
Downloadable Firmware in Advanced Settop Terminals 

Samuel Reichgott 

General Instrument, Advanced Network Systems 

Abstract 

There are many reasons why both cable systems 
and equipment suppliers benefit from 
downloadable settop terminals, but there are 
many decisions to be made in developing a 
downloadable settop system. Downloadability 
can take place at several levels of complexity. 
A downloadable firmware system should be 
designed for open development. While settops 
should accept firmware incrementally, this 
poses a challenge to the system controller and 
its operator. There are new considerations for 
reliability, separate from those of classical 
communications. The design should also cover 
the use of inband video channels for 
downloaded firmware, and be mindful of 
various consumer acceptance issues. 

BENEFITS OF A DOWNLOADABLE 
SETTOP SYSTEM 

Both cable system operators and equipment 
suppliers have strong motivations for deploying 
downloadable settops. Some ofthese 
motivations are identical, or are at least two 
sides of the same coin. Other reasons driving 
downloadability reflect the differences in their 
business priorities. Still, both cable systems 
and equipment suppliers stand to benefit from 
the deployment of these new settops. 

For the Cable System Operator 

Brand Identity Whether at the level of a logo 
or trademark, menu text, or entire applications, 
systems can use downloadability to distinguish 
themselves from their competition. This is 

1997 NCTA Technical Papers -16-

especially important when neighboring or 
overlapping systems use similar equipment. 

Revenue Generation Downloadability 
provides a new opportunities for tiered or 
individual subscription services. Data for 
downloaded applications, or entire applications, 
could be downloaded on a pay-per-use basis. 

Low Cost Upgrades When equipment 
suppliers and third-party developers, or 
Independent Software Vendors (ISVs), improve 
or develop new applications, a downloadable 
settop allows a system to distribute these 
upgrades to their customers without sending an 
installer or requiring customers to return 
settops for upgrade. 

For the Equipment Supplier 

Speed to Market Previously, a settop's 
firmware had to be complete, in its entirety, 
before a single settop could be shipped. Now, a 
reliable platform and basic settop functions are 
all that are required to field a downloadable 
settop. Additional features are added as they are 
developed, while the basic features are already 
being sold. 

Reduction of Risk Regardless of the number 
of"focus groups" used to help define a product, 
there are always customers, marketing, and 
engineering personnel thinking of 
improvements. With a downloadable system, 
equipment suppliers can produce a product 
embodying their best attempts to satisfy 
customer requirements, knowing that they can 
still download the "final version." Needless to 
say, this is also a valuable tool when it comes 
to fixing "bugs." 



Inventory Consolidation Instead of producing 
different ROMs for different markets, the 
equipment supplier can really keep its software 
soft. No matter what the mix of applications, 
all similar hardware platforms can have the 
same ROM and defer the differences to 
download time. 

Flexibility It's this very concept that 
differentiated the early PCs from 
word-processors. While both had about the 
same computing power, the PC won the 
market, even among single-application users, 
because of its ability to change. Customers are 
naturally attracted to the product that promises 
a hedge against obsolescence. 

LEVELS OF DOWNLOADABILITY 

Settop downloadability is not an aU-or-nothing 
proposition. Downloadability can take place at 
several levels, each with its own concerns and 
complexities. Equipment suppliers need to 
examine their market requirements and 
determine which levels of downloadability to 
include in their product. These levels may be 
described as follows: 

Text Level This is the simplest level of 
downloadability. No executable firmware 
changes, and downloaded text (or graphics) 
replaces default text (or graphics) in existing 
applications. At this level of downloadability, 
one can change fonts and logos, customize 
menus by renaming standard features, display 
station call letters, or do basic foreign language 
text substitution. Text Level downloading is a 
simple, yet powerful, way to provide a 
customizable user interface. 

