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Abstract 
     Traffic engineering techniques borrowed 
from the telephony world are used predict 
the performance of VOD systems.  This paper 
provides a brief overview of traffic theory 
and how it can be applied to VOD systems.  
Erlang�s B formula is used to calculate 
service blockage as function of buy rate, 
system capacity, and service group size. The 
implications of these calculations are 
discussed. 
 
 

THE PROBLEM 
      Video-On-Demand (VOD) Systems are 
now a commercial reality and are operational 
in a number of cable systems.  These systems 
offer the cable operator the potential for 
significant revenue increase, but also 
represent a significant capital investment.  
The objective, of course, is to maximize the 
revenue for the minimum investment.  In 
VOD systems, individual video streams are 
created for each active user of the system.  
The incremental capital cost of adding 
additional stream capacity is relatively linear, 
and the cost of VOD systems is often 
measured in cost per stream.  If a cable 
system is under provisioned, that is the peak 
demand for VOD outstrips the system 
capacity, then customer dissatisfaction with 
not being able to get on-demand services on 
demand may actually cause a loss of revenue.  
On the other hand, over provisioning by 
having a higher stream capacity than peak 
demand costs more than is necessary for 
delivering the service.  Traditional wisdom, 
based on trial experience, has suggested that 
VOD system stream capacity should be 10% 
of the potential VOD customer base.  For 

example, if a cable system has 40,000 digital 
subscribers capable of receiving VOD, then 
the VOD system should support 4000 
individual video streams.  One objective of 
this paper is to examine that premise and its 
assumptions.  The problem then is to 
determine what is the optimum capacity 
needed to support user demand, and what is 
the optimum way to deploy that capacity. 

CONCEPT OF SERVICE GROUPS 
      In the previous example, 4000 video 
streams were required for the 40,000 digital 
subscribers.  Assume for the moment that 
these numbers represent a cable system of 
100,000 homes passed, 80% cable 
penetration, and 50% of those subscribers 
take digital.  Also for the moment assume 
that the 10% peak VOD usage represents the 
correct VOD deployment for the system.  
Typical encoding rates for good quality VOD 
are about 3.5 Mbps.  Using 256 QAM in the 
plant, with a payload of 38 Mbps, each QAM 
modulator can carry 10 video streams.  The 
capacity for 4000 streams then requires 400 
QAM modulators to support the VOD 
service.  If the cable system is built with 500 
homes passed/fiber node, then we could 
distribute two QAM modulators to each of 
the 200 fiber nodes, using 12 MHz of plant 
bandwidth.  The same two six MHz channels 
would be used for VOD applications in all 
nodes.  Alternatively we could feed identical 
signals to two fiber nodes forming a service 
group of 1000 homes passed that are now 
logically one group.  Here we could feed four 
QAM modulators to each service group and 
achieve the same 10% stream capacity, but 
now using 24 MHz of spectrum.  In a similar 
manner we could combine 4 nodes to form 
service groups of 2000 homes passed and use 
eight QAM modulators, occupying 48 MHz 



of bandwidth, and so forth�  Clearly the 
first case used the least spectrum, but are 
there advantages of larger service groups?  
Intuitively, larger groups should have some 
advantage by �averaging� over a larger 
population of users during peak usage times.  
Does this advantage exist and can it be 
quantified?  Similar questions have been 
dealt with for generations in telephony 
systems using traffic engineering. 

FUNDAMENTALS OF TRAFFIC 
ENGINEERING 

      Methods for determining how much 
capacity is required as a function of expected 
demand are called traffic engineering 
methods.  These methods, a branch of 
applied probability theory, have been 
developed over years to accurately predict 
the performance of telephone and other 
telecommunications networks.   
 
     The demand on a traffic system is called 
the offered load and is the product of the 
average rate of customer requests (average 
arrival rate, r) and the average time they 
require service (average hold time, t), or 
offered load, a, is given by 
 

a  = rt 
 
     The value a is dimensionless and 
expressed in erlangs, named after the founder 
of traffic theory, A. K. Erlang.  If the 
instantaneous demand on the system exceeds 
the capacity of the systems then the call is 
blocked.  Two classes of systems are 
typically used in the telecommunications 
world.  In the first class, when a call is 
blocked, it is dropped, and the user must 
retry at a later time.  These systems are called 
blocked-calls-cleared (BCC) systems.  In the 
second class, when a call is blocked, it is put 
in queue to be serviced at a later time; these 
are called blocked-call-delayed (BCD) 
systems.  Hybrids of the two classes are also 
popular, where a fixed-length queue is used, 

but when the queue is filled, calls are 
dropped. 
 
