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Abstract 

Traffic modeling for HFC networks differs from traf
fic modeling for queuing systems by a greater em
phasis on individual connections and on short-range 
dependencies. These issues are illustrated by means 
of a model for WWW or web client traffic and a sim
ulation of an HFC network that serves a number of 
web clients. These simulations offset the number of 
clients that an HFC network can serve against the 
quality of service they receive. In addition, these 
simulations compare the quality of service received 
by web clients to the quality of service received by 
comparable Poisson sources. 

INTRODUCTION 

Currently, teletraffic modeling is one of the hot topics 
of the telecommunications society and the body of 
work devoted to this topic is vast and rapidly expand
ing. It roots firmly in traffic measurements that estab
lish that traffic on modern communication systems 
(e.g., an Ethernet or the Internet) differs in signifi
cant ways from assumptions about traffic that have 
been traditionally made in performance analysis. 

With some simplification, one may say that the 
focus in this area is on models for aggregate traf
fic that exhibit long-range dependence. Interest in 
traffic due to a single source is secondary and mo
tivated by a search for a physical explanation of this 
long-range dependence: often this explanation is for-

mulated by means of heavy-tailed distributions (see 
[10], [14], [15], [18], or, more generally [1]). Here, 
long-range dependence means that time correlations 
between traffic loads exist for very long periods of 
time, i.e., they tail off hyperbolically in stead of ex
ponentially as with the classical short-range depen
dent models. It is this characteristic of the traffic 
that is responsible for the excessive waiting times in 
queuing systems such as the Internet. 

The relevance of these new models derives par
ticularly from recent results in queuing analysis. In, 
e.g., [12], [5], and [17], it is shown that long-range 
dependence has an enormous impact on both waiting 
times and cell-loss probabilities in queuing systems. 
In the same vein, in [2], it is shown that waiting times 
in queues with heavy-tailed service times are consid
erably larger than waiting times in queues with light
tailed service times. 

So traffic models for queuing systems rightly 
stress the long-range dependence of the traffic, pos
sibly neglecting short-range dependencies. 

Traffic modeling for HFC networks is different 
from traffic modeling for such queuing systems in 
two respects. First, in HFC networks, there is a 
clear relevance of short-range dependencies. Clearly, 
request mechanisms, such as multiple requests and 
piggybacking, make it plausible that packets gener
ated 'close to each other' are relevant for throughput 
and delay. Bursts of traffic can effectively be dealt 
with, as it is not necessary to go through contention 
periods for each packet within a burst. Second, traffic 
modeling for HFC networks is more directly geared 
to the traffic generated by individual sources than to 
traffic form an aggregate of users, because it is the 
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aggregation of single-user traffic itself that is the sub
ject of investigation. 

Analyzing the performance of HFC networks by 
means of simulation requires computer routines to 
generate traffic that mimics actual traffic in such sys
tems. The sensitivity of HFC performance to traf
fic assumptions has, as yet, not been thoroughly in
vestigated. However, studies that are available by 
now indicate that correct traffic models are of great 
concern and that both long-range dependencies and 
short-range dependencies are relevant. 

As to the relevance of long-range dependence: in 
[8], the authors compare simulations with actually 
observed Ethernet traffic traces to simulations with 
artificial traffic, that was obtained by time-permuting 
these observed traces. Here, the traffic used in these 
two simulations is identical in one respect: the same 
data values are used in the simulations. However, 
the traffic streams differ in their time structure: the 
observed Ethernet traffic is long-range dependent, 
whereas the permuted traces are independent. There
fore, differences obtained in these simulations can 
be attributed to this time dependency. Their simula
tions show that the performance of an HFC network 
(measured in terms of average transmission delay) in 
case of the actual Ethernet traffic is much worse than 
the performance in case of the artificial traffic. They 
conclude that the correlation structure plays an im
portant role, also for HFC networks. 

In [6], the authors investigate the relevance of 
short-range dependencies: they compare the perfor
mance of HFC networks for traffic streams with ex
ponential interarrival times to the performance for 
traffic streams with Pareto interarrival times. Again, 
the traffic assumption (exponential or Pareto) has an 
enormous impact on the outcomes of the simula
tions; the delays in simulations with Pareto interar
rival times compare favorably with the delays in the 
simulations with exponential interarrival times. 

