

The Challenge of a Standard Software API

Mark Eyer
Sony Electronics

Cable Multiple-System Operators (MSOs)
would like to supply not only digital audio, video,
and data services, but also software applications
that can run on customer-owned equipment. With
this goal in mind, CableLabs® issued a Request for
Proposal in 1999 to help identify and standardize a
software Application Program Interface (API) for
OpenCable compliant retail boxes. This paper
explores the challenges involved in this effort, and
identifies some of the pitfalls and obstacles that
must be overcome. These include issues of
platform independence, the cost and complexity of
the platform, the challenge to support an evolving
digital world, and the need on the part of consumer
electronics manufacturers to differentiate their
products in the marketplace. Suggestions for
resolution of some of these dilemmas are presented
for consideration.

THE MSO�S VISION

The eventual availability in the retail market of
digital cable-compatible consumer devices offers
the cable MSO a number of significant benefits.
Whenever a customer buys a retail cable-ready
device, the operator�s capital expense is reduced.
Due to competitive market pressures, the retail
devices will be able to offer the latest technologies,
including faster CPU speeds, ever-speedier
graphics, and interfaces to the newest audio/video
peripherals. And happier customers can result:
many are more content without the need for the
bulk and clutter of the set-top box, as set-top box
functions are integrated with the digital television.

This picture is quite clear for services including
standard- and high-definition audio/video offered
on subscription and impulse-pay-per-view (IPPV)
basis. The standardization of the interface to the
removable security module, the network (physical
cable) interface, and system and service
information (and agreements to deliver it) has
enabled consumer electronics manufacturers to

start designing digital cable-compatible devices for
retail sale, starting with digital TVs (DTV).

But what about other services, such as
Electronic Program Guides (EPGs), video on
demand (VOD), voice over IP (VOIP), or
streaming audio and video in formats other than
MPEG-2 or Dolby Digital? And what about
services not yet conceived? Set-top boxes supplied
by the MSO can be built to offer advanced
services. How can a device available for retail sale
be enabled to do so?

A simplistic view of the world, from the point of
view of the cable operator, is that the primary
purpose of any cable-ready device to be available at
retail should be to generate revenue for that
operator. To that end, the retail device would be
100% controlled by the cable operator in terms of
everything that is presented for viewing�its �look
and feel.�

An MSO�s dream, therefore, might be that a
DTV or other retail cable-ready device, after being
brought home and installed by the consumer, would
be downloaded with code supplied by the local
cable operator. At that point, any access the
consumer would attempt to make of any services
offered on the cable would be managed through a
navigation application supplied by the cable
operator.

If a special offer or preview were available, the
navigator could make sure to present that
information to the user. If new services were
offered, the navigator could be set up to notify the
user of their existence, and to guide the user
towards their access. As an additional source of
revenue, advertising or links to commercial sites
could be included in the navigator.

Services such as VOD could be offered, because
the navigator could support whatever proprietary
form of access and control was required by that
operator�s plant and equipment. New forms of
services could be offered when they became
available, even if the details of presentation and

decoding are yet unknown. That�s because an
updated navigator could be provided when the
details of the new service are worked out.

An example of such a new service is a data
broadcasting service. Multicast data synchronized
to video is offered today, but the standardized
techniques for transport and the content coding
formats are not yet totally settled. When industry
acceptance is widespread and the particular cable
operator implements the new standard, the
navigator can be upgraded to allow all subscribers
to have access to the new data enhancement.

The EPG can adapt the presentation based on
what services are authorized for viewing in this
particular device. For example, if the user has not
subscribed to MovieMax, the navigator can direct
that user to the MovieMax preview channel, can
notify the user of special sign-up offers, or allow
him or her to sign up online (self provisioning).

With a downloaded navigator, the cable operator
has direct control over the look and feel of the
EPG. They can organize the guide in such a way
that the services with the highest profit margin
(IPPV perhaps) are given prominence. They can
put effort into human factors design to help ensure
that the consumer�s experience is productive and
pleasurable.