     Telephone traffic cannot be predicted 
exactly, but may be viewed as statistical 
processes.  A common assumption is that the 
probability of a call arrival during an interval 
T is proportional only to the length of the 
interval, and the constant of proportionality 
is the average arrival rate r.  This assumption 
leads to the fact that the probability that k 
calls arrive in an interval T is described by a 
Poisson distribution, and any process 
following this distribution is a Poisson 
process.   This process gives an accurate 
description of telephone call arrivals.  Calls 
exiting the network are assumed to follow a 
similar process, in an interval T, each call 
will terminate with probability T/t where t is 
the average hold time.  This leads to a 
negative exponential distribution H(T) 
denoting the probability of a given call 
lasting for a duration of T. 
 
      Assuming a BCC system that has a 
capacity of supporting c calls, and a random 
load a is offered, then Erlang showed that the 
probability B of an arriving call being 
blocked is given by the formula 
 

             ac/c! 
B(c, a) = ______ 

                 c 

            Σ ak/k! 
                 k=0 

 
     This equation is often referred to as the 
Erlang Loss Formula, or Erlang B Formula 
and is central in the planning of 
telecommunications systems.  Similar 
formula can be derived for BCD systems, as 
well as a calculation for average delay in the 
queue.  These results can be found in most 
traffic engineering texts.           



APPLICATIONS TO VOD SYSTEMS 
     In many ways VOD systems are 
analogous to telephony systems.  A single 
VOD session connects a client to a server, 
much like a telephone call connects two 
users. VOD sessions and telephone calls both 
use a similar connection procedure; in fact 
the DSM-CC session set up procedure was 
loosely based on Q.931 call setup procedure.  
Both are initiated randomly by a user.  Both 
last some finite time and terminate.  The 
most straightforward way to model a VOD 
system is as a BCC system, where when the 
system is busy, service is denied and a user 
must try again later.  BCD systems could be 
implemented, but with the relatively long 
average hold time of a VOD movie, queuing 
delay could be unacceptably long.  This is 
perhaps a topic for further investigation.  
Service request arrival statistics should be 
similar to that of a telephony system, and a 
Poisson distribution should accurately model 
this process.  However call hold time in a 
VOD system is less likely to be as random as 
a telephone call due to the deterministic 
nature of the fixed length of a video program.  
However users will terminate early, invoke 
pause and rewind functions that will extend 
the length of the program, and programs will 
vary in length.  Perhaps a Gaussian or 
Raleigh distribution would more closely 
match VOD systems hold time statistics than 
the negative exponential distribution.  Here 
we have very little data from fielded systems.  
This area is clearly one where more work 
needs to be done.  With these caveats, we 
press forward and use the Erlang B formula 
to calculate blocking probabilities in a 
service group and explore the blocking 
percentage as a function of service group size 
and buy rates.  One remaining key issue is 
how to relate buy rates to peak offered loads. 

ESTIMATION OF PEAK BUSY HOUR 
     Traffic engineering theory generally 
assumes that the processes are stationary, 
which means the parameters describing the 

process (average arrival time and average 
hold time) are constant or vary slowly 
compared to the actual call rate.  Traffic 
loads do vary with the time of day and day of 
week, as well as season, but in general in 
telephony systems these variations are slow 
enough that traffic theory works well.  In 
order to provide high reliability and a high 
level of customer satisfaction, telephone 
systems are engineered based on the busiest 
hour of the day in the busiest season.  It 
would seem appropriate to engineer VOD 
systems to similar criteria.  To date, there is 
limited public data detailing buy rates for 
VOD systems versus time of day and time of 
week.  For the calculations shown as 
example in this paper, some assumptions 
must be made. 
 
