
Open Architecture for Multi-Vendor Compatibility 
of Element Management and Status Monitoring 

Kiran Babu 
Design Engineer 

Philips Broadband Networks Inc. 

Abstract 
This paper addresses the software 
architecture for an Element Management 
System which can be developed keeping 
protocol dependency, device specifics and 
management platform dependency 
transparent. The unique aspect of this 
architecture is that it provides the seamless 
integration of any kind of device from any 
manufacturer and any kind of communication 
at the Element Management System. This 
paper provides an Object Oriented Design 
technique of such an Element Management 
System which can be easily migrated to 
Distributed Object Oriented Network 
Management of the future. 

Introduction 
Element management and status monitoring 
products currently offered by manufacturers 
are exclusively for the devices and networks 
developed by those manufacturers. Desirable 
management systems will be flexible enough 
to monitor products from many manufacturers 
with various communications protocols. As 
networks become more complicated, element 
management software based on an open 
architecture makes the most sense. 

History 
Initially, cable monitoring systems merely 
verified that a device was operating. 
Gradually, monitoring systems evolved to 
report on the status of key operating 
parameters. A typical status monitoring 
application had four components for each 
class of device monitored: user interface, 
communication protocol, performance 
analysis, and database storage. 

To monitor the operational status of their 
equipment, manufacturers developed 

proprietary status monitoring applications that 
used unique protocols to communicate with 
each type or class of device. User interfaces, 
performance analysis, and database storage 
components were also unique to each device 
class. Developing specialized status 
monitoring applications was not only time 
consuming, but also resulted in a limited, 
single-manufacturer monitoring system. 

Proprietary communications protocols are the 
major obstacle to developing a flexible system 
that is capable of monitoring the devices of 
various manufacturers. This problem was 
identified not only in the cable industry, but 
also in the data communications and 
telecommunications industries. 

Migration to Better Concepts 
As networks grew in size and capability, 
simple status monitoring evolved into 
hierarchical network management. This 
network management hierarchy, shown in 
Figure 1, has four layers, each with a specific 
function. 

The element management layer accepts 
information from all devices (or elements) in a 
network, translates the information into a form 
understood by all other layers, and passes it 
along to the network management layer. This 
layer consists of a third-party open platform 
running multiple manufacturer-specific 
applications. 

The network management layer manages 
multiple element management layers. 

The service management layer manages the 
services of multiple networks. 

The business management layer manages 
the services layer below it and implements 
business strategies. 

1996 NCT A Technical Papers -325-



Figure 1. 
Network management hierarchy 

has four layers 

To achieve interoperability, the devices need 
to have a standard interface protocol instead 
of proprietary protocols. Specifications have 
been developed for a standard management 
protocol and a standard way of describing the 
management information of the devices. 

Although new device development will be 
based on these standards, legacy devices still 
present the problems of multiple protocols. 
The element management layer plays a critical 
role in solving these problems. Proxy agents 
in the element management layer act as 
translators between the proprietary protocols 
used by the legacy devices and the standard 
management protocols used by the other 
layers in the hierarchy. Once this translation 
has occurred in the element management 
layer, the other layers need not address this 
issue. 

This paper focuses on the element 
management layer, where the protocol 
translation and multi-vendor interoperability 
takes place. The three higher layers are 
generic for any organization and can be 
handled by third-party vendors. 

1996 NCTA Technical Papers -326-

Third-Party Open Platform for 
Element Management 
Applications 
Third-party developers provided an open 
platform with basic features. An element 
management platform is open when any 
number of manufacturers can develop the 
applications specific to their devices under the 
same platform. Basic features include 
creating networks, triggering device-specific 
user interfaces, managing databases, and 
communicating with agents through standard 
protocols. 

To manage a manufacturer's device from this 
open platform, a separate interface called a 
manufacturer's specific application must be 
created. These manufacturer-specific 
applications should be integrated with the 
platform's core software using application 
protocol interfaces and may include such 
things as device-specific user interfaces, 
databases, and performance analyses. This 
integration of software will be transparent to 
the user. 

The following figure shows the relationship 
between the open management platform and 
a manufacturer-specific application. 

Applications Specific to the vendor devices and networl<s 

Figure 2. 
Open platform supports 

manufacturer-specific applications 



Problems and Solutions 
Most third-party open element management 
platforms assume that the manufacturer­
specific applications use the basic features 
provided. This would allow manufacturers to 
concentrate on the portions specific to their 
devices. Most manufacturer-specific 
applications, however, bypass the third-party 
open platform and are developed from scratch 
for the following reasons. 

+ Problem: No open management platform 
in the market supports all of the standard 
and proprietary communications protocols. 
The open management platform may 
provide communication support for one 
standard protocol, but there are many 
standards (for example, SNMP, CMIP, 
CORBA, and TL 1 ) and more being 
developed. 

