional threads in the
kernel. Memory management has also
been modified to accommodate for the
JVM memory requirements. The
existing Window Manager has been
modified to fully support the AWT user
interface model.

In future, pTV Software Platform
shall implement support for the JavaTV
APIs. This effort is minimal due to the
full support of all core TV functionality
in the existing pTV Software Platform.

FUTURES

New Functionality

With the current status presented the
question is “what of the future?” As
ever, the key drivers in the interactive
cable arena are the trends in DHCT
design and deployment mechanisms.
New functionality is being introduced
into DHCTs including PVR, Home
Gateway, etc. These features will drive a
necessary extension of the middleware
interfaces on the DHCT.

OpenCable

Perhaps a larger influence is the
Federal Communications Committee
(FCC) mandate for cable operators to
give subscribers the opportunity to
acquire their DHCT through retail
outlets. CableLabs has created a sub-
committee to address this requirement.
In addition to defining the hardware
platform requirements and conditional
access interfaces, OpenCable has a
working group defining the application
platform for the retail DHCTs.

OPENCABLE APPLICATION
PLATFORM (OCAP)

The OCAP specification defines the
Application Programming Interface for
an OpenCable™ retail device. The
Middleware API, defined by OCAP, is
independent of the underlying hardware.
Furthermore, the OCAP middleware
layer provides an abstraction layer to the

set-top box’s operating system that
manages the underlying hardware’s
resources.

The OCAP specification is based on
the DVB-MHP specification. OCAP
specification describes in details the
deviation from DVB-MHP, where
applicable, in addition to the new
components definition. OCAP
specification has been designed to focus
on the needs of the North America’s
cable market.

The OCAP specification is intended
to create an open environment for
application developers to write
applications, which are platform
independent.

DVB-MHP

DVB-MHP’s architecture is based on
the DVB-J platform, which includes a
Java Virtual Machine as defined by Sun
Microsystem. DVB-MHP is comprised
of three layers, applications, system
software or middleware, and the
resources on the set-top box.

OCAP Basic Architecture

The OCAP architecture resembles
closely to the architecture illustrated in
Figure 2. The OCAP architecture is
comprised of two major components: the
Presentation Engine and the Execution
Engine.

What is OCAP Presentation Engine?

The Presentation Engine supports a
set of declarative applications. The
Presentation Engine is required to
support the content formats for markup
(HTML, XHTML) [8], cascading styling
sheet (CSS) [8], plus Application
Programming Interfaces (DOM) [8].

What is OCAP Execution Engine?

The Execution Engine is based on the
Java Virtual Machine and it is comprised
of set of APIs defined by PersonalJava
Application Environment (PJAE) [3],
Java TV API Specification [4], Java
Media Framework (JMF) Specification
[5], Home Audio/Video Interoperability
(HAVi) Architecture Specification [6],
and Digital Audio-Visual Council
(DAVIC) Specification Part 9 [7].

OCAP Minimum Platform Requirements

The minimal set of required device
resolutions that OCAP terminals shall
support is 640x480 (square pixels) for
Background, video, and graphics. These
resolutions shall be supported for display
aspect ratios of 4:3 and 16:9.

The minimum processor capability
has been defined as 200 Mega
Instructions Per Second (MIPs).

The memory requirement is 64 M
Bytes of RAM and 16M Bytes of ROM.
The NVRAM shall provide at least 16K
Bits maximum storage.

SUMMARY

In closing, it is clear that middleware
plays an active role in the increasing
adoption of interactive television
systems. While it is important to have
consistent interfaces to which services
can be authored it is also clear that an
optimized implementation of the
software stack providing these interfaces
is necessary. This ensures performance,
maintainability, extensibility and time to
market – all key requirements to future
success of the industry. While different
middleware standards have been
implemented over the past few years

there is hope for a common interface
through activities in the retail space such
as the OpenCable initiative. However,
for current non-retail systems, the
challenges of building an optimized
middleware stack remain and integrated
platforms present the best path forward.

ACKNOWLEDGEMENTS

The authors would like to thank the
entire team at PowerTV. Without them
and their developments this paper would
not exist.

REFERENCES

[1] ITU Recommendation J.83 (04/97) -
Digital multi-programme systems for
television, sound and data services for
cable distribution; Annex B

[2] Digital Audio Visual Council™
(DAVIC), version 1.1

[3] Sun Microsystems, PersonalJava
Application Environment Specification
Version 1.2a:
http://java.sun.com/products/personaljav
a/

[4] Java TV API Specification;
http://java.sun.com/products/javatv/

[5] Java Media Framework, Version 1.0,
May 11, 1998; Sun Microsystems Java
Media Framework Specification
http://java.sun.com/products/java-
media/jmf/1.0/apidocs/packages.html

 [6] Home Audio/Video Interoperability
(HAVi) Architecture Specification;
http://www.havi.org

[7] Digital Audio Visual Council™
(DAVIC), version 1.4.1 Part 9.

[8] www.w3.org

