
Low Complexity Real-time Video Encoding for Soft Set-Top Box Platforms

Krasimir Kolarov, Feei Chung, William Lynch
Interval Research Corporation

Abstract

This paper presents a very low-complexity
wavelet-based video codec, the Wavelet Z-
Codec (WZD), implemented in real-time on a
programmable media chip, the Media
Accelerated Processor (MAP-1000).

The WZD algorithm is carefully designed to
require only adds and shifts. Temporal
wavelet transforms are used in place of motion
estimation and compensation. With block
processing and intermediate coding, WZD is
15 to 20 times less complex than MPEG2. An
entire encoder requires only 50K gates and
128KB of memory and can be implemented for
a couple of dollars as a chip macro.
Experimental results have shown that it
achieves similar performance to MPEG2 for
typical bitrates and content.

1. INTRODUCTION

The fast development of broadband
technology brings video capabilities to
everyday consumers. The next generation set-
top boxes (STBs) will allow us to receive, store
and manipulate large amounts of video and
audio information. Those boxes will have a
hard drive and editing capabilities. Because
digital video is very resource consuming (an
uncompressed 2 hour video can take as much
as 216 GB of memory), there is a strong need
for encoding capabilities in the box. MPEG,
the current standard approach, is very
expensive for consumer set-top box encoding
applications and does not allow for easy

editing. Having been explicitly designed with
a broadcasting model in mind, MPEG is
asymmetric, with the encoding significantly
more complex and costly than decoding.

Having in mind low cost, easy to time-shift
and edit, soft set-top box applications, we have
designed a wavelet-based technology WZD
(Wavelet Z-coDec) for quality compression of
full size (D1) video. Our approach uses
wavelet transformations (as opposed to the
discrete cosine transform DCT in MPEG) in
both the spatial and temporal direction. Thus
we avoid the complex and expensive process
of motion estimation and motion
compensation. The overall algorithm is 15 to
20 times less complex than the MPEG
approach and achieves similar or better
performance for all important bitrates.

WZD is a symmetric codec with very low
Mips overhead and low latency encoding (< 6
frames). We require very low power operation
and allow cheap color conversion and direct
compression of the composite NTSC (our
compression technology also decodes chroma
from the carrier – see www.interval.com/wzd).

The main implementation benefits are:
simplified processing, reduced hardware &
software overhead and saved memory and
memory bandwidth. They result from our
wavelet compression, multiplierless
coefficients, block by block processing and
intermediate compression. Our solution is
ideally suited for real-time processing of
analog video sources for a variety of embedded
applications - set-top boxes, PVRs (personal

video recorders), home networks, cameras and
camcorders, security applications.

We will present the WZD algorithm in the
next section, followed by a section on the
MAP-1000 processor. Experimental results
will be shown next, and finally we will
conclude with a summary.

2. WAVELET Z-CODEC

An image transform codec (compression/
decompression algorithm) generally consists of
three basic steps in the forward (compression)
direction:

1) forward transform,

2) quantization,

3) entropy coding.

The decompression direction consists of an
entropy decoding stage followed by the reverse
transform. The forward and inverse transforms
are exact inverses of each other and are thus
lossless. They are often linear, and are
performed to decorrelate pixel values so that
the resulting coefficients can be better
compressed. The quantization stage is lossy,
where less important visual information is
discarded. The entropy coding stage is again
lossless, where the quantized coefficients are
encoded into compressed bitstreams. A
lossless compression is achieved by omitting
the quantization stage.

The Wavelet Z-codec follows these same
basic steps, using a three-dimensional wavelet
transform in the transform stage. Optional
intermediate quantization and coding stages
may be added to greatly reduce RAM. The
basic process flow in the forward direction is:

1) forward transform:

1-a) spatial transform, with TS (2-6)
wavelet filters,

1-b) intermediate quantization
(optional),

1-c) intermediate entropy encode
(optional),

1-d) intermediate decode (optional),
1-e) temporal transform, with Haar-

Haar wavelet filters,

2) final quantization,

3) final entropy encode.

Steps 1-b, c and d are optional, depending on
implementation platform. If used, the memory
required is significantly reduced and the entire
coder including memory can be implemented
on a fraction of a chip.