Data Level As in Text Level downloading, the 
executable firmware in the settop does not 
change. Data Level downloading is 
distinguished from the simpler Text Level by 
its ability to present a variety of data to the 
consumer. This level of downloadability has 
been available for several years in on-screen 

messaging and downloadable barker 
applications. More sophisticated uses of Data 
Level downloading are in today' s on-screen 
program guides, which include database search 
and sort capabilities, timers for future tuning 
and (where supported by the cable system), 
future purchasing and recording. 

Interactive Data Level This is similar to the 
Data Level, except that at the Interactive Data 
Level the consumer can exercise control over 
the data that is downloaded. This level of 
downloading is typified by the various 
browsing applications that are beginning to 
appear. It will continue to gain popularity as 
the internet becomes accessible from more 
settop terminals. Another current example of 
Interactive Data downloading is the Infra-Red 
Blaster application, in users select their VCR 
manufacturer and model, and the settop loads 
the appropriate data to control its built-in IR 
Blaster. Note that two-way interactivity is not 
strictly required for a system to operate at the 
Interactive Data Level; as long as users can 
control which one-way data is loaded, the 
requirements for this level are met. Without 
two-way interactivity, the user must select from 
a limited number of pre-programmed data 
streams. As true two-way interactivity is added 
to the system, consumers may select more 
precisely the data that enters their households. 

Application Firmware Level This is the first 
level at which executable firmware is changed. 
Application Firmware Level downloading is 
the most powerful tool available to achieve the 
cable system operator's goal of brand 
identification. The entire look-and-feel of the 
settop can be changed, but that is the extent of 
the change allowed. Downloaded application 
firmware satisfied with the settop platform's 
fixed capabilities. 

Platform Firmware Level Settops that are 
downloadable at the Platform Firmware Level 
can actually change the services available to 
application firmware. New device drivers or 

1997 NCTA Technical Papers -17-



other platform services can be loaded to 
enhance communication capabilities on existing 
hardware. Depending on how much of the 
platform is downloadable, part or all of the 
Application Programmer's Interface (API) can 
be modified. Downloadability at the Platform 
Firmware Level is essential to meeting the 
equipment supplier's speed-to-market goal 
because it allows a generalized hardware 
platform to be fielded before the details of its 
use have been fully realized. 

The remainder of this paper discusses the issues 
associated with Application and Platform 
Firmware Level downloading. While Text, 
Data, and Interactive Data Level downloading 
are powerful tools with their own interesting 
concerns, these are becoming commonplace in 
the industry. The ability to download and 
change executable firmware in a settop requires 
unique solutions to business and technical 
questions that warrant their own discussion. 

OPEN OR CLOSED SYSTEM? 

The decision to offer an open platform for 
downloading firmware is equally a business 
and an engineering issue. Entirely new 
business problems arise, such as with whom to 
team, how to market ISV applications, how to 
organize for ISV technical support, and how 
much proprietary information to share. These 
issues have long been understood in the 
personal computer arena, but are novel in the 
cable settop market. In addition to the 
development required by cable operators, the 
computer-savvy ISVs require still more 
development to match their visions of advanced 
user interfaces and interactivity. Many would 
argue that these are good problems to have but 
they are, nevertheless, serious challenges to a 
business organization built on the traditional 
cable industry model. Still, it is difficult to 
argue with the decision to provide an open 
platform, given the advantage of hindsight in 

1997 NCTA Technical Papers -18-

the example of the PC software industry in the 
1980s. 

Given the business decision to be open, it is the 
engineering department's job to respond. Here 
are a few of the areas that must be addressed 
when making the leap from proprietary to open 
development. 

The API ISV applications need an interface to 
the settop platform. The APis should be 
provided and documented by the settop 
manufacturer's firmware development team. 
Minimally, the API hides the settop's hardware 
details, making it easier for ISV s to write their 
applications; but this isn't its only benefit. 
Even if the API is only a firmware-to-hardware 
interface, it reduces code size and improves 
reliability because th.is interface appears only 
once, and may be thoroughly tested. 

