
MULTIPLE APPLICATION CO-ORDINATION AND
DEMAND-BASED APPLICATION RETRIEVAL VIA INBAND FOR SET-TOPS

Abhijit Chatterjee and Navneeth Kannan
General Instrument Corporation

Abstract
The advanced set-top terminals of

today are characterized by extensive
software content. They provide a
multitude of features to the subscriber at
home via a variety of applications. The
demand for new and enhanced
applications is growing as cable
operators and subscribers are
discovering new facets of usability of the
Set-top terminal. Smooth co-ordination
between applications and the need to
have more applications than a cost-
effective memory model can support are
two problems that face set-top software
designers.

This paper describes one
implementation of an Application
Manager based on user-input to solve
the first problem and a Demand-based
application retrieval system to solve the
second problem.

The Application Manager and
Transient Application Server have
turned out to be successful tools around
which many applications have been built
in the product-line of Advanced Network
Systems group in GI.

PART-1: APPLICATION
MANAGEMENT IN SET-TOPS

Software Architecture

The advanced set-top terminal of
today is characterized by extensive

software content. A real time operating
system is at the heart of many of the
advanced set-tops. The use of a real-time
operating system allows flexibility to
add applications and at the same time to
be capable of addressing any real-time
communication needs for a set-top. In a
set-top, typically, there are drivers and
servers for providing various platform
services. Applications are the clients of
these services. This view of the
architecture is presented in Fig.1

Real Time Operating System

Device Drivers and Shared Libraries

Platform Servers

Application Application

Fig.1 Traditional Embedded
Software Architecture

The above traditional embedded
architecture is acceptable only as long as
all the applications are written by the
same vendor and the applications all
have a smooth, predetermined way of
transferring control from one to another.

In a typical advanced set-top
system, there are different applications
provided by potentially different groups.
There are also applications written by
Independent Software Vendors (ISVs)
on the advertised, open platform.

The problem then faced by different
application writers immediately becomes
one of “Acquisition and Transfer of
Control”. How is an application
supposed to take control, and when and
to which other application is it supposed
to relinquish control, if it chooses to, are
questions that need to be answered.

We can try to make an analogy to
the Personal computer world and suggest
a solution similar to the Program
Manager of the Windows paradigm.

However, the advanced set-top
terminal is still characterized by the need
to drive down the cost to the cable
operator. This often translates to a
limited amount of memory that is made
available in the terminal. With stringent
memory constraints, it is difficult to
suggest a solution based on complex
Operating Systems. Using a traditional
real-time kernel is the best way for
reducing the memory requirements.

Token based approach for
Application Management

In this paper, we propose a unique
way of application management using
the concept of tokens.

Tokens and Token Management:

The term token is used to represent
the unit of communication exchange
between applications. The Token based
Application Manager (also called the
Token Manager) passes tokens amongst
applications. The Manager receives all
the keys from the remote control, and
passes them as tokens to the current
active application. Any unprocessed
tokens from that application are also

obtained and passed to other applications
that may need them.

In the set-top scenario, the IR
(InfraRed) Remote Control and the Front
panel keys on the terminal are the
standard devices using which a user
interacts with the set-top to invoke
applications.

The approach presented here for
application management takes into
account the essential nature of
applications characterized below:
1. An application that is active usually

controls the standard devices for user
interaction (the remote control and
front panel keys for input and On
Screen Display (OSD) for output).

2. Applications are typically invoked
upon a special key or because of a
specific user selection from a
displayed menu.

3. Applications handle a set of keys;
interpreting some of them for
specific actions; dropping other keys
that they don’t know how to handle.

4. Applications exit upon some specific
user action, whereupon they are not
expected to handle any more keys.

Receiving Application:

We define the Receiving
Application as an application that is
currently active (or in-focus). The
Receiving Application is the one that
receives all the tokens from the
Application Manager.

Token Registration:

Applications that need to participate
in this process register with the
Application Manager. As a part of the
registration, an application would
specify the token upon which it would
like to become the “in-focus”

application. This could be either a direct
key or a token generated by a menu
program. A direct key is a key on the
remote control (like the GUIDE key
invoking the electronic program guide)
directly invokes an application. While
registering, the application specifies
whether it wants to see the token before
the current in-focus application or after
the current in-focus application has had a
chance to look at it.