FACING REALITY

What�s wrong with this dream? A troubling
aspect of this code download scenario is the
implied notion that every retail device, regardless
of manufacturer, make, or model, would behave in
exactly same way. In the following sections we
first explore this product differentiation problem,
and then discuss further difficulties, including:

• Problems with the overall philosophy of
cable- operator-supplied downloaded code

• Technical challenges, such as reliability
and the difficulty of porting the API

• Challenges related to the magnitude and
complexity of the problem

The paper goes on to suggest some resolutions
to these problems, and describe example products
we would like to be able to manufacture once the

software download system design and
specifications are complete. We then suggest a
way forward in the near-term, bridging between
technologies available today and that which we will
develop and refine in the next several years.

PRODUCT DIFFERENTIATION

From the point of view of the consumer
electronics manufacturer, the idea that every model
of every manufacturer�s product ultimately runs the
same cable operator-supplied code causes real
marketing problems.

Competition in the marketplace
Consider a high-end product from manufacturer

A compared with a high-end product from
manufacturer B: when compared side-by-side on
the sales floor, both products will appear to be
identical once downloaded with the local cable
operator�s application suite.

Low, middle, and high-end
Commonly in consumer electronics marketing, a

manufacturer offers low-end, middle, and high-end
products. The middle of the road product offers
some features not found on the low-end model, and
the high-end product offers bells and whistles not
found on the level below.

Perhaps the low-end product doesn�t support
software download at all. But let�s say the middle
and high-end products do support the OpenCable
Middleware Solution. Once downloaded with the
cable operator�s application, when either of these
boxes accesses a cable service, the user experience
is the same (aside from factors like CRT display
size).

In this world, a manufacturer can no longer
differentiate one product from another based on a
software-related feature.

PHILOSOPHICAL PROBLEMS

Native applications
A native application is one written in or

compiled to the machine code of the retail device�s

CPU. A cable operator may want to maintain
control over native applications, for example by
downloading a �Master Application� capable of
authenticating them, launching them, and
determining their privileges and resource usage. Is
this practical, possible, or even reasonable? We
think not.

Given that each model of each manufacturer�s
product would typically have a different set of
native code, it is entirely unclear how the cable
operator�s downloaded application could be
afforded such control.

Consider that a cable-ready device offered for
retail sale must have some level of functionality
even before an operator-supplied code download
occurs. For example, it will likely provide access
to analog and free services on cable, assuming that
the user has a basic cable service. It would provide
some form of user setup and/or diagnostic
functions even without a basic cable service.

This native application cannot and should not be
under the control of the Middleware Solution or the
cable operator�s downloaded application.

In fact, the native application needs to take
priority over anything that might be downloaded,
for example to allow it flush memory and re-
initialize the unit in case of trouble. Or, in case the
user moves it to a new city and/or a new cable
system.

It is not only impractical but also unwise to say
that an application provided by the cable operator
should control the native applications in a retail
device.

The native application on the right in Figure 1
accesses OS functions in the device directly. As
shown, a companion resident application is also
present. The resident app is written in a platform
independent way by the manufacturer, and takes
advantage of the middleware layer implementation.

As shown, a cable-operator supplied
Application Suite is present, including a �master
application.� We feel that this master application
should be the �master� of the elements of the
application suite (EPG, VOD, web browser, as

shown), but it cannot and should not be involved
with the control of the resident or native
applications.

Extensibility
Let�s say an API is eventually agreed upon, and

some number of compliant platforms are fielded.
In a year or two, as history tells us, typical CPU
speeds will be doubled, memory prices will be
halved, and graphics capabilities will increase by a
large factor. In two years it may be cost effective
to include video hard disks in most devices.

If the MSO or cable operator does not create a
new application suite tailored to the 2nd generation
platform, the power of any new available hardware
cannot be fully exploited. The size and capabilities
of the application are limited by the least common
denominator platform.

If the solution is to provide a new application
suite to be run on the next-generation boxes, where
does this progression stop? The process of
defining and standardizing new platforms and API
extensions is never-ending as the operator�s
configuration control and management problem
becomes exponentially more difficult.