Thus, there is sufficient evidence that traffic as
sumptions are relevant to the results (or may even 
determine these results) and that realistic models are 
needed. For this reason, we develop a model for web 
client traffic, which is then utilized, both to assess 

quality of service versus load and to further add to 
the current insights regarding sensitivity to traffic in 
HFC networks. It. is the aim of this paper to further 
contribute to this sensitivity analysis by comparing 
the delay experienced by Poisson sources with the 
delay experienced by (very bursty) web client traffic. 

The rest of the paper is organized as follows. In 
the next section, we present a model for web client 
traffic. The section thereafter describes the simula
tion configuration. We proceed by describing the re
sults of simulating a typical HFC network that serves 
web clients, and end with some concluding remarks. 

A MODEL FOR WEB CLIENT TRAFFIC 

The aim of this section is to informally present a 
stochastic model that describes the traffic generated 
by a web client. Realization of this model resembles 
the actual traffic generated by web clients to such 
an extent that is not possible to distinguish artificial 
traces from actual traces. 

Basically, the model has the following ingredi
ents: 

• The times at which packets are generated by the 
web client. This can equivalently be described 
by means of the interarrival times: the time be
tween successive packets. 

• The size of these packets. 

The model then consists of the probability distri
bution functions that describe the variability of both 
interarrival times and packet sizes, and a description 
of the correlation between these. The familiar Pois
son process is an example of a candidate model and 
substitutes an exponential distribution for the inter
arrival times, a constant distribution for the packet 
sizes, and assumes independence of all quantities. 

However, the Poisson process falls short of our 
goals. Actual web client traffic is much more vari
able than a realization of a Poisson process and arti
ficial traffic can easily be distinguished from actual 
traffic. 
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Figure 1: Histogram of the log interarrival times of suc
cessive page requests in the user process, based on a set of 
traces, selected from the UCB home IP usage study. The 
multi-modality of the histogram reflects the various time 
scales of the user process. 

To understand the deficiencies of the Poisson pro
cess, observe that web client traffic is governed by 
two processes: 

The user-process This is the process as perceived 
by users who are browsing the web. A web 
browser requests a succession of web-pages, 
e.g., by clicking with the mouse. 

The TCP-process This is the actual packet ex-
change that goes on between the web client 
and the web server. After a user requests a 
page, one or several (as when a requested page 
contains several images) TCP connections are 
opened. The web client traffic in each connec
tion consists of an open connection, an informa
tion request, a series of acknowledgements, and 
a close connection. 

Each of these two processes has its own time 
scale, as users typically act much slower than com
puters. Hence, the existence of two time scales 
makes it untrue that just one, uni-modal probability 
distribution function will suffice to describe the time 
between successive events. 

Now this argument can be extended. Again, 
the TCP-level process does not consist of a homo
geneous generation of packets with identically dis
tributed interarrival times. Rather, the traffic at this 
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Figure 2: Histogram of the log interarrival times of suc
cessive packets in the TCP process, based on one trace 
from LBL-TCP-3. The multi-modality of the histogram 
reflects the various time scales of the TCP process. 

level consists of .flights of packets. The time between 
packets in the same flight is largely determined by 
the speed with which a packet is handled by a com
puter; the time between successive flights is deter
mined by the round-trip time of the network. Also, a 
user does not request pages at a constant rate. Rather, 
he will alternate between various states and these 
states can be characterized, e.g., as actively navigat
ing, thinking, and having a break. The time between 
successive page requests will depend on the state the 
user is in. So, in order to describe the interarrival 
time at the user level, one probability distribution 
function is required for each such possible state. 

These states can be argued about theoretically, but 
they can also be observed in measurements: see Fig
ures 1 and 2. They are both based on publicly avail
able data, that can be found at the Internet traffic 
archives [7]. In Figure 1, the histogram of the in
terarrival times for requests of the user process are 
displayed as observed in the UCB home IP usage 
study: a collection of traffic traces that contain in
formation on home IP usage by UC Berkeley stu
dents, faculty and, staff over a period of 18 days in 
Nov. 1996. Clearly, the histogram has several modes. 
Each mode reflects one of the time scales of the user 
process and each mode can be labeled with one of 
the user states. Figure 2 shows the histogram of the 
interarrival times of packets of the TCP process from 
the client to the server, as in LBL-TCP-3: a trace of 
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two hours containing all wide-area TCP traffic be
tween Lawrence Berkeley Laboratory and the rest of 
the world (see [15]). Again, the multimodality makes 
it clear that there are distinct time scales that play a 
role. 