As is typical of DCT transform codecs, the
processing steps are not applied to entire video
frames. Instead, each video field is divided
into blocks, where each block is processed
separately. The definition of a block as well as
details of each of the non-optional processing
steps are described in the sections below.

2.1 Processing ‘Units’ – GOPs, Stripes,
Blocks, Sticks and Stones

A WZD video stream is broken into groups
of pictures (GOP) of a fixed number of frames
(two), each consisting of two (2) fields. Each
GOP is processed independently of each other
GOP. We have found that for WZD this GOP
length makes a suitable tradeoff between
picture quality, bit rate, and complexity. In
addition, this short GOP length is well suited
for editing and searching. At any point in the
compressed stream you are within one of the
desired frame.

By contrast, the GOP for MPEG codecs is
typically fifteen (15) frames. However
different GOP lengths and structures can be
used depending on scene content. In any case,
motion estimation and compensation are
performed independently on each GOP. Even
such a simple editing operation as “cutting”
from one stream to another is a complex
operation for an MPEG stream.

For WZD, each field in a GOP is further
broken into 8-line stripes, with each stripe
processed independently of each other stripe.

Each stripe is then broken into 8-line by 32-
column blocks of pixels, each block processed
independently of each other block.

During the temporal transform four
corresponding stripes, one from each field of
the GOP, are processed together as a stick.
Within each stick, four corresponding blocks,
one from each field of the GOP, are processed
together as a stone. These processing units are
illustrated in Figure 1 and

Figure 1 – A GOP, a Stripe and a Block

The main advantage of using a small
processing unit of an 8 x 32 block, or an 8 x 32
x 4 stone, is that it reduces the memory / data
cache size and bandwidth requirements. It also
reduces occurrences of costly data cache
misses in soft implementations and reduces
silicon area requirements in hardware
implementations. Block processing does
present the potential problem of blocking
artifacts due to transform discontinuities across
block boundaries. This problem is resolved in
WZD by the incorporation of edge filters, as
described in the next section.

2.2 Processing Step 1-a, Spatial Transform

For the spatial transform, the WZD
algorithm uses the TS (Two-Six, or 2-6)
wavelet filters, which are quadratically lifted
Haar wavelet. The basic equations that
transform an input sequence xi , 0 ≤ i < 2N,
into half-length low-pass and high-pass
sequences fi and hi respectively, 0 ≤ i < N, are:

2-6 Forward Transform:

fi = x2i + x2i + 1 (1)

gi = x2i – x2i + 1 (2)

hi = gi – floor{(fi – 1 – f i + 1) / 8} (3)

2-6 Inverse Transform:

gi = hi + floor{(fi – 1 – f i + 1) / 8} (4)

x2i = (fi + gi) / 2 (5)

 x2i + 1 = (fi – gi) / 2 (6)

Equations 1, 2 (and 5, 6 in the inverse
direction) form the simple Haar transform, and
Equations 3 and 4 perform the “lifting” method
[3], which is in essence a quadratic
interpolation.

Equations 3 and 4 cannot be used at the two
edges of the sequence and different filters are
required. To minimize blocking artifacts, we
have designed special edge filters that ensure
polynomial continuity across block boundaries.
These filters effectively result in constant,
linear or quadratic interpolation for input
sequences of length 2 (N = 1), 4 (N = 2) or ≥ 6
(N ≥ 3) respectively. Quadratic interpolants
typically account for 98% of the variation at a
point.

The equations for the case N = 1 (replacing
Equations 3 and 4) are, for i = 0:

Forward: h0 = g0 . (3b)

Inverse: g0 = h0 . (4b)

For N = 2, the equations are, for i = 0, 1:
Forward: hi = gi – floor{ (f0 – f 1) / 4} .

Inverse: gi = hi + floor{ (f0 – f 1) / 4}.

For N ≥ 3, the equations are:
Left Edge (i = 0):

h0 = g0 – floor{ (3f0 – 4f1 + f2) / 8 }

g0 = h0 + floor{ (3f0 – 4f1 + f2) / 8 } .

Right Edge (i = N-1):

hN-1 = g N-1 – floor{ (fN-3 – 4fN-2 + 3fN-1) / 8 }

g N-1 = h N-1 + floor{ (fN-3 – 4fN-2 + 3fN-1) / 8 } .