How many new downloadable applications
might any MSO develop over a five-year period?
We think the answer is something like one or two
at most, given the enormous complexity of the task.
A software release for a large cable plant must be
rigorously and thoroughly lab-tested before large-
scale deployment. Testing such an application
would be an unprecedented challenge because of
the large (and growing) number of target platforms
upon which the application must be validated.

Control over all cable-delivered services
A cable operator may want to use the

downloaded application to control the look and feel
of all cable-delivered services, including the
DOCSIS cable modem. Clearly, the operator
grants or denies access via the cable modem to the
Internet. Access to cable modem services is based
on whether or not the consumer has paid for a
subscription to the cable modem service.

But if a cable modem service has been paid for,
what control over the �look and feel� of it can a
cable operator hope to impose? It will be the
authors of HTML content on a website, for
example, that will determine the appearance (and
look and feel) of presentations based on that
content.

Perhaps the cable modem in the set-top or DTV
is connected by Ethernet to a PC. How could the
cable operator have any control or impact of the
on-screen look and feel on the PC screen?

One application for all OpenCable devices
A cable MSO may want to create a single

application for deployment across the full range of
OpenCable host devices available at retail. That
suggests that the same application that runs in a
retail DTV also runs in a D-VHS recorder, retail
set-top box, or cable-connected Personal Video
Recorder (PVR). Upon reflection, it will be clear
that the one-application-for-all-devices goal is
unreasonable.

For example, the PVR may be a low-cost device
that happens to have a cable tuner but no user
interface of its own. It can act as a slave storage

peripheral and program source for other devices on
a home audio/video bus, but it wouldn�t have a use
for (let alone the resources to support) a cable-
operator-supplied navigator application.

Even if the PVR could accept an application, a
PVR is a PVR and not a DTV. The application
must account for the functional aspects of the type
of host platform it runs on.

Any cable-operator supplied application must
take into account aspects of the platform upon
which it is expected to run. An application
downloaded to a retail set-top box must be
optimized for a set-top box type of product, just as
an application for a DTV must be adapted to the
DTV.

Control over all resources
A cable MSO may wish to use a downloaded

application to control all resources available on the
host device. We see a difficulty here.

Let�s say a new model of consumer device
offers wireless connectivity to other devices. Can
the cable operator�s downloaded application have
access to the resources offered by the wireless
port? Such access will not be practical until the

Native
App

Master
App EPG VOD Web

Browser

Application Platform Client
(Middleware Implementation)

Operating System (OS)

CPU & Hardware Devices

Middleware
API

Cable Operator-Supplied Application Suite

Resident
App

Figure 1. Software Architecture of a Representative OpenCable Retail Box

Middleware Solution itself is extended to support
wireless access. How can the application take
advantage of wireless access anyway, given that the
capabilities of this particular host device are
unknown to it?

Furthermore, as an unending succession of new
types of resources are invented and popularized,
will the Middleware Solution be continually
extended to include each new one? This seems
impractical as a road forward.

TECHNICAL CHALLENGES

100% reliability
The reliability of the cable-ready device is very

important. Clearly, we cannot allow tomorrow�s
digital television or set-top box to move anywhere
near today�s notion of a PC, where program crashes
and the need to re-boot the machine are frequent
and commonplace.

On the other hand, 100% reliable crash-proof
code is impractical with today�s technology,
especially given the size and complexity of the
code involved, and the environment in which it is
intended to run.

Even with the Java programming language and
its elimination of pointers, some types of
programming errors can cause available memory to
diminish to zero over time. The program may not
�crash� but it can become unusable, non-responsive
to RCU keys, and require some form of re-booting
or reset.

Another form of crash can occur as two separate
software processes, or �threads,� both try to access
the same data structure in memory. Unintended
results can occur, or in some cases a �deadly
embrace� can result where both processes are
blocked from further operation.

Also, of course, software testing isn�t foolproof.
By some reports for example, the first release of
Windows 2000 included 63,000 known �issues.�
The count didn�t include those bugs not yet
discovered of course.