While absolutely necessary, a hardware 
interface API is probably insufficient. 
Higher-level features should also be provided 
by the API, with the same benefits of reuse and 
reliability. Higher level API functions for 
cable settops might include password 
maintenance, favorite channel lists, parental 
controls, downstream data access and upstream 
data transmission facilities, purchasing, 
program guide database access, and a host of 
other features. The biggest challenge, aside 
from the implementation of these features, is to 
create a rich enough set of APis to satisfy 
applications that will be written in the future. 

The Kernel Old-fashioned proprietary code 
development was often based on the 
"super-loop" program architecture. A single 
thread of control would handle each settop 
operation, one at a time, then start over again at 
the top of the loop and repeat forever. This 
was fine for the closed system with at most a 
simple menu interface; it was easy to get 
everything done in time. But the super-loop is 
clearly inappropriate in an open system, where 
the different operations are variable and 
unknown when the platform is created. 



What is called for is a small operating system; 
and a multitasking kernel is a good choice. A 
multitasking kernel allows different jobs (called 
tasks) to be dynamically created as required. It 
orchestrates the concurrent operation of all 
tasks in the settop. Multitasking lets the 
processing of secure subscription information 
(program guide data collection, etc.) take place 
at the same time as downloaded applications 
monitor the remote control and run the 
on-screen display. Each of these tasks can be 
developed independently, with little or no 
concern for the details of the other tasks in the 
settop(provided a well documented API is 
available). 

Many off-the-shelf kernels are commercially 
available, or a custom kernel may be 
developed. When considering the buy-or-build 
option, the firmware manager has to ask several 
important questions: What kinds of debugging 
tools need to be developed? How long will it 
take to develop and test? When these questions 
are seriously examined, the answer should be 
obvious to all but the die-hard do-it-yourselfer: 
Buy, don't build. There are plenty of good 
kernels across the price spectrum. They come 
with kernel-aware debugging tools, which are 
already developed and ready to use. They have 
customer support departments ready to handle 
your startup problems. Most importantly, 
they're written by people in the kernel 
business, not the cable business. Save your 
development resources for what you do best! 

The Development System The development 
team which creates the settop platform and 
"native" applications needs tools to do the job. 
Some of these tools will be purchased, some 
will be developed by the firmware team itself. 
Even the purchased tools will have to be 
adapted to use the settop as a target system. It 
stands to reason that ISVs will need the same 
kinds of tools. If it is not in their culture to 
begin with, the team will have to learn how to 
package the work they do, creating their 
toolbench for outside use. This might seem 

like extra work at first, but it's actually worth 
the effort because the resulting documentation 
becomes a lasting reference, which might 
otherwise not exist. 

MONOLITHIC OR INCREMENTAL 
DOWNLOADING? 

When developing a system for downloading 
firmware, a fundamental question arises. 
Should the firmware be loaded in a single, 
monolithic, chunk or in small, incremental, 
pieces? The answer to this question affects the 
rest of the design of both the settop loader 
firmware and the system controller's 
downloading software. 

Fortunately, it is possible to make the 
monolithic-versus-incremental decision 
separately for the settop and the controller. If 
the settop is designed for the more general, 
incremental loading, the controller can still 
download all the firmware monolithically. As 
explained later, this mixed system can have 
both speed-to-market and usability advantages. 

In the settop, incremental downloading 
promises the ability to add features without 
disturbing other executing firmware. New 
kernel tasks can enter the settop, and be started 
by the loader, even while the consumer is busy 
changing channels or browsing the guide. 
Monolithic downloading, on the other hand, 
assumes that the entire set of replaceable 
firmware is loaded at once, leaving the settop 
temporarily unusable or with limited 
capabilities during load time. 

Once the settop is capable of incremental 
loading, this ability can be generalized from 
loading firmware, which is stored in 
non-volatile memory (typically EEPROM), to 
loading software, which is held in volatile 
memory (RAM) for a relatively short time. 
Transient applications can be loaded in RAM, 
executed, and then erased. This capability can 
be used for interactive commercials or 

1997 NCTA Technical Papers -19-



infrequently used diagnostics. It can also be a 
means of cost reduction. Since code is only 
held in the settop when it is needed, total 
memory requirements may be minimized. 