Solution: This problem can be resolved if 
a third-party platform can be customized to 
handle any communication protocol. 

• Problem: Network map creation is not 
standard, and different management 
applications use different methods. Most of 
the open management platforms support a 
geographical organization of devices; 
however, there is no standard defined in 
this area. 

Solution: It is possible to define standards 
for network map creation common to cable, 
data communication, and 
telecommunication networks. For example, 
headend or central office devices can be 
grouped in racks and shelves and field 
devices can be grouped geographically in 
different regions. 

• Problem: Open management platforms 
provide limited support for device-specific 
user interfaces because information and 
graphical representation of any type of 
device is unique. Although third-party open 
management platforms can provide some 
support for vendors to describe and 
graphically represent their specific devices, 
device-specific user interfaces are often 
created from scratch. 

Solution: Third-party, open platforms can 

be customized to include any device from 
any manufacturer. 

• Problem: Open platforms provide very 
limited support for fault analysis. Once the 
manufacturer-specific application receives a 
fault notification from the device, it performs 
a root cause analysis using device 
dependency information to track the fault. 
The open platform applications do not 
recognize device dependencies. 

Solution: The open platform can be 
customized to include device-dependency 
information. This is possible only if the 
devices are maintained as generic objects 
with dependencies defined for their 
parameters. 

• Problem: Not only do open platforms 
provide limited support for fault analysis 
among products from the same 
manufacturer, but they also cannot track 
faults among products from different 
manufacturers. Each manufacturer-specific 
application is maintained as a separate 
entity in open management platforms. A 
device managed by one application may be 
dependent upon a device managed by 
another application. These dependencies 
must be communicated between 
applications to track trends and resolve 
~u~s. · 

Solution: Open platforms must be 
expanded to keep track of the 
dependencies of the parameters within a 
device, between different device types from 
the same manufacturer, and between 
devices from multiple manufacturers. This 
would allow the open platform to handle 
root cause fault analysis for all · 
manufacturers' devices. 

• Problem: Third-party open platforms have 
limited access to information about the 
devices being managed by manufacturer­
specific applications. Therefore, database 
storage, reporting, trend analysis, and 
trouble ticketing are implemented by the 
manufacturer-specific application. 

Solution: If the device information is 
maintained by the open platform, it is 
possible to have a generic implementation 

1996 NCTA Technical Papers -327-



of reporting, trend analysis, and trouble 
ticketing functions. 

Resolving these problems will lead to an 
element management system that takes 
maximum advantage of the features provided 
by an open platform. The complete element 
management system requires an open 
platform which can be customized to allow 
element management of devices from multiple 
manufacturers. 

An Object-Oriented Solution 
Managing many devices from various 
manufacturers can be accomplished when the 
element management system uses an object­
oriented approach. An object-oriented 
approach uses a generic object created in the 
element management system to represent an 
actual device in the network. The user 
communicates with the object, and the object 
communicates with its counterpart in the 
network to get and receive information. For 
this to occur, the object must know about the 
device it represents, as shown in Figure 3. 

Figure 3. 
The object must know 

about the device it represents 

Each object is identified by its device class or 
type. Then, it is further distinguished from 
others in its class by key parameters. Some 
parameters are static, while others are 

1996 NCTA Technical Papers -328-

dynamic. Dynamic parameters can be 
automatically updated by the application or 
manually updated by the user. 

Thus, to manage a device, an object 
representing the actual device has to be 
created in the element management system. 
Through an interface for each device class, 
the user will interact with the object to 
initialize, update, monitor, detect and analyze 
faults, and analyze trends. 

Initializing Objects 
The user initializes the object by defining the 
device it represents. This definition specifies 
the type of device and values for key 
parameters which uniquely identify the device 
in its class. To do this, the object has to know 
what interface to display and the key 
parameters that require user input. Once the 
object gets enough information from the user 
to identify the actual device it represents, the 
object can communicate with the actual device 
to get values for additional parameters. 

Updating Parameters 
The user may want to change some device 
parameters. To allow such changes, the 
object must know which interface to display 
and which parameter values the user can 
change. The user communicates the changes 
to the object, and the object then 
communicates them to the actual device. 

Monitoring Parameters 
An object must know which parameters to 
monitor and their acceptable ranges. In 
addition, it must know which user interface 
displays the parameter values. Then, the 
object gets the parameter values from the 
actual device and shows them to the user. 

Detecting Faults 
If a parameter value falls outside of the 
acceptable range, the user is notified of a 
critical condition by either the actual device or 
the object. The user defines the acceptable 
range for the object, and the object 
communicates the range to the actual device. 