It is possible to write a very stable application
that will function reliably for long periods of time,
given a stable and well-understood environment in

which it can execute. The challenge we face in the
OpenCable approach is that the environment is not
always well known. There will be many platforms
and many implementations.

Lack of standards for code download and
authentication

Compared to the issues above, this one is rather
easy. Security functions in an OpenCable
compatible device are handled within the POD
module. Standards are needed to allow a Host
device to make use of API calls to the POD module
to determine if a particular piece of executable
code has come from a reliable source, with no
tampering or corruption. Some early proposals
have been floated to some standards committees
addressing this need.

Porting a complex API definition
When a manufacturer wishes to support the

OpenCable Middleware Solution in a product, it
may be necessary to port it to the Operating System
chosen for that product. If the OS is a common
one, it is possible that an implementation of the
Middleware Solution standard for that OS can be
purchased. Even so, there will always be a
significant amount of work involved�the device-
level support aspects must be home-grown in
almost all cases. These include the aspects of
tuning, demodulation, MPEG-2 decoding, SI
section filtering and parsing, graphics and display
control, audio control, front panel and RCU
interface, signal switching and routing, and
communications protocol stacks.

Cost and return on investment to support
standard API

Once the Middleware Solution is standardized,
manufacturers of cable-compatible devices will be
asked to provide support for it. The cost to add
support for this API will be nontrivial. Many
megabytes of RAM and ROM will be required. A
significant portion of the cost to develop such a
product will be involved with testing the
implementation.

The manufacturer is likely to ask: �where is the
return on my investment to include support for this
API? Will my customer recognize the value of it to
the extent that it increases the cost of the product?�

After all, it is the cable operator that will reap the
monetary benefits. For manufacturers to embrace
the standard API concept, it appears that some form
of business arrangement will need to be made with
cable operators as an incentive.

THE CERTIFICATION CHALLENGE

Many compliance and interoperability questions
are raised by the notion of a standard software API
to be used by retail consumer devices. How will a
manufacturer certify that a certain implementation
of the Middleware Solution is fully compliant?
Given the large number of manufacturers involved,
and the need to individually test each different
product from each manufacturer, the number of
products needing testing in a given year is very
large.

While CableLabs has undertaken to certify
standalone DOCSIS modem implementations, that
organization does not appear to be capable of
supporting, on its own, certification of all these
new consumer devices.

The Middleware Solution specification
document is likely to be extremely large and
complex. As an example, consider the candidate
specifications promoted by ATSC by the DTV
Application Software Environment (DASE) group
and by Sun Microsystems in the JavaTV effort.
The 922-page DASE API specification (version
1.08.01) includes over 350 Java packages, classes,
and interfaces.

One might ask, �What�s new here�haven�t
there been other similarly challenging compliance
problems?� I think the answer is �no.� Let�s look
for some examples.

In the realm of Microsoft-Intel PC platforms,
certainly there are a large number of manufacturers
and implementations, but the compliance problems
are much simpler. Most importantly, all platforms
use the same type of CPU, so all code is �native.�
Compliance testing has been achieved and many
vendors have created clean-room implementations
of the Basic I/O System (BIOS). If the BIOS is
compliant, any Operating System or application
riding on it will work. Unlike the OpenCable
Middleware Solution, which will be very large and

complex, the IBM BIOS is small and very well
defined.

In the world of satellite TV, different vendors
can license the technology needed to build satellite
IRDs compatible with a certain operator�s signal.
Typically, the number of manufacturers is quite
small (three or so). Each manufacturer is free to
use a proprietary hardware platform, APIs and
native applications. Nevertheless, the compliance
testing conducted by a typical operator is quite
complex and time consuming.

The essential difference in the case of retail
cable-compatible devices is that 1) the API is very
large and complex, and 2) there are likely to be a
very large number of equipment manufacturers,
each with multiple products.

