
Open Middleware and the OpenCable POD Module:
Versatile Solutions for Portable, Secure Digital TV

Anthony J. Wasilewski
Scientific-Atlanta, Inc

Abstract

Two aspects of a secure, portable

environment for interactive DTV
services are discussed. The OpenCable
POD and an open middleware approach
can be useful tools on “the road to
retail”.

The OpenCable Point of

Deployment (POD) module is an
important component of the open
standards specifications for digital TV.
The POD supports the total separation of
the conditional access system from the
host terminal while still supporting a
wide array of features and applications
and providing high performance
video/audio/data services. By allowing
host terminals to become more generic,
the POD may play a critical role in any
transition to retail availability of set-
tops.

This paper will cover the

following aspects of the POD:

• Brief History/Origins
• Regulatory Issues and Timelines
• Relevant Standards &

Documents
• Architecture and Features
• Interface Descriptions
• Copy Protection

To complete the support of an

open platform for hosting of a rich set of
portable services, the application

software environment of the host also
needs to be standardized. The goal is to
provide an environment in which a large
measure of freedom to craft applications
with varied feature sets and powerful
graphics exists, while also fostering a
high degree of portability of those
applications to different hardware
platforms.

To this end, this paper describes an

open set of middleware that includes:

• HTML
• Javascript (ECMAScript)
• MIME
• Personal Java
• XML
• HTTP
• SSL
• DOM
• XHTML
• ATVEF

These middleware components can

be and/or are deployed on existing
digital set-tops in currently launched
systems.

POD History/Origins

The concept of using a removable

device to encapsulate all security and
conditional access processing has origins
in both the DVB (Digital Video
Broadcasting) Common Interface
process in Europe and the NRSS
(National Renewable Security Standard)
effort carried out as a joint engineering

committee of CEA and the NCTA under
EIA sanction in North America. Both
groups eventually adopted a PC Card
(PCMCIA) form factor although the
NRSS specification also includes an
extended ISO 7816 smart card format as
an additional choice.

The POD extends both the DVB

and NRSS standards by adding:

• explicit handling of out-of
band (OOB) data channels

• a copy protection
mechanism

• an application interface
• extensions for cable-ready

applications

Regulatory Issues and Timelines

From a regulatory viewpoint, the
major influences on the existence of the
POD have been:

•The Telecommunications act of

1996 requires that cable subscribers be
given the option of owning the
equipment required to receive cable
services

•The FCC’s Report and Order (63

Fed. Reg. 38095) requires that cable
operators make separable security
modules available by July 1, 2000 in
order to facilitate commercial sale of
navigational devices

The industry responded by

including in the CableLabs
OpenCable process, a working group
to define the functionality for a Point-of-
Deployment or POD module and its

interfaces and also to specify a suitable
copy protection method that would be
acceptable to content owners. This work
has progressed well and manufacturers
are responding to the challenge in a
manner that should result in suitable
product being available in the FCC-
mandated time frame.

POD Architecture and Features

The POD handles both in-band

MPEG Transport and Out-of-band
(OOB) control channels on behalf of the
host device. One of its primary
responsibilities for MPEG processing is
the conditional access-level decryption
of subscriber-selected content for which
the subscriber is authorized. The POD
accomplishes this in conjunction with
the CATV headend through the
conditional access system that is
implanted within it. For the OOB
channel, it interprets the format of the
control bit stream that has been sent to it
from OOB RF receivers in the host.

The POD must support five

different interfaces: PCMCIA, MPEG
Transport, an out-of-band channel
(either DAVIC or Motorola (formerly
GI)), the POD data channel and the POD
extended channel. It must support
traditional applications such as digital
broadcast and IPPV but must also be
capable of other OpenCable services
such as VOD. It must also be able to
support the man-machine interface
(MMI) of host applications utilizing a
graphical interface based on HTML 3.2.

A basic block diagram for a POD

module is shown below:

To fit the amount of functionality

the POD specifications require into a
small form factor such as Type II
PCMCIA, considerable integration in
silicon is called for. Thus, much of the
major components in the POD block
diagram above are found on an ASIC.
This chip, of course, has interfaces to
memory and other chips such as secure
microprocessors to complete its mission.

Interface Descriptions

The following are the classes of

interfaces supported by an OpenCable
POD module:

• PHY
• Extended Channel
• Link Interface

• Application Interface

The PHY or physical interface is

compliant to the 68-pin PCMCIA
interface. This supports parallel, full-
duplex transmission of MPEG-2
Transport streams at the bit rates
typically deployed in North American
CATV systems. There is also support
for signaling and CPU-to-CPU
communication. Upon power-up, the
POD performs the standard 16-bit PC
Card Memory Only initialization, after
which the POD and Host activate the
“POD Module Custom Interface” which
has a registered interface ID of
hexadecimal 341. The POD also
follows PC Card power management
standards.