FIRMWARE REQUIREMENTS FOR 
INCREMENTAL DOWNLOADING 

When firmware is to be incrementally loaded, it 
is best to assume it can be loaded in any order. 
While this is easily said, it represents a 
significant challenge when designing the 
firmware loader and the downloadable 
firmware itself. 

Relocatable versus Position-Independent 

Loading firmware in any order implies that the 
location in memory where the firmware will 
reside is unknown when the code is developed. 
This is true of both the code space, probably in 
EEPROM, and the data space in RAM. The 
goal is then to get the code into the settop and 
allow it to use the platform services without 
knowing where it will actually land. 

There are two ways to achieve this goal. The 
code can be "relocatable," or 
"position-independent." Relocatable code is, 
essentially, incomplete. It carries with it 
references to other code and data that it 
requires to do its job, but these references are 
called "unresolved" and are maintained in a 
symbolic form. In traditional firmware. 
development, relocatable code modules are 
linked together at development time and given 
absolute memory addresses in order to resolve 
all unresolved references. In a downloadable 
system, the linking must occur in the target (the 
settop) because that's where the other required 
pieces already exist. The settop's loader must 
maintain all symbols, and their resolving 
addresses, in memory in case another module is 
loaded and requires some existing information 
or function. 

1997 NCTA Technical Papers -20-

Position-independent code, unlike relocatable 
code, has no unresolved references. Instead, it 
accesses its own code and data through 
references relative to values held in the 
microprocessor's address registers. For 
example, the code may find a particular 
variable "at the address that is 10 bytes away 
from the address stored in the AS register." 
Position-independent code, therefore, need not 
carry symbolic references to its own code or 
data because the address register values are 
established after the code and its data have been 
located in memory. The resulting size of the 
downloadable file is significantly smaller than 
the same file in relocatable format. This is 
important in conserving both downstream 
bandwidth and settop memory. However, it 
does not solve all the problems. There still 
must be a way for the downloaded module to 
access the functions of other code already 
existing in the settop, including the kernel. 
This is the job of the trap libraries, which are 
explained later. 

The decision to go relocatable or 
position-independent is a trade-off between 
flexibility and cost. With reiocatabie code all 

' 
relevant symbols are available to all code on an 
as-needed basis. There is much less need for 
foresight, because a developer can count on the 
availability of any function or data to already 
be in the settop. However, the cost (in terms of 
downstream bandwidth and memory) to 
transport and store all the symbols can be 
enormous. Conversely, position-independent 
code is very efficient; only the executable code, 
in its binary form, needs to be downloaded and 
stored. Great foresight must be used to provide 
the trap libraries (or other mechanism) required 
to access all the functions that are already 
present. If essential functions aren't given the 
proper visibility, some efficiency and reliability 
may be lost in having to download the same 
function more than once. This is the same kind 
of foresight required when developing the 
settop's API. Luckily, if the API requirements 



analysis is truly complete, the trap library 
requirements should be well understood. 

Trap Libraries 

A "trap" is a mechanism by which a code 
module ceases executing in its own code space, 
forces the processor to execute code in another 
module's code space, and then returns to 
resume execution at the point of the trap call. 
Most commercially available kernels provide a 
trap library to access kernel functions. Settop 
platform developers need to create their own 
trap libraries in order to provide access to their 
API. There are other alternatives, but a trap 
library is a very code-efficient means of 
providing an API interface when using 
position-independent downloading. 

MIGRATION TOWARD AN 
INCREMENTAL DOWNLOAD SYSTEM 

If the settop platform supports incremental 
downloading, the cable system controller can 
still download monolithic code releases. From 
the controller's point ofview, it transmits a 
single file to its terminals. From the settop's 
point of view, this single file actually consists 
of separate pieces of the settop firmware. This 
approach significantly simplifies the 
controller's development while leaving 
flexibility for the future. 