SUMMARY OF ISSUES

In summary, the following issues and
difficulties with the Middleware Solution concept
proposed for OpenCable have been raised here:

• No provision for or acknowledgment for the
need for product differentiation is made

• Authenticating and controlling execution of
native applications is impractical and
unnecessary

• There is a clear need for a well-understood
evolutionary path, or of an approach to
realizing extensibility in a practical way

• The concept of �one application for all retail
devices� is impractical

• �Crash-proof� code is practically impossible

• The cost of implementation and testing the
API is an issue to the CE manufacturer

• Certification and compliance testing will be
an unprecedented challenge

PROPOSALS FOR ACHIEVING OUR
GOALS

The following sections outline proposals for an
expanded Middleware Solution concept that we
think can work for consumer electronics

manufacturers as well as cable operators and
MSOs. The most fundamental proposed change is
that the Middleware Solution must support resident
and manufacturer-supplied applications alongside
the cable- operator-supplied downloaded code.

We first argue why this change is necessary, and
then describe some of the new system requirements
that result.

PRESERVATION OF COMPETITIVE
URGE

The competitive urge must be preserved. If a
Middleware Solution were designed such that
product differentiation was not supported, the only
challenge for a manufacturer would be to make the
most cost-effective implementation. Enhancing the
product line with more and better features could
not occur. Innovation would be stifled.

Clearly, this scenario is unacceptable. Product
differentiation ultimately benefits both the
consumer electronics industry and the cable MSO.
If we agree that product differentiation must be
possible, then the following conclusions result:

• The Middleware Solution must support
unrestricted execution of native and resident
applications, under control of the consumer
(not the cable operator). This was discussed
above.

• The Middleware Solution must support
native or manufacturer-specific extensions
and �hooks.�

• The Middleware Solution must allow any
specific implementation to fully take
advantage of (on its own) hardware and
interface features that might be present.

• Communications resources such as the cable
modem must be freely available to the native
and resident applications (given the proper
basic authorization for cable modem service,
of course).

Support for API �hooks�
To support certain desirable product features,

the resident or native application needs to be aware
of certain user actions. In some cases in fact, the

resident app needs to be able to take control of the
user interface.

The manufacturer�s native application needs to
be able to �register� with the Middleware Solution
so that it can be notified about certain events. For
example, it may want to be notified whenever
events of the following types occur:

• Any tuning-related API is called

• The user targets a program scheduled for
future viewing (for example to set a timer)

• A timer activates or expires

• An Emergency Alert notification is received

• Access is made to web content related to the
television program being viewed

The API must support such access to these
events, as well as any others deemed useful by the
implementation.

Support for hardware features
A Middleware Solution may be implemented on

various devices, each with a different set of
included hardware and interface features. These
might include 3D graphics acceleration, special
content decoding formats (MPEG-1, DirecTV
transport, etc.), support for specific peripheral
devices on the IEEE-1394 serial bus, camera and
video input ports, game controller ports, USB,
storage peripherals, DVD player/recorders,
personal video recording capability, format
conversion (camcorder to MPEG, etc.), wireless
communications ports and protocols, or countless
others.

If any of these hardware-related features are
present in the cable-compatible device, the
manufacturer-supplied resident and native
applications must be afforded access to them.
Furthermore, to the extent possible via API hooks
and extensions, the native code should be able to
integrate them with the cable operator-supplied
application suite.

For this philosophy to work, some fundamental
aspects of the Middleware Solution API may need
to change.

EXAMPLE PRODUCTS

The following sections explore some possible
cable-compatible products to show how the
concepts we have presented apply.

Example: Video game console in the box
This product combines a state-of-the-art video

game machine with a cable-compatible digital
television. A DOCSIS cable modem is included so
that interactive games may be played via the
Internet.

By way of review, here is a brief list of the
issues:

• If the video game platform uses DOCSIS (a
cable service), and the Middleware Solution
must rule the look-and-feel, how can that
work on top of the video game? Clearly each
individual game played on the game console
has its own look and feel.

• How could the Middleware Solution
authenticate each game before it is played?
Clearly that�s not possible nor is it needed.

• To save cost, eliminate redundancy, and
provide proper sharing of resources, the
video game application may want to take
advantage of API calls within the
Middleware Solution. Such sharing of the
API appears not to be allowed in the current
middleware concept.