POD ASIC

Internal
Secure Micro

Smart
Card

Interface

CPU

Memory
Controller

NVM

Serial Port

Secure uP
Interface

I2C
Interface

OOB
Physical

MPEG Transport
Demux/Remux

PID Filters

Core
Decryptor

OOB MAC
Filters

PCMCIA/
POD

Interface

DRAMFLASH

PCMCIA
Connector

Copy
Protection

The Extended Channel provides a
data path between the POD and Host for
information flows outside the MPEG-2
Transport that are not terminated by the
POD. Thus, for example, it supports the
flows of IP packets or MPEG sections
that have arrived for the Host via out-of-
band (OOB) pathways from the headend.
Some data, such as Entitlement
Management Messages (EMMs) from
the CA system, arrive over the OOB
pathways and are not forwarded by the
POD to the Host.

The POD Link Interface is

compliant with the Command Interface
of the NRSS Part B specification. This
implements a set of protocols that
establish communication about and to
resources relating to conditional access,
host control, the man-machine interface
(MMI), copy protection, generic IPPV
support and the Extended Channel. The
link interface takes care of identification
of flows and Protocol Data Unit (PDU)
fragmentation.

The Application Interface is used

to support “cable-ready” applications
that use the data channel that are not
defined or adequately covered by NRSS
Part B. Such functions include Host
Generic Feature Control, POD
Emergency Recovery and specific
application support. This interface
defines the POD/Host MMI, additions to
the low-speed communication interface,
additions to the host control resource,
additions to extended channel support,
modifications to the generic IPPV
resource and specific application support
for hosts that have software download
capability.

Copy Protection

Because the POD processes

(decrypts) and passes digital content
streams to the host, suitable copy
protection is required. If these content
streams were sent “in the clear” over the
PCMCIA interface to the host, it would
be relatively straightforward to make
exact digital copies of this content.
Thus, to protect the bit streams as they
flow from POD to host, the POD must
apply additional encryption. While this
is fairly simple to do, the POD is also
required to authenticate the host to verify
that it has not been previously identified
as an illegal device. This is
accomplished through the use of digital
certificates and signatures. In this
manner, a highly secure form of key
exchange may also be practiced.

Once the POD and Host have

agreed on keys to be used, the POD
encrypts the content of the MPEG-2
Transport packets that require copy
protection as signaled in CCI (copy
control information) bits which are sent
in authenticated form via the conditional
access system.

Open Software Environment

The POD module only provides

part of the solution for a portable
application and content environment.
There must also be a method that
provides content and application
interoperability.

An open software environment

relies on published standards that enable
portability between platforms. If we
begin with that assumption that the
TCP/IP protocol suite will be the
foundation for messaging, client-server

TCP/IP protocol suite will be the
foundation for messaging, client-server
applications and data access and that
MPEG video and transport and Dolby
AC-3 audio are the foundations for
transmission of entertainment content,
then portability concerns need to be
focused on other aspects of the system.
There are at least three other major areas
of support needed to enable the desired
portability:

a) Content rendering
b) Application code execution
c) Network protocols

These areas can be covered by an

architecture that includes standardized
elements for the following functions:

• Presentation Engine
• Application Engine

In addition, the platform would

require elements that provide the
following functionality on behalf of
applications:

• Network services
• Platform services

Ideally, these network and
platform services would be supplied via
an operating system that, in conjunction
with the middleware, completely
abstracts the details of the underlying
hardware platform and network and
permits applications to migrate between
platforms with little or no modification.
The operating system may or may not be
a standardized element, however, it is
likely that, within any one MSO system,
only one operating system would be
deployed.

A layered model of an

interoperable software environment for a
Host device is shown in the figure
below. In the figure, the middleware
components are located between the
applications and the operating system
(i.e., in the �middle�, hence the term
�middleware�). The foundations of the
middleware, are the presentation engine
components: HTML, MIME,
ECMAScript, ATVEF, DOM) and the
application engine: PersonalJava.
Examples of extensions to the
middleware are the Java.TV classes and
the ATSC Digital TV Application
Software Environment (DASE) which
has been defined by the S17 Group of
ATSC.

The multi-purpose Internet mail

extensions (MIME) provide useful
standards for content rendering such as
JPEG and Portable Network Graphics
(PNG) and audio standards, such as
WAV and AIFF.

The Document Object Model or

DOM is a platform and language-neutral
model that allows programs and scripts
to dynamically access and update
content. The DOM provides a map of a
document�s structure and style and
supports generic access to its parts.
Combining DOM0 with ECMAScript is
equivalent to Javascript 1.1.

The Advanced Television

Enhancement Forum or ATVEF is a
cross-industry alliance of companies that
have defined protocols for HTML that
can be used to deliver enhanced
programming over many transports to a
range of intelligent receivers. These
enhancements include announcement
protocols, trigger handling for real-time

events and a local identifier URL
scheme.