      The buy rate model used in the following 
analysis makes two simplistic assumptions, 
first that all VOD buys occur in a six hour 
time segment each evening, and second that 
Saturday night buy rates are double the buy 
rates of other nights.  We know the first 
assumption overstates the buy rates during 
primetime, but the second assumption most 
likely understates the popularity of weekend 
primetime.  In some manner this may come 
closer to actual peak rates on weekends.  This 
model would predict that 15% of all buys 
occur during a three hour primetime period 
on Saturday night.  Cable operators are used 
to thinking of Pay-Per-View in terms of buys 
per month.  Using the above model we relate 
peak busy hour average arrival time to buys 
per month.  Based on a four week month, and 
six hour per day buy period yields a 168 
hour/month buy opportunity.  The average 
buy rate per hour for b buys per month per 
sub would be b/168 and the peak buy rate 
would be 2b/168 or 0.012b.  This value times 
the number of subs per service group yields 
the average arrival rate for peak busy hour 
for that service group. 



CALCULATION OF BLOCKAGE RATES 
     The first case examined looks at the 
sensitivity to service group size for a fixed 
percentage rate of VOD deployment.  The 
baseline assumption is a plant design of 
500hp per fiber node, 80% subscriber 

penetration, and 20% digital penetration.  
This first case looks at a fixed buy rate of 
four per month.  Table 1 shows the relevant 
parameters and the calculated blockage rates.  
Average hold time used was two hours, to 
correspond with average movie length.   

Number of 
Nodes 

Service  
Group 
Size 

Number of 
Digital 
Subscribers 

Number of 
QAMs 

Number of 
Streams 

Offered 
Load 

Blockage 
Probability 

1 500 80 1 10 7.6 10.4% 
2 1000 160 2 20 15.2 4.9% 
3 1500 240 3 30 22.8 2.7% 
4 2000 320 4 40 30.4 1.7% 
6 3000 480 6 60 45.6 0.7% 

Table 1 - Probability of Blocking vs. Service Group Size 
 
     Note first that the offered load using this 
model is just slightly below the suggested 
10% VOD provisioning number, which 
implies that small statistical variations above 
the offered load would block at that 
deployment level.  The actual deployment 
level in this example was 12.5% of digital 
subscribers in order to match up with QAM 
granularity.  Note also the strong dependence 
of blocking probability with service group 
size.  This result validates our earlier thought 
that larger service groups would provide 
better �averaging� of the load.  With this 
level of digital deployment and this buy rate, 
a service group size of 2000 homes passed 
has a blocking probability of under 2% 
. 
Buys/ 
Month 

Offered 
Load 

Blocking 
Probability 

  30 
Streams 

40 
Streams

50 
Streams

3 22.8 2.7% .032% 3E-5% 
4 30.4 13.9% 1.7% .03% 
5 38.4 27.5% 9.5% 1.2% 
6 45.6 37.5% 19.3% 6.0% 
7 53.3 45.8% 29.0% 14.2% 
8 60.8 52.1% 36.8% 22.5% 

Table 2 � Blocking Probability 
 
 

 
     The second case examined looks at 
blocking probability as a function of buy rate 
and level of VOD capacity.  The parameters 
examined would correspond to digital 
deployment of either 20% in a 2000 homes 
passed service group or 40% digital 
deployment in a 1000 homes passed service 
group.  Table 2 lists the relevant parameters 
and the blocking probabilities. 
 
     Note the sensitivity to buy rates, which 
suggests that it would be impractical to 
provision a system where blocking does not 
occur.  These results can give an operator a 
feel for the issues involved in planning a 
VOD system, however because of the 
assumptions made in determining average 
arrival rate for peak busy hour, a better 
model is needed.  Before engineering a VOD 
system based on these methods, real data 
needs to be collected and used to determine 
peak busy hour, and predicted blocking rates 
need to be verified against real data.    

CONCLUSION 
     A method has been described that can be 
used in helping to engineer the deployment 
of VOD systems.  Before it can reliably be 
used, the method needs to be verified against 
field data.  Once verified, this method can 



help operators design VOD systems and 
make the business tradeoffs in terms of 
capital expended versus the probability that a 
customer is denied service when he attempts 
to use the system.  This method can also be 
used to aid engineering the tradeoff between 
service group size and spectrum used for 
VOD services.   One result shows that it will 
be likely that deployed systems will have 
occasional denial of service during peak  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

periods, and marketing techniques will need 
to be developed to cope with this fact.  
Systems with queuing of requests when 
capacity is full need to be explored as well.  
This preliminary analysis also suggests that 
the 10% capacity rule may be on the low 
side, but more data is needed.  Finally, traffic 
engineering has been used successfully in 
telephone systems for decades, and should 
provide an important tool for the cable 
industry.   