• The cable operator�s downloaded application
is supposed to be offered the ability to
interface to any native extensions (in this
case, the video game hardware and software
support library). This can�t work because
these extensions are very likely to be
proprietary. Even if they were open, the �one
application� likely couldn�t take advantage of
resources available only in a small fraction of
implementations.

Example: High-end retail cable-ready box
Consider a high-end cable-compatible device to

be offered for retail sale. The manufacturer of this
device is aggressively leading-edge and wishes to
offer the following product features:

1. Support for a sophisticated file system for
personal video recording on a built-in hard
disk

2. Support capture of video clips via a CCD
camera port or images from a digital
camera for attachment to e-mail

3. Support an enhanced navigator function,
combining web-hosted databases with data
derived from expressed user preferences
and observed viewing habits

4. Support a marketing product tie-in service,
allowing the user easy access to products
and services associated with broadcast
television programs

5. Support a feature where the device acts as
a home audio/video master control center,
capable of routing signals between a/v
equipment throughout the home

6. Support a �home gateway� function
including a private personal website,
through which the homeowner may login
from anywhere in the world to access guide
data, check on and set recording timers,
check home security and access other
equipment controlled by the device.

The standard Middleware Solution may or many
not include APIs that would support this set of
features (it�s not likely). Even if it did, while a
cable-operator supplied application suite could
possibly use the standard APIs to include these
features, it is extremely improbable.

Even if the operator-supplied application suite
did do a few of these features, the user should be
able to choose which he or she wishes to use.

CO-EXISTING APPLICATIONS

In an environment that includes a cable-operator
supplied application suite alongside the
manufacturer�s native code, some new challenges
arise.

Memory management issues
The cable- operator-supplied application will

require or request certain memory resources (RAM,
Flash-ROM, even hard disk file space), as will the

resident or native application. The resident and
downloaded applications may both request, through
API or OS calls, �all the remaining memory.�

Once a system of cooperative sharing of
memory resources is worked out, both these
competing entities can peacefully co-exist.

Another problem relates to management of the
persistent storage. A Flash memory file system is
an example of a persistent storage system. The file
system is often used by applications to store
preferences, passwords, �cookie� type data,
viewing history, forms data, or any other data that
has some kind of lasting value.

The problem arises as the file system inevitably
overflows, and no more space is available to create
new files or to expand the size of existing ones.
Some kind of file space reclamation process must
be run. That process must decide which files are
good candidates for permanent deletion.

With personal computers, we don�t allow such a
process to make decisions about what files to
delete. We do it manually. Writing a file space
reclamation routine will be a challenge, because
unexpected results can easily occur when files
expected by a certain application turn up missing.

Security policy issues
In a typical Middleware Solution, a security

policy is an inherent part of the API. Through an
enforced security policy, certain applications can
be granted or denied access to specific API calls.
A Java applet, for example, is not allowed to
perform file I/O.

As discussed above, we do not feel it is
workable to allow the cable operator�s master
application to dictate and establish all security
policies in effect within a cable-compatible device.
So the question is open: who will allow whom to
do what? Agreements on management of security
policies will need to be worked out and
documented.

Resource sharing issues
In the scenario we are discussing now, an

application suite provided by the cable operator is
present alongside a manufacturer supplied resident
or native application. If we wish to allow both of

these to have actively executing threads, contention
for resources can result.

For example, both applications may wish to
make use of the tuning API. If one has control of
tuning, the other will need to deal gracefully with
the unavailability of that resource. This simple
approach may result in some undesirable behavior,
where even a high-importance request can go
ungranted. Such problems suggest that a priority
scheme should be adopted for resource
management.

Clearly, a new level of complexity is introduced.
Such priority mechanisms have been discussed in
some groups, but the problem has so far not been
brought to a clean solution.

PROPOSAL FOR STEPWISE
EVOLUTION

Given the scope and magnitude of the
unresolved issues, we feel that we are perhaps two
to three years away from a workable solution to
general-purpose code download. So, in light of
these difficulties we present here a proposal for a
practical way forward that can benefit both the
cable operator and retail device manufacturer.