Note that all filters above map integers to
integers and are reversible. They are linear
except for the floor operations. They are also

GOP (2 frames, or 4 fields)

Stripe

Block

short, and use dyadic rational coefficients (i.e.,
they are integers divided by powers of two)
with small numerators. Thus, the entire WZD
transform can be implemented with only adds
and fixed shifts; no multiplies or variable shifts
are required.

Note also that all filters above are one-
dimensional, but they can be applied to the
horizontal or vertical direction. In the
horizontal direction each application partitions
its input sequence into left (L) and right (R)
‘subbands ’, where the left subband holds the
low-pass (or average) result sequence f and the
right subband holds the high-pass (or vertical
edge details) result sequence h. In the vertical
direction each application partitions its input
sequence into top (T) and bottom (B)
subbands, where the top subband holds the
low-pass (again, average) results f and the
bottom subband holds the high-pass (or
horizontal edge details) results h. For each 32-
column by 8-line block of input image pixel
luma component data, the wavelet filters are
applied in both horizontal and vertical
directions several times successively to form
the final wavelet pyramid in Figure 2.

LLTTR

LLTBL LLTBR
LRT

LLB LRB

R

Figure 2 – Wavelet pyramid for luma;
0 = LLTTLLTL, 1 = LLTTLLTR, 2 = LLTTLRT,

3 = LLTTLLB, 4 = LLTTLRB

Each block of the chroma components in
component video is half as wide as luma (16
columns by 8 lines) because the data is sub-
sampled in the horizontal direction. Thus, one
fewer horizontal transform is performed.
Figure 3 shows the resulting wavelet pyramid.

LTTR

LTBL LTBR
RT

LB RB

Figure 3 – Wavelet Pyramid for chroma;
0 = LTTLLTL, 1 = LTTLLTR, 2 = LTTLRT,
3 = LTTLLB, 4 = LTTLRB

Note that at the end of the spatial transform,
subband 0 contains the average value of all
pixels in the block. Thus, subband 0 from all
blocks form a ‘thumbnail’ image of the
original. Other subbands contain more edge
sharpness information, and we expect their
coefficients to be small or zero except at very
sharp edges. In fact, due to the smoothness
nature of typical video data, we expect the R,
RT, LB and RB subbands to be mostly zero.
Furthermore, many small values in the LRT,
LLB and LRB subbands can be quantized to
zero without much visual loss.

2.3 Processing Step 1-e, Temporal
Transform

A Haar-Haar wavelet transform is used in
the temporal domain for increased
compression. The equations used, i.e., the
Haar filters, are shown below. They are simply
Equations 1, 2 and 3b in the forward direction,
and Equations 4b, 5 and 6 in the inverse
direction.

Forward Temporal Transform:

fi = x2i + x2i + 1 (1)

hi = gi = x2i – x2i + 1 (2), (3)

Inverse Temporal Transform:

x2i = (fi + hi) / 2 (4b), (5)

x2i + 1 = (fi – hi) / 2 . (4b), (6)

The filters are applied to every pixel in each
stone, taking as input the four values from the
four fields at the same pixel location, as
illustrated in Figure 4.

Figure 4 - Temporal transform input sequence
construction example

For each pixel, i.e., for each input sequence,
the filters are applied twice (hence Haar-Haar),
yielding the subbands Slow-Slow, Slow-Fast,
Fast-Slow and Fast-Fast. As with the spatial
transform filters, the temporal transform filters
can be implemented with adds and fixed shifts
only.

The temporal transform is much lower in
complexity than the motion estimation and
motion compensation done in MPEG.
Furthermore, it operates on a GOP of two
frames, as compared to a typical GOP of
fifteen frames for MPEG, thus making it easier
to navigate compressed video streams,
facilitating video manipulations such as editing
and searching. The short GOP does imply that
when there is significant motion in a video
sequence such as a sports footage, we expect
our WZD algorithm to perform worse than
MPEG. However, for most sequences
including movies, WZD yields results
comparable to MPEG.

2.4 Processing Step 2, Quantization

The WZD quantization strategy is based on
the well-known idea of discarding information
that the human visual system (HVS) is unable
to perceive under expected viewing conditions.
This imperceptible (and unusable) information
primarily consists of contrast resolution at high
spatial frequencies. Such information is
imperceptible due to optical losses (diffraction
and chromatic aberration) in the HVS.