Our model can then be summarized as follows. 
The web client traffic can be characterized by means 
of a succession of states: either user states or con
nection states (within flight or between flights) . The 
interarrival time of the packets depends on this state 
and can be estimated from measurement data by 
means of algorithms such as EM and Baum-Welch 
(e.g., see [11]). The duration of these states can also 
be estimated from these data, and in our model we 
have arrived at the following rules: user states are 
equally probable and form an independent succes
sion. The total duration of the connection state and 
the duration of the between and within flight states 
can be inferred from the length of the file to be trans
ferred, the round trip time of the network, and the 
computer speed. 

Finally we note that the time between flights of 
packets corresponds roughly to the round trip time 
of the connection. This makes the models scalable: 
the round trip time can be shortened (artificially) so 
that faster networks or caching-techniques can be in
vestigated. 

SIMULATION CONFIGURATION 

An HFC network with a single upstream and a sin
gle downstream channel is considered with a trans
mission capacity of approx. 3 and 30 Mbit/s, respec
tively. The downstream capacity is assumed suffi
cient not to form a bottleneck in the system. The 
round-trip delay is set to 2.6 ms., which includes 
transmission, propagation, interleaving, and process
ing delays. The transmission medium is assumed 
error-free. 

Before their transmission upstream, application 
data is segmented into 64-byte data cells with a pay
load of 48 bytes, corresponding to that of an ATM 
cell. The overhead associated to this segmentation 

includes the various headers, but also physical-layer 
overhead. So, at the MAC layer, two immediately 
successive, 64-byte data cells can be considered as if 
they are transmitted back-to-back. 

Access to the upstream channel is organized with 
a request-grant mechanism, whereby requests are 
sent in contention and resulting grants guarantee 
collision-free transmission. For contention resolu
tion, a blocked, ternary tree algorithm is used ([3], 
[16]). Only after a tree has completed, a new tree is 
initiated. 

The size of a request cell is one third the size of 
a data cell, so that the 'size' of each node in a tree 
corresponds to the size of one data cell. 

The upstream transmission time is slotted and 
scheduled on a frame-by-frame basis. The length of 
a frame is 3 ms., corresponding to the transmission 
of at most 18 data cells in 18 slots. In each frame, 
at least a fixed number n of nodes of the tree can 
be scheduled. In case less than n nodes are actually · 
scheduled, the remaining slots can be used for data 
cells. Conversely, if not all 18 - n slots are used for 
data cells, more than n nodes in the tree are sched
uled, if available. 

Applications, that have requested and are still 
awaiting grants, are granted collision-free transmis
sion of data cells in a round-robin, cell-by-cell fash
ion. 

When an application runs out of pending grants, 
i.e., when a request bound is crossed, and additional 
cells have arrived for transmission since its last re
quest, a new request is transmitted. 

As a single web client only produces a moderate 
amount of upstream traffic, i.e., in the order of 1 or 
2 ATM cells per second on average, a bulk Poisson 
source, generating single ATM cells, is used to con
sume the bulk of the upstream bandwidth. The re
maining bandwidth is (partly) consumed by either a 
number of web clients or an equal number of equiv
alent Poisson clients. An equivalent Poisson client 
generates the same amount of ATM cells as a web 
client on average, but with exponentially distributed 
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interarrival times. In this way, pairs of corresponding 
simulations were carried out. 

For the very bursty web clients, however, cell 
rates observed in simulations differ substantially 
from the theoretical mean of 1.76/s: in simulations, 
which typically cover only a few minutes, sample 
mean rates for web clients were found that differed 
by more than a factor of 25. So, in order to ob
tain proper values for the mean rate of the equivalent 
Poisson clients, the total traffic produced by all web 
clients during a simulation was used to calculate the 
mean rate of each of the equivalent Poisson clients 
for the corresponding simulation. 

Table 1 lists the simulation settings. The codes 
We and EP stand for web client and equivalent Pois
son, respectively. The codes low and high stand for 
low and high aggregate load, respectively. Simula
tions We and EP low give a joint data load of ap
prox. 69%, of which 2.7% is jointly generated by the 
web clients and equivalent Poisson clients, respec
tively. In simulations We and EP high, these figures 
are 84.8% and 11.5%. For the low simulations, at 
least one node of the tree can be (and is) scheduled, 
corresponding to a load of 5.6%. For the high sim
ulation, at least two nodes can be scheduled, corre
sponding to a load of 11.1 %. 

nodes/ 
simulation frame 
we low 2::: 1 

EPlow 2:::1 

WChigh 2:::2 

EP high 2:::2 

request 
sources cell rate bound 

1 bulk Poisson 4000/s 150 
100 web clients 1.64/s 15 

1 bulk Poisson 4000/s 150 
100 eq. Poisson 1.64/s 15 

1 bulk Poisson 4400/s 150 
400 web clients 1.72/s 15 

1 bulk Poisson 4400/s 150 
400 eq. Poisson 1.72/s 15 

Table 1: Simulation settings. Note that the web-client cell 
rates are time averages observed in simulations and these 
deviate from the long-term average of 1.76/s. 