We start with the definition of a cable-
compatible device that can be built today, using
currently published SCTE and OpenCable
standards. The stepwise evolution therefore starts
exactly where we are today.

Level 0: the �Watch TV� box
The features of the level 0 box include the

following:

• Performs the basic �watch TV� function.

• Conforms to the OCI-N network interface,
tunes/demodulates 64- and 256-QAM, etc.

• Supports all video formats defined in EIA-
818 and OpenCable, either by down-
converting to NTSC, or passing compressed
HD video via 1394 to DTV.

• Navigation based on SI/EPG tables as
standardized by SCTE DVS.

• Adheres to OpenCable requirements for
diagnostics, audio and video performance.

• Hosts OpenCable POD module for access to
premium services, pay-per-view.

• Provides copy protection on all analog or
digital outputs.

• If an upstream transmitter is provided,
supports impulse pay-per-view (IPPV).

We expect level 0 DTVs to reach the market
sometime in late 2001. No further standards work
is needed aside from finalizing some of the details
of the POD interface and POD copy protection
(this work is underway now).

Level 1: the �Web Browser� box
We now define a cable-compatible device with

features and capabilities going beyond those
offered by the Level 0 box. The Level 1 cable-
compatible device provides all the features of Level
0, plus it:

1. Supports a DOCSIS cable modem

2. Supports a TCP/IP protocol stack plus
HTTP, SNMP

3. Is capable of interpreting and displaying
HTML-based content (for example, HTML
4.0, ECMA Script, DOM1, CSS1)

4. Supports HTML extensions for a
standardized TV-based URI scheme so that
HTML pages can include links to TV
channels (per ATVEF, for example)

5. Supports a scheme whereby the retail box
knows the �home page� offered by the
cable operator. By this means, the cable
operator can operate a portal and offer
links to services and promotional offerings.

6. Supports access to world-wide web as a
pay service (otherwise, box can only access
the operator�s intranet).

7. For set-top devices: supports OpenCable
HDNI specification for pass-through of
compressed HD video to DTV.

Except for one detail (#5), we have standards
available to allow us to formally define the level 1
device today.

We need to make sure all the standards are in
place to allow a cable-ready device purchased at
retail to be brought home by the consumer, plugged
into the cable, and become operational without the
need for the cable operator to roll a truck.

For this discussion we can assume that before
even buying the new device, a subscription to basic
or premium cable service has already been
established. When the new box is first plugged in,
it will be able to access unscrambled analog or
digital services.

The customer then calls the cable operator to
indicate a desire for cable modem and premium
movie services, and requests that they send an
access card. A POD module arrives in a day or
two. The customer plugs it in.

The presence of the POD module triggers an
initialization sequence in which the device
communicates with the cable headend, registers
itself in the network, and is provisioned for access
to cable modem and the requested premium
channels.

At this time, with a suitable new protocol we
need to standardize, the POD module can give the
Host a URL to be used to access the cable
operator�s local home page. In Denver, for an
example cable operator named XYZ Cable, this
URL might be http://stb.xyz-cable.den.com. Now,
an RCU button labeled HOME could trigger
opening a browser window using this URL, and
XYZ Cable�s portal would pop up.

From the XYZ Cable home page, the user can
access the following types of functions, at the
discretion of this cable operator:

o Links to information on the channel lineup

o Links to Electronic Program Guide data
presented in HTML format. A search
function can be supported; listings can be by
time or genre, etc.

o Hyperlinks to account information pertinent
to this particular customer

o Hyperlinks to allow self provisioning (for
example, to allow one to sign up for new
premium services, special events, etc.)

o Search functions related to program offerings
or FAQs

o Telephone numbers to call for service
problems or account information

o Hyperlinks to local businesses. The portal
can of course include advertising banners.

It should be clear that the level 1 device is a
very powerful and flexible platform, offering the
cable operator a �look and feel� presence in the
retail box and a rich set of operator-supplied
features. Importantly, this can be done with
existing standards (with the small exception noted).