Default Application:

The Application Manager needs a
‘default application’ to send those tokens
that have not been registered as input
tokens by any other application.
Typically, in a set-top scenario, the
application that is active when the
viewer is watching TV is the default
application (which handles channel
surfing, volume control and power-on
off conditions)

Fig.2: Data Flows amongst Applications and the Application (Token) Manager

Application Management:

The following are the main aspects
of the Token based Application
Manager.
• Key Forwarding
• Application Flow Control
• Hyper Token Generation
• Application Switching

Key Forwarding

The Application Manager receives
all the keys from the hardware. A
predefined map establishes the
relationship between a key and a token.
A menu key pressed on the remote
control and a menu key pressed from the
front panel of the set-top both map to the
same essential token (while retaining

Token Manager

Client
Application 1

Client
Application 2

IR Receiver
and Driver

IR (Remote
Control) Keys

Registration

Tokens

Unprocessed
Tokens

Registration

Unprocessed
Tokens

Tokens

source information which may be
relevant to the application). Usually, it
is the in-focus application, termed the
Receiving Application that receives all
the tokens.

Application Flow Control:

Flow Control consists of metering
out tokens to the applications at the rate
at which the applications process the
tokens. This ensures that applications
don’t have to worry about handing over
any buffered tokens after their decision
to relinquish control. There is just a
single buffer for user input and it is
maintained by the Application Manager.

Hyper Token Generation:

Sometimes, the user presses a
remote control key and keeps it pressed,
expecting the same action to be taken
multiple times. This is common in
channel surfing, browsing through an
electronic program guide etc. The
Application Manager handles multiple
repeat sequences from the key, and
directs additional key tokens to the
application at a regular interval that can
be configured. Applications may choose
to turn this feature off, if they cannot
handle the held-down key.

Application Switching:

When the Application Manager gets
a key, it examines the registry to see if
there was any application that had
registered for looking at this token
before the current in-focus application
has had a chance to do so. If it finds one,
then it is time for doing an application
switch. The current in-focus application
is informed that it is no more the in-
focus application. It is the responsibility
of the in-focus application to give up any
substantial or relevant resource (like the

On Screen Display, etc.), clear up the
display and inform the Application
Manager that he is done winding up. The
Application Manager then invokes the
new application by sending a message to
it indicating that it has indeed become
the new in-focus application.

More often than not, applications
register for a specific token, but do allow
the current in-focus application to look
at it before processing it. This allows
two applications to process the same
key, and interpret it differently.

Consider the following example of
two applications in the set-top. First, an
EPG (Electronic Program Guide) which
is activated by the GUIDE token. The
other application is the one that handles
the Digital Audio features, and also
incorporates an electronic guide for the
Digital Audio Music Channels. When
the Digital Audio Application is the one
that is being used by the subscriber,
pressing the GUIDE key should present
the Music Channel Guide (as opposed to
the Video Program guide).

This is accomplished by the two
applications by following simple rules.
The following sequence of events
describes briefly as to how this works.
1. The Electronic Program Guide

registers with the Application
Manager for the ‘GUIDE’ key. (It
also specifies Post Processing,
which would allow the current in-
focus application to look at the key
before sending it back to the
Application Manager)

2. The Digital Audio Application
registers with the Application
Manager for the ‘MUSIC’ key.

3. The Tuning Application registers
with the Application Manager as the
default application.

Scenario 1:

When there is no user interaction,
the Tuning Application is the one that is
active and is the ‘Receiving
Application’.
1. The User presses the ‘GUIDE’ key.

Now, since he is in a mode viewing
TV, the expected EPG is the Video
Channel EPG.

2. The Tuning Application receives the
GUIDE key, and realizing that it
does not know how to interpret it,
passes it back to the Application
Manager.

3. The Application Manager examines
the registry to see who has registered
to post-process the GUIDE key,
finds the EPG application and
forwards the key to it, also making it
the in-focus application.

4. The Application Manager also
informs the Tuning Application that
it should clear up.

5. The Tuning Application clears up,
and the EPG application takes
Control.

Scenario 2:

1. The User Presses the Music Key,
while watching the EPG application.

2. The EPG application does not handle
the MUSIC key, and therefore hands
it back to the Application Manager.

3. The Digital Audio Application takes
over control.

4. User Presses the GUIDE key now.
Application Manager gives it to the
in-focus application (which is the
Digital Audio Application)

5. The Digital Audio Application
(unlike the Tuning Application)

knows how to handle this key, and
puts up the Music Channel Guide.

In some cases, the current
application may relinquish control
because of user action (like pressing the
EXIT key). In this case, the current in-
focus application, upon receiving the
EXIT token, relinquishes control by
itself, and responds back to the
Application Manager to indicate that it
not only processed the token, but also
wishes to relinquish control.

In certain conditions, asynchronous
events could necessitate switching of
‘in-focus’ status between applications.
The following sequence serves as an
example of this scenario:
1. The viewer sets up a VCR timer to

record an event occurring in the near
future and goes back to watching
video.