One of the concerns for the controller is to 
track which firmware is loaded in each 
subscriber's settop. As an example ofwhy 
firmware tracking is necessary, consider the 
fixed capacity of each settop's downloadable 
memory. It would be an error to try to 
download more code than the settop could hold 
and expect all the features to function. Unless 
the controller keeps track of all separately 
loaded modules in each settop, such errors 
cannot be avoided. It's relatively easy to group 
settops with identical hardware capabilities 
together and download the same firmware to all 
of them. It's a much more complex tracking 

problem if each settop can be sent different 
firmware. It also stands to reason that a 
monolithic download environment presents a 
simpler user interface to the controller's 
operator. 

Still, a need for greater variety among tiered 
feature sets may call for incremental 
downloading. Given the limited memory 
capacity of each terminal, it is impossible to 
load all features and enable them in tiers. 
Different subscribers may someday require 
different firmware mixes, as the number of 
available applications increases. Eventually, 
the industry will have to respond by solving the 
associated database and user interface issues. 

PROVIDING A RELIABLE DOWNLOAD 
ENVIRONMENT 

For professionals in the communications 
industry, it is unnecessary to restate the need 
for a "clean" distribution plant, appropriate data 
packetizing, and data error detection/correction. 
These classical problems are well understood 
and don't require further treatment. However, 
there are other reliability issues that must be 
addressed for a firmware download system to 
work in the cable environment. 

No matter how good your plant, no matter how 
good your error correction, there will still be 
data errors. Especially in a one-way cable 
system (an open-loop system) these errors 
could have dire consequences for downloaded 
firmware. The firmware loader in the settop 
has to be intelligent enough to prevent bad code 
from getting loaded. The controller must 
periodically repeat the downstream 
transmission of the firmware so it is guaranteed 
to be eventually received, error-free. 

With the possibility of data errors, there is the 
possibility of parts of the download being 
absent from the settop. There are two ways to 
handle this problem, and both may be necessary 
to guarantee that the settop doesn't "crash." 

1997 NCTA Technical Papers -21-



First, the loader may have to know the 
minimum requirements for system startup. 
Mter firmware is incrementally loaded, the 
loader should determine that a minimum 
functional set of firmware is present before it 
starts executing any of the downloaded code. 
Second, the firmware itself has to be 
fault-tolerant. This means that if any firmware 
that is executing cannot find an essential library 
function, a platform service, or some important 
data, it must come to a graceful halt. Ideally, a 
partially loaded system functions to the fullest 
extent possible. Minimally, it must remain 
intact and eventually complete the download 
and proceed with full capabilities. 

As two-way systems mature, settop firmware 
loaders must likewise mature. The loader 
should take advantage of an upstream channel 
to request missing pieces of the download. It 
should also report loader error conditions for 
diagnostic purposes. 

OUT -OF-BAND VERSUS INBAND 
DOWNLOADING 

Inband data transmission for Data Level and 
Interactive Data Level downloading is already 
the norm. This promises to set a trend for 
Application and Platform Firmware Level 
downloading. In the analog video 
environment, there is enormous bandwidth 
available on video channels (compared with the 
limited bandwidth on a typical out-of-band 
service channel). This is a great motivation for 
designing a system for inband firmware 
downloading. With so many video channels it . ' 
IS possible to put different applications, or tiers 
of firmware, on different channels. However, 
there are system-level and consumer acceptance 
considerations needed in making this design 
decision. 

A major issue is where to find the data. The 
settop's loader must be provided with some 
way to tune the correct channel for the 
firmware it should be loading. A reasonable 

1997 NCTA Technical Papers -22-

approach is to provide just the channel tuning 
information on the service channel and allow 
the loader to find the firmware on an inband 
channel using this information. 

Once the developers solve the problem of 
where to find the firmware, the problem of 
when to load it arises. Consumers simply will 
not understand, or tolerate, a settop that 
suddenly changes the channel just to do a 
firmware upgrade. There's the classical 
argument stating: "Just do it at 2 in the 
morning." Unfortunately, this really doesn't 
cut it with fans of the Late Late Show. A 
creative solution is called for-- one which the 
TV-centric, computer-phobic consumer can 
handle. 