Quantization is traditionally performed by
dividing a coefficient by a value Q, Q
dependent on the spatial frequency of the
coefficient. WZD simplifies this operation by
restricting Q to be a power of two (Q = 2q) so
that quantization is implemented simply by
means of discarding the rightmost bits of those
coefficients, i.e., shifting the coefficients by q
bits.

Processing step 1-b, if performed, would be
done in a similar manner so that only shifting
would be used rather than division.

2.5 Processing Step 3, Entropy Coding

The wavelet pyramid, after being quantized,
will have substantial runs of zeros as well as
substantial runs of non-zeros, which makes it
natural to code the coefficients into two
streams, one being a stream of significance
bits, and the other being a stream of non-zero
coefficients. There is one significance-bit for
each coefficient, a one if the quantized
coefficient is non-zero and a zero if the
quantized coefficient is zero. In addition to
having substantial runs of zeros, the
significance bits are also highly correlated,
where each significance bit is most likely the
same as the preceding significance bit.

Arithmetic coders are known to compress
streams such as the significance stream very
well. We use a modification of the low
complexity, binary arithmetic coder known as
the Z-coder. We have found that, for video,
the Z-coder calculations can be done with 8
bits of precision and that only 3 bits of context
(3 previous significance bits) give a good
prediction of the next bit. These three bits of
context imply a 23 entry table of 8-bit
increments. Details of the Z-coder can be
found in [2].

The non-zero coefficients are encoded using
a Huffman coder. For each coefficient, the
codeword is obtained for its absolute value and
merged into the code stream, followed by the

Frame 1, Field 1

Block k

x0 x1 x2 x3

Frame 1, Field 2

Block k
Frame 2, Field 1

Block k
Frame 2, Field 2

Block k

Stone

sign bit. The Huffman coder has been
thoroughly studied in academics and industry,
and will not be described here. For details, on
the Huffman and arithmetic coders refer to [6].

As with the transform filters, we designed
the Z-coder and the Huffman coder to require
only adds and shifts to maintain low-
complexity in implementation.

3. THE MAP 1000 PROCESSOR AND
ARCHITECTURE

Equator Technologies’ MAP (Media
Accelerated Processor) 1000 is a low-cost
programmable processor designed to handle
the large computational demands of digital
media processing, including image and video
codec, 2D and 3D graphics, as well as digital
audio codec, synthesis and spatialization. It
provides a flexible, high-performance
environment for developing real-time multi-
media applications, many of which have
rapidly evolving functional requirements due
to the recent growing need for multi-function
digital TV and STBs.

3.1 The Map Architecture

The MAP 1000 has a high computation rate
because it is based on an on-chip parallelism
technique known as Very Long Instruction
Word (VLIW) architecture. VLIW is one of
two well-established schools of thoughts on
how a high degree of instruction-level
parallelism can be achieved, the other being the
super-scalar architecture. Today’s popular
microprocessors such as the Pentium II are
based on the super-scalar approach, which
require special on-chip hardware to look
through the instruction stream and find
independent operations which can be executed
simultaneously by multiple execution units
available so that parallelism can be maximized.
This special hardware typically takes up a
significant portion of the chip’s die area. Each
instruction in superscalar processors codes for
only one single operation, and the grouping

and scheduling of instructions for execution is
done at execution time in hardware.

On the other hand, for VLIW processors the
difficult task of finding parallelism is moved to
the compiler. The compiler searches for
eligible operations, checks for data
dependencies, controls resource conflicts, and
packages these operations into VLIW
instruction words. Thus, each instruction word
explicitly describes the parallelism by
specifying which operation is to be performed
by each execution unit during each cycle.
Because VLIW processors do not require
special on-chip hardware, they can be much
cheaper than superscalar processors, but they
require sophisticated compilers to perform the
instruction-level parallelism properly.

3.2 The MAP compiler

The Equator MAP compiler is critical in
ensuring that the computational power and
architectural features of the MAP 1000 are
fully utilized. It supports a wide range of
optimizations, including software pipelining,
preconditioning, as well as trace scheduling
which can search a whole routine for eligible
operations. It can also explore across natural
code boundaries such as branches for
opportunities of increased parallelism far
beyond the limited search window seen in
existing super-scalar architectures.