Level 2: Web browser plus Java
The Level 2 device provides all the features of

Level 1 plus:

• Adds a Java Virtual Machine to support Java
applets associated with web pages.

• A specified set of Java class libraries is
resident to support the desired applet
capabilities (for example, it may be a subset
of Personal Java and JavaTV).

• Minimum RAM requirements are specified
for downloaded applets, cache.

• Minimum graphics resolution and
performance requirements are specified.

• Support for a prescribed set of content and
mime types is specified (graphics formats,
audio formats, streaming audio/video formats
and plug-ins, etc.)

The level 2 device can respond to web pages
enhanced to include applet-based applications. The
level 2 retail device can be built with today�s
technology, with a few exceptions. At this writing
the Java components are not yet finalized.
Completion of these is expected sometime in 2000.

Also, to be effective, some form of memory
management would have to be standardized so that
important applets would be cached in RAM for
quick retrieval when needed. It wouldn�t be
practical to have to wait for an applet download
whenever a channel was changed, for example.

With the addition of this basic level of Java
support, the cable operator can now offer fully-
featured Electronic Programming Guides with
improved presentation and better look and feel,
Video-On-Demand, enhanced broadcasting,

enhanced e-commerce applications, and networked
games.

Since only one application is assumed to be
executing at any given time (the one associated
with the web page in current view), many of the
complexities associated with resource sharing and
application lifetime are avoided. In spite of this
limitation, an unlimited array of new services,
applications, and features can be supported.

Level 3: Cooperative downloaded applications
At level 3, which we think is realistically three

years away, the technical challenges identified in
this paper have been successfully met. This allows
the co-existence in one retail cable-compatible
device of:

• A resident application suite present in
ROM or Flash at the time the product is
purchased

• An application suite downloaded upon
consumer installation of the device

Furthermore, either or both of these two basic
applications can be upgraded (or replaced entirely)
via a download update mechanism.

CONCLUSION

This paper began by describing the MSO�s
vision of the capabilities and benefits of the
Middleware Solution for support of software
downloads to retail devices. It then explored those
aspects that are felt to be impractical or
unreasonable.

The paper discussed some of the technical
challenges that must be met before a general
solution to the code download problem can be
reached. The argument was made that the
preservation of product differentiation in the
marketplace is essential.

The paper concluded with a proposal for
�stepwise evolution, where HTML and applet-
based approaches would be used in the interim,
until the challenges of the downloaded application
approach can be fully addressed.

ACRONYMS

API Application Program Interface
ATSC Advanced Television Systems

Committee
ATVEF Advanced Television Enhancement

Forum
BIOS Basic Input/Output System
CPU Central Processing Unit
CRT Cathode Ray Tube
DASE DTV Application Software

Environment
DOCSIS Data over Cable Service Interface

Specification
DTV Digital Television
D-VHS Digital VHS
DVD Digital Versatile Disk
EIA Electronic Industry Association
EPG Electronic Program Guide
FAQ Frequently Asked Question
HD High Definition
HTML Hypertext Markup Language
HTTP Hypertext Transport Protocol
IP Internet Protocol
IPPV Impulse Pay-per-View
IRD Integrated Receiver-Decoder
MPEG Motion Picture Experts Group
MSO Multiple System Operator
OS Operating System
PC Personal Computer
POD Point of Deployment

PVR Personal Video Recorder
QAM Quadrature Amplitude Modulation
RAM Random Access Memory
RCU Remote Control Unit
RFP Request for Proposals
SCTE Society of Cable Telecommunica-

tions Engineers
SI Service Information
VOD Video on Demand
VOIP Voice over Internet Protocol

* * *

About the author
Mark Eyer has worked in the field of satellite

and digital television systems for over eighteen
years. He has contributed to various standards-
making activities in the ATSC, EIA, and SCTE.
He is currently employed as the Director of
Systems for Sony Electronics, Digital Media of
America in San Diego.

Mark Eyer
Director, Systems
Digital Media of America
Sony Electronics
San Diego, CA 92127
(858) 942-7130
mark.eyer@am.sony.com