XML or extensible markup

language is a very promising addition to
the markup language approach started in
HTML. XML supports the separation of
the definition of the data from the
description of how it should be
displayed. This promotes more dynamic
content as well as providing strong
portability since the rendering can be
specified for TV-based graphics, print-
oriented graphics, speech synthesis or
even Braille without changing the
content coding at all. It also supports
domain-specific data definitions that can
be used to formulate standardized
formats for specific types of data, so that
all applications can use and interchange
the same data.

Further capitalizing on this

separation of content definition and
rendering is XHTML (Extensible
Hypertext Markup Language). XHTML

Host Device

Hardware

Operating System Components

HTML Engine (HTML, XML, MIME, JavaScript, ATVEF) Personal
Java (JVM)

Java
TV

Resident Application Downloadable Applications

Services

DASE

is a reformulation of HTML 4.0 as an
application of XML 1.0. It has the
advantage of being easily extensible,
which allows applications to be updated
with relatively little effort and it is
designed to be highly portable, so that
content can be transferred to many
diverse platforms (such as PCs, cell
phones, PDAs, TVs, etc.) and be
acceptably displayed without
modification.

The Application Engine is a

complete execution environment within
itself. One example is PersonalJava or
pJava, one of the Java application
environments developed by the Javasoft
division of Sun Microsystems, Inc. Java
is implemented on a Host device as a
virtual machine. This is a software
program that executes byte codes, which
are standardized instructions for the
machine. As long as a Java Virtual
Machine (JVM) is available for a
platform, applications written in the Java
language can be readily ported to that
platform. The JVM also provides a
security framework to ensure that
�renegade� applications do not wreak
havoc on the host platform.

 The operating system components

supply the interface (and abstraction of)
the hardware components of the Host
device. Thus, applications and the
middleware layer need not concern
themselves with the details of different
types of tuners, on-screen display
graphics drivers, conditional access
elements, and other vendor-specific
components. Also, the operating system
must provide a robust event model and
the facilities to handle the event-driven
aspects and requirements of applications.
These include display focus, inter-

process messaging, timers, semaphores,
memory management and the like.

Finally, the operating system must

also support important networking
protocols such as TCP/IP, HTTP and
SSL. Hypertext Transfer Protocol is one
of the foundations of the World-wide
Web and the Secure Sockets Layer has
rapidly become the de facto Web
protocol for securing communications
between clients and servers.

Conclusion

Critical parts of the support of the

portability required to support retail
availability of Host devices in CATV
systems are supplied by the OpenCable
POD module and by open approaches
using standard middleware. Combined
with a robust operating system that
abstracts the details of the platform
hardware and provides system services
to the middleware and applications, the
basic foundation of interoperability can
be formed. The POD module supplies
complete separation of conditional
access functions from the Host device
and copy protection functions that are
acceptable to the content industry. An
open middleware approach provides
additional standardization and
abstraction for content rendering and the
application execution environment.

Using this foundation, application

developers can produce support for new
services, confident that their efforts will
be applicable to a wide range of Host
platforms.

References and Standards

The following documents are

some useful references that provide
additional reading and information

regarding the OpenCable POD and open
middleware environments and standards:

1 Document markup language HTML 4.0:
http://www.w3.org/TR/REC-html40/

2 Document scripting language ECMAScript:
http://www.ecma.ch/stand/ecma-262.htm

3 Document Object Model DOM Level 0:
http://www.w3.org/DOM

4 Hypertext Transfer Protocol (HTTP) 1.1 (RFC 2068):
ftp://ftp.isi.edu/in-notes/rfc2068.txt

5 Aggregation & encoding of multiple resources into a single resource
for delivery:

MIME multipart/related: http://info.internet.isi.edu/in-
notes/rfc/files/rfc2387.txt

MIME HTML (rfc2110): ftp://ftp.isi.edu/in-notes/rfc2110.txt

6 Extensible Markup Language (XML) 1.0 Specification,
http://www.w3.org/TR/REC-xml

7 OpenCable Host-POD Interface Specification, IS-POD-131-
INT01-991027

8 NRSS Part B Specification, EIA-679-A, Part B

9 OpenCable POD Copy Protection Specification: IS-POD-CP-
INT01- 000107

10 Java Specification:
http://www.javasoft.com/aboutJava/communityprocess/maint
enance/JLS/index.html

11 ATVEF Specification:
http://www.atvef.com/library/spec1_1a.html

Author�s Contact Info:
Tony Wasilewski
5030 Sugarloaf Parkway
P.O. Box 465447
Lawrenceville, GA 30042
Phone: 770-236-5004
Fax: 770-236-3080
E-mail: tony.wasilewski@sciatl.com