The MAP core processor is programmable
in C, and the MAP C compiler is generally
compliant with ANSI standard C. It supports a
media intrinsic API with a large suite of 32-bit
and 64-bit integer and floating-point scalar
operations, partitioned operations with 64-bit
registers, plus operations with 128-bit
partitioned long constant/variable that facilitate
vector arithmetic.

With extensive use of partitioned media
intrinsic, the implementation of the WZD
wavelet transforms on the MAP core processor
requires only three (3) cycles per coefficient.

3.3 MAP Coprocessors

The MAP-1000 has several functional units
in addition to the VLIW media core processor.
The Data Streamer intelligently handles inter-
and intra-chip data transfers as well as hides
the penalty due to data cache misses. It can be
programmed to transfer data of various shapes
and forms. The Data Streamer executes
commands in a separate thread of control with
minimal CPU support. Thus, conventional
double-buffering schemes can be used to fully
overlap data movement and VLIW core or
Variable Length Encoder/Decoder (VLx)
processing.

Another functional unit is the Fixed
Function Block, which includes graphics
accelerators, a video scalar and the VLx. The
VLx is actually programmable, currently in
assembly. It is a RISC coprocessor which can
be used to perform bit-sequential tasks that are
not well suited for the VLIW core. The VLx
contains special-purpose hardware, called the
GetBits engine, for bitstream processing and
hardware accelerated MPEG2 table lookup.
More details on the MAP platform can be
found in [1] as well as at ETI’s web page
http://www.equator.com .

4. WZD on MAP

For the implementation of the forward
direction of the WZD algorithm on the MAP-
1000, the Data Streamer is programmed to
transfer pixel values from frame buffers to
contiguous memory locations on the on-chip
SDRAM one stone at a time. Double-buffering
is done so data from the next stone can be
transferred in while the current stone is
processed.

Data in the frame buffer is in field-
interlaced YuYv 4:2:2 format, thus the Y
(luma), U (chroma 1) and V (chroma 2)
components are first extracted out into separate
buffers in the core. The wavelet transforms for
each component are then performed for the

stone, with resulting wavelet coefficients
placed into contiguous memory locations in
SDRAM. Again double-buffering of the
coefficients buffer is done so that the
coefficients from the current stone can be
transferred to the VLx while those from the
next stone are calculated.

The Data Streamer transfers the wavelet
coefficients from the SDRAM, stored in its
natural order of scan-order, into memory
accessible by the VLx called CM1 in subband-
order. Coefficients grouped in subband-order
are expected to have longer runs of zeros or
non-zeros than in scan-order and are thus
expected to yield a smaller Z-coder
codestream.

The final quantization and final coding
stages are implemented in the VLx core. The
data streamer and the GetBits engine are used
to transfer the resulting codestream bits back to
SDRAM. The core then writes the codestreams
out to file.

The inverse direction of the WZD is
implemented in a similar manner.

5. EXPERIMENT RESULTS

30

32

34

36

38

40

42

44

46

0.2 0.4 0.6 0.8 1.0 1.2
bits per pixel

P
S

N
R

Bug - WZD Bug - MPEG2
Head - WZD Head - MPEG2
Chase - WZD Chase - MPEG2

Figure 5 - Rate-Distortion curve comparison
of WZD software implementation vs. MPEG2

Figure 5 plots the quantitative results of a
software implementation of the WZD codec,
compared to those of a standard software
implementation of MPEG2, Test Module 5
(TM5). 3 footages were processed, each 300

frames long. “Bug” is a footage from an
animated movie, “Head” is a talking-head
footage from a motion movie and “Chase” is a
motorcycle chase footage from the same
movie.

The curves are known as rate-distortion
curves. Here the distortion is represented by
the Peak Signal to Noise Ratio (PSNR) in dB,
actually the opposite of distortion, and the rate
is represented by the bit rate of the compressed
bitsteam in bits per pixel (bpp). For full-size
frames, 1 bpp corresponds to roughly 10 Mbps
(million bits per second). Although PSNR
may not always be an accurate indication of the
visual quality of a moving sequence, typically
the higher the PSNR, the better the quality.
Figure 5 shows that WZD yielded better quality
than MPEG2 for two of the three sequences.
Furthermore, WZD quality degrades smoothly
as the bitrate is reduced, where as MPEG2
quality drops off sharply below 0.3 bpp.