RESULTS 

In this section, we present some results obtained in 
a series of simulations. Aim of these simulations is 

twofold. 

• To compare the QoS that web clients receive 
with the QoS received by equivalent Poisson 
clients. 

• To quantitatively offset the number of web 
clients that can be served by an HFe network 
against the QoS that they will receive. 

Figure 3 illustrates time series of individual cell 
transmission delays (eTDs) for the bulk Poisson traf
fic, web client traffic and equivalent Poisson traffic 
relating to the high simulations. 

The figure shows a number of notable differences. 
First, the eTD of the aggregate web-client traffic 
is significantly lower on average. Second, the bulk 
Poisson traffic eTD in We high is lower and less 
variable than in EP high. 

However, what strikes the most is that the dif
ferences are caused by a change in only a relatively 
small portion of the total traffic. 

The large differences in mean eTD are to be con
tributed to the influence of the more bursty behavior 
of the web clients on primarily the contention resolu
tion process. This bursty behaviour generally causes 
successive web-client cells to be generated by a rel
atively small number of web clients as compared to 
the uncorrelated generation of successive cells by the 
equivalent Poisson clients. As a result, fewer web 
clients with larger requests will contend in a single 
tree, causing less delay in getting the requests to the 
scheduler. 

For a more detailed analysis, consider Figures 4 
and 5, which illustrate cumulative distribution func
tions (eDFs) of the various eTD series. Figure 4 
shows this for the bulk Poisson traffic for all simula
tions. Figure 5 only considers the we simulations 
and shows the eDFs of both web-client and bulk 
Poisson traffic. 

First, Figure 4 shows the unsurprising fact that 
cell transmission delay increases with increasing 
load: the eDFs of the low simulations lie to the left 
of the eDFs of the high simulations. Second, it can 
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Figure 3: Time series of cell transmission delays (CTDs) for the high simulations: (a) equivalent Poisson client 
traffic, (b) web-client traffic, (c) bulk Poisson traffic that accompanies equivalent Poisson client traffic, and (d) 
bulk traffic that accompanies web-client traffic. 
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Figure 4: Cumulative distribution functions of the cell 
transmission delay (CTD) experienced by the bulk Pois
son traffic in all simulations. 

Figure 5: Cumulative distribution functions of the cell 
transmission delay (CTD) experienced by both the bulk 
Poisson and web-client traffic in the WC simulations. 
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be observed that the CDFs of the WC simulations lie 
to the left of those of the EP simulations. This indi
cates that transmission delay in case of web-client 
traffic is lower than in the corresponding case of 
equivalent Poisson traffic. Equivalent Poisson clients 
generate requests of size 1 in general, whereas web 
clients tend to generate larger requests, making the 
contention process more efficient. 

Figure 5 compares the delay experienced by web 
clients and the bulk Poisson traffic. It shows that 
bulk Poisson traffic experiences less delay in the low 
simulation, but more delay in the high simulation 
than the accompanying web-client traffic. The dif
ference in the low simulation is caused by the con
tention process: web clients will generally have to 
contend with the bulk Poisson source during the con
tention process, whereas the latter will often be the 
only contender. The difference in the high simulation 
is caused by the build-up of the queue for the bulk 
Poisson source. Similar behaviour was observed in 
the EP simulations. 

To this comparison of the delays experienced by 
the various sources, we should add, however, that 
they also depend on the scheduler in use. In the cur
rent simulations, we have used a simple round-robin 
scheduler. Using fair schedulers, such as weighted 
fair queuing (see [4] or [13]) or weighted round
robin (see [9]), may significantly alter the results. 

CONCLUSIONS 

In this paper, we have illustrated the importance of 
accurate traffic modeling for HFC networks. Using 
Poisson processes only to describe traffic does not 
give a clear picture of HFC network performance. 
There is a clear need for application-specific traffic 
models for an accurate prediction of QoS versus load 
in service scenario studies. Most notable in this con
text is the need to also consider short-range depen
dencies in traffic, as well as single sources, as they 
significantly influence the contention-resolution pro
cess in HFC networks. 
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