2. A few seconds before the clock
reaches the start time of the chosen
event, the viewer presses GUIDE
key to bring up the Electronic
Program Guide and starts surfing
through it.

3. The VCR timer indicates that it is
time to start recording. The ‘Record
a Program’ application informs the
Application Manager that it has to
become the ‘in-focus’ application
right now.

4. The Application Manager informs
the EPG application that it has to
relinquish control due to an external
stimulus.

5. The EPG application clears up and
informs Application Manager
likewise which then makes the
‘Record a Program’ application the
in-focus one.

6. The recording of the event is started.

Conclusion:

In our experience, the concept and
use of the token-based application
management scheme greatly enhanced
the ability of independent application
development groups (both within the
organization and the Independent
Software vendors) to work in unison.
The problems associated with integration
of multiple applications especially with
respect to their smooth co-existence
were minimal.

We also have been able to utilize the
principles of application management
and coordination that we learnt and
applied them to more difficult problems
like the one described in Part-II of this
paper.

PART-II: DEMAND-BASED
APPLICATION RETRIEVAL
VIA INBAND FOR SET-TOPS

Currently the software for the set-
tops is stored either in ROM or
programmable Flash memory. The size
of the storage area is limited in Set-top
terminals and cannot be upgraded easily
as demand for newer applications grow.
Hence alternate ways for making the
Set-top terminal capable of executing
multiple applications within the
ROM/Flash size constraints had to be
identified. The goal was to maximize the
usage of the limited storage space and
create a notion of a larger ‘virtual’
executable space. Demand-based
Transient Application Retrieval via
Inband was designed to meet this
requirement.

Overview of Demand-based
Transient Application Retrieval

The various applications that are
invoked and executed by subscribers can
be categorized based on the frequency of
usage and expected response time. If an
application is not a frequently chosen
one or if it does not impose any
restriction on the response from the set-
top terminal, it is a candidate for
demand-based retrieval. Some examples
of such applications are Set-top
configuration, Favorite Channel setup,
Parental Control Password setup etc.
These applications can be classified as
‘transient’ and need not be stored in the
ROM/Flash. They could potentially free
up some more of the limited storage
space for applications that are called
upon more frequently or demand faster
responses. The ‘transient’ applications
are loaded into the set-top only when
demanded and they relinquish all
resources once the execution is
completed. Essentially, they don’t
occupy precious storage space
permanently.

Instead, the executable code for the
‘transient’ applications is continually
broadcast on one or more dedicated
inband channels and the set-top will be
able to pick up the code for the particular
application in demand and store it in
dynamic memory for subsequent
execution. Thus, the set-top uses the
inband channel as a secondary storage
medium. In order to improve the cycle
time of the inband carousel, the
executable code for the ‘transient’
applications can be transmitted in a
compressed form. In such a case, the set-
top inflates the code before execution.
Since this process of code acquisition
and conditional decompression causes

additional latency, a ‘transient’
application should be chosen selectively.

The set-top has a Transient
Application Server that controls the
acquisition and execution of all
‘transient’ applications. During the
start-up sequence of the terminal, the
Transient Application Server acts as a
‘proxy’ for all ‘transient’ applications
and takes care of registration with
Application Manager.

The Server reserves a portion of the
dynamic memory as the execution space
for transient applications. The size of
this dedicated area (called TRansient
Application Code Execution area or
TRACE) is determined based on size of
the largest ‘transient’ application defined
for the system. This size also acts as a
guideline for determining future
candidates for ‘transient’ label as well as
in the design of future transient
applications. Based on the dynamic
memory configuration of the terminal,
space could be reserved for more than
one transient application thereby
improving throughput.

When the subscriber selects to run
any ‘transient’ application (by user menu
selection or otherwise), the Application

Manager switches the ‘in-focus’
application status to the chosen transient
application and sends a special API
message to inform it of the new status.

The Transient Application Server
intercepts the API message and
examines its contents to find the target
‘transient’ application name. Thereafter
it examines the TRACE area to ascertain
if the application is already available. If
so, the application starts executing
immediately. Otherwise, the Server off-
tunes the terminal to the appropriate
inband channel and starts acquiring the
executable code for the application.
Upon completion of acquisition, control
is transferred to the ‘transient’
application for execution.

The transient application continues
to execute till the user action requires
another application to be invoked. After
the Application Manager switches the
‘in-focus’ status to the new application,
the Transient Application Server
instructs the transient application to
relinquish all resources.