Figures 6 and 7 show sample results of the
WZD algorithm implemented on the Equator
MAP-1000, intermixed with results of TM5,
the standard software MPEG2 implementation.
The image quality can be seen to degrade as
the bitrate is reduced, and WZD results are
comparable to TM5 results at most bitrates. At
low bitrates WZD results are generally better.
For example, in Figure 7, WZD at 1.8 Mb/s is
visibly better than TM5 at similar rate.

6. SUMMARY

In this paper we have described a soft real-
time implementation of the Wavelet Z-coDec
or WZD, a very-low complexity wavelet-based
video codec, on the MAP-1000. WZD was
designed specifically with low cost, ease of
compressed video stream manipulation and
soft set-top box applications in mind. The
MAP-1000, with its powerful VLIW
architecture, compiler and supporting
coprocessors, enables this soft implementation
of the WZD to be in real-time. Combining the
WZD with MAP-1000 allows timely response

to rapid changes in market demand and
industry standards.

WZD is far less complex than MPEG-2, and
experiment results show that it yields
comparable quality to MPEG-2 in general.

In addition to the implementation of the
WZD technology on the Equator MAP-1000,
we have also built a software implementation
on the Pentium PC as well as another popular
media processor – the Philips TriMedia. Some
of the advantages of our approach come to life
in a hardware implementation, i.e. an ASIC or
part of an ASIC (system-on-a-chip). Because
the entire algorithm can be implemented with
shifts and adds only, we anticipate to be able to
design a full encoder with 50 – 60,000 gates,
significantly less than MPEG-2 encoders with
comparable quality. For more details on such
implementations, please refer to [4] and [5],
which together with several other papers and
descriptions can be found at
http://www.interval.com/wzd.

Acknowledgements

Many thanks to Equator Technologies, Inc.,
which has provided wonderful technical
support, and to Bill Arrighi, who has made
important contributions towards implementing
the WZD on the MAP-1000 as well.

References

[1] C. Basoglu, K. Zhao, K. Kojima and A.
Kawaguchi, The MAP-CA VLIW-based Media
Processor from Equator Technologies inc. and
Hitachi Ltd., White Paper ETI, January 2000.

[2] L. Bottou, P. G. Howard, and Y. Bengio, The
Z-Coder Adaptive Coder, Proceedings of the
Data Compression Conference, pp. 13-22,
Snowbird, Utah, March 1998.

[3] K. Kolarov and W. Lynch, Compression of
Functions Defined on Surfaces of 3D Objects,
In J. Storer and M. Cohn, editors, Proc. Of
Data Compression Conference, IEEE
Computer Society Press, 1997.

[4] K. Kolarov and W. Lynch, “Very Low Cost
Video Wavelet Codec,” SPIE Conference on
Applications of Digital Image Processing, Vol.
3808, Denver, July 1999.

[5] W. Lynch, K. Kolarov and B. Arrighi, “Low
Cost Video Compression Using Fast, Modified
Z-coding of Wavelet Pyramids,” Proc. of the

International Conference on Image Processing
ICIP’99, Kobe, October 1999.

[6] I. Whitten, R. Neal, and J. Cleary, Arithmetic
Coding for Data Compression.
Communications of the ACM 30, 6 (June)
1987, pp. 520-541

(a) Original (b) MPEG2 @ 6 Mb/s

(c) WZD @ 4.5 Mb/s (d) MPEG2 @ 3.9 Mb/s

(e) WZD @ 2.6 Mb/s (f) MPEG2 @ 2 Mb/s

Figure 6 – Processing results of MPEG2 and WZD codec algorithms applied to a motorcycle chase
sequence. (a) through (f) are ordered in decreasing bitrate.

(a) Original (b) MPEG2 @ 3.7 Mb/s

(c) WZD @ 3.1 Mb/s (d) MPEG2 @ 1.8 Mb/s

(e) WZD @ 1.8 Mb/s (f) WZD @ 1.2 Mb/s

Figure 7 – Processing results of MPEG2 and WZD codec algorithms applied to a talking head
sequence. (a) through (f) are ordered in decreasing bitrate.