CONSUMERACCEPTANCE ISSUES 

As mentioned before, consumer acceptance 
must be considered in designing a 
downloadable settop. The biggest problems 
stem from the limited memory in a low-cost 
settop. Unless memory is infinite, you'll 
eventually have to erase some of it to make 
room for newer, better firmware. And therein 
lies the problem: Once you erase firmware, the 
settop just won't be fully functional for a while. 

The settop designers need to determine a 
minimal set of functions that will consumers 
happy while their settop firmware is being 
upgraded. Is channel-surfing enough, or does 
the program guide need to stay intact? It comes 
down to a decision ofwhat can be spared until 
the upgrade is complete. These decisions will 
determine how much ROM is required to hold 
the minimum feature set, versus how much 
EEPROM (or other downloadable memory) is 
provided for upgrades. 

Another related problem that must be solved is 
consumer notification. Naturally, people 
accept change better if they know it's coming. 
Depending on how consumers are notified, this 
could be costly for a cable operator. Will the 



consumer read the note at the bottom of the 
monthly statement? Probably not. Is a direct 
mailing the answer? Not for many households 
that simply trash their junk mail. However, if 
the settop is smart enough to download 
firmware, why can't it do the notification? An 
on-screen message application can be used by 
cable operators to inform their customers of a 
pending upgrade. A standard message can be 
addressed to all affected subscribers. It can 
provide plenty of advance notice, stating the 
date and time of the proposed upgrade. In 
addition, an "emergency" message can pop up 
on the screen an hour before the upgrade is 
scheduled to begin. Still, operators will have to 
expect a few phone calls, no matter how hard 
they try. 

Another area of concern is the retention of user 
preferences and other settings through a 
download. Users may be given menu-selectable 
options, for example, a time display or channel 
number display on the front-panel LEDs. If 
such preferences are erased with the firmware, 
even a successful download in the dead of night 
will result in phone calls the next morning. 
The problem gets worse if programmed timers 
for future purchases are lost. This means lost 
revenue to the cable operator, as well as upset 
consumers. Settop designers must be mindful 
to create a separate area of memory to hold 
these preferences and timers so they are not lost 
when the firmware is erased. The time spent to 
properly engineer this issue is well worth the 
effort, because it avoids problems for 
consumers and cable operators alike. 

CONCLUSIONS 

Downloadable settops offer advantages to cable 
system operators and equipment suppliers alike. 
Cable systems gain the advantage of improved 

brand identity, revenue generation, and 
low-cost upgrades. Equipment suppliers 
benefit from speed-to-market, reduced risk in 
deploying new features, inventory 
consolidation, and the ability to market more 
flexible products. 

Downloadability can be realized at several 
levels. Text or data can be downloaded without 
changing the executable code in the settop, or 
the settop can change its feature set by 
downloading new code. Downloading can be 
interactive -- achieving maximum selectability 
in full-featured, two-way cable systems. 

An open system has distinct advantages. Many 
third-party software developers can add 
features to the settop, making the equipment 
more marketable without the expense of 
additional development resources. The 
development team must provide facilities to 
make open development easier, including an 
API and well-documented development tools. 
An open system may also call for a 
multitasking kernel in order to make new code 
easier to plug in. 

Settops can download firmware incrementally 
while the controller migrates from monolithic 
to incremental downloading. This will 
eventually be required as more third-party 
applications become available. 

The vast bandwidth available on video channels 
tempts settop designers to use them for 
downloading firmware. However, system and 
consumer acceptance problems must be solved 
before inband downloading can be 
implemented satisfactorily. 

Finally, the consumer's impressions ofthe 
system must be addressed when designing a 
downloadable firmware system. Resolving 
these questions is an important key to providing 
a successful system. 

1997 NCTA Technical Papers -23-