Transient
Application

Server

Transient
Application

Transient
Application
Database

Platform
Servers

Transient
Application

Execution area

Inband
Carousel

Token Manager

Application Regis-
tration Request

Application Reg-
istration Info

API Requests/R-
esponses

Platform API
Requests/Responses

Application
Code Segments

Transient Appl-
ication Code

Tokens

Token
Registration

Tokens

Fig 3: Data flow among Transient Application Server, applications and Inband carousel.

Transient Application
Management

The primary aspects of interaction
between ‘transient’ applications and the
Transient Application Server are as
follows:
• Registration with the Server
• API Message handling
• Transfer of Control
• Management of TRACE area

Registration with Server

All the ‘transient’ applications
defined for the system have a small
proxy agent defined in the software
resident on the set-top terminal’s
ROM/Flash. During system start-up,
these agents provide registration
information to the Server regarding the
associated application:
• application name
• ‘compressed’ vs ‘uncompressed’

status

• dynamic memory requirements
• Execution space requirements
• Inband Channel information

The Transient Application Server
saves the registration information for all
applications in the Transient Application
Database. It also allocates DRAM for
run-time requirements at this time so that
the transient application is not starved
for DRAM when it is loaded off the
inband channel for execution.

API Message Handling

The Transient Application Server
handles the API interface with the
Platform Servers on behalf of the
applications. In order to send an API
request, the application uses a set of
library functions provided by the Server
that identifies the requesting application
uniquely. The Manager receives all API
responses and forwards them to the
appropriate application based on unique
routing information embedded in the
response.

Transfer of Control

Based on user actions, when
Application Manager decides to switch
the ‘in-focus’ status to a transient
application, it sends the special ‘start-up’
token meant for the application. The
Transient Application Server intercepts
the message and performs the following
steps:
1. First, it examines the message

contents to find the target ‘transient’
application name and looks up the
Registration Database to locate the
record for the application.

2. Thereafter it examines the TRACE
area to ascertain if the application is
already available. If so, the ‘start-up’
token is forwarded to the application
and it starts executing immediately.

3. Otherwise, the Server off-tunes the
terminal to the appropriate inband
channel and starts acquiring the
executable code for the application.

4. Upon completion of acquisition, the
‘start-up’ token is transferred to the
‘transient’ application for execution.

Similarly, when the transient
application is ready to relinquish control
in response to some user action, it sends
a special ‘exit’ token to the Application
Manager via the Server. The Application
Manager switches the ‘in-focus’ status
and sends a notification to the erstwhile
active transient application too. The
Server intercepts this message and
instructs the transient application to
release all system resources acquired
during execution.

Management of TRACE area

Based on the dynamic memory
configuration of the set-top terminal, the
Transient Application Server may
reserve a larger area for storage and
execution purposes of more than one

transient application. This improves the
throughput of the terminal since inband
acquisition may not be required for all
‘transient’ application accesses. The
TRACE area is managed based on a
Least-Recently-Used criterion. For each
application currently resident in this
area, the Server maintains information
about its size and the time at which the
application was loaded.

When need arises to accommodate a
new transient application in the TRACE
area, the Server compares the application
executable space requirements with the
available free space. If enough space is
available, the portion of TRACE area is
marked for the new application and
inband acquisition begins. On the other
hand, if the free space is not enough, the
Server looks for application(s) that has
not been used recently and is of adequate
size to accommodate the new
application. The storage space allotted to
this application(s) is acquired, gets
marked for the new application and
inband acquisition begins.

Conclusion

In our opinion, the concept of
Demand-based Transient Application
Retrieval will enhance the capabilities of
the advanced set-top terminals
immensely. If applications are
categorized appropriately, this
implementation will allow the set-top to
execute multiple applications within the
constraints of a limited storage space
without impacting the performance. It
will provide cable operators with a
mechanism to add on new features
without enhancing the hardware
configuration of the terminals.

Author Information:

Abhijit Chatterjee
Staff Engineer
Advanced Network Systems,
General Instrument,
2200, Byberry Road,
Hatboro, PA, 19040
(215-957-6749)

Abhijit Chatterjee has been in the
software engineering field for 15 years
and has been with the Embedded
Software Engineering group of GI for
nearly 4 years. He got is BSEE from IIT
Kharagpur, India.

Navneeth Kannan
Senior Staff Engineer
Advanced Network Systems,
General Instrument,
2200, Byberry Road,
Hatboro, PA, 19040
(215-957-8391)

Navneeth Kannan has been in the
software engineering field for 15 years
and has been with the Embedded
Software Group of GI for the past nearly
5 years. He got his BSEE from Madras
University and MSCS from IIT Kanpur
India.