Objects regularly poll actual devices to verify 
that monitored parameters fall within the 
acceptable range. If an actual device or its 



agent has intelligence to check the 
parameters being monitored, it can detect 
critical conditions and notify the element 
management system directly. 

Analyzing Faults 
In a network, a fault in one device may 
depend on a fault in another device. This may 
be because both devices are on the same 
signal path. For example, an abnormal 
parameter value in device A may depend on 
an abnormal parameter value in device B. 
Similarly, device B may be dependent upon 
device C, and so on. These dependencies 
may be within the parameters of a device, 
within devices of the same class, and even 
within devices from different classes. The list 
of dependencies in a network is called the 
inference engine. Using the object, an 
inference engine can be defined for each 
device in the network . 

Individual objects can be formed into a 
network representing the actual network being 
monitored. If an object has an inference 
engine, it knows the other objects in the 
network on which it depends for a fault. 
Hence, a fault for an object can be analyzed 
and the root cause of the actual device's fault 
can be identified. This method of analyzing 
faults is generic, but the inference engine for 
each device is specific. 

Analyzing Trends 
To analyze trends an object compares its 
performance to a history database of 
parameter values. Each object class can 
have templates defined by the user to support 
trend analysis. These templates can define 
the database storage, report, and real-time 
graphic structures for each device class. 
Trend analysis can be a separate process 
analyzing the performance of devices and 
networks. This process can be totally 
independent of the objects, since it is based 
on information already stored. 

The catch is that the trend analysis process 
learns about the actual devices being 
managed from the database. To do this the 
database storage must be generic, so that 
reporting functions like trend analysis can 
learn about the devices from the database 
itself. This is feasible because objects are 

generic and learn about themselves from 
templates. 

Communicating between Objects 
and Actual Devices 
Communication between the object and the 
actual device it represents is not generic 
because the actual device may use any 
protocol, standard or proprietary. But a 
generic approach can be developed to a 
certain level by using specific protocol 
handlers, also called communication handlers. 

Requests/Respon es/Notificatlons in 
a commo format 

Devices as Application Objects 

Figure 4. 
Specific protocol handlers 

aid in communication between 
objects and actual devices 

A device with a standard protocol maintains 
the device information in a certain format. A 
device with proprietary protocols also 
maintains the device information in a certain 
format. A communication handler for each 
protocol extracts the device information 
structure and maintains it in a common format. 
The communication handlers for proprietary 
protocols should have protocol specifications. 
A common protocol should be defined 
between objects and communication handlers. 

Typical command structures between the 
objects and communication handlers to get or 
set a parameter value in the actual device or 
collect responses and notifications are shown 
below. 

1996 NCT A Technical Papers -329-



<Set/Get><DeviceCiass><Key Parameters to 
Identify Device lnstance><Request Parameter 
ID>[Value] 

<Response/Notification><DeviceCiass><Key 
Parameters to Identify Device 
lnstance><Request Parameter ID><Value> 

Communication handlers will map the 
requests to protocol-specific requests and 
handle the communications for each object. 
Each device class has to be associated with a 
corresponding communication handler. 

The Total Solution 
Adding a new device class to the element 
management system requires that device 
management information, dependencies, user 
interfaces, and communication be customized. 

Templates for a device 

Figure 5. 
Customizing to add a new device class 

Figure 5 shows how to customize using tools 
in the element management system. 

The information definition tool displays 
information about the other device classes, so 
the user can assign dependencies. These 
dependencies will be defined for each class. 
This tool should understand the device 
information specifications written for different 
standard protocols like SNMP, CMIP, CORBA, 
TL 1, and SOL. Device information structures 
defined with proprietary protocols can .be 

1996 NCT A Technical Papers -330-

manually entered by the user or read from files 
with an intermediate standard defined for 
proprietary protocols. This tool can prepare a 
common structure for device definition, which 
describes the device class identification, 
protocol identification, and parameter 
attributes. In addition, the information 
definition tool should identify a specific 
protocol communication handler for a device 
class. 

The user interface definition tool provides the 
user interface screen definitions for each 
device class. With this tool, the user defines 
graphic widgets for each parameter of the 
device class. The object associates 
parameters to these graphic widgets. The user 
interacts with the graphic widgets to monitor 
and update parameter values. User interfaces 
defined for a device class are shared by all 
objects in that class. 

These tools help the user create a template 
for each device class. An object will be 
created from this template whenever the user 
adds a device to the network map. Specifics of 
the device class will be read from this 
template. Implementation of the object for any 
class will be almost generic and can be 
applied to any device from any vendor. In 
addition, whenever a object is added to the 
network, a corresponding communication 
handler is defined in the template and 
attached to the new object. 

The graphical organization of the managed 
devices is a network map. Each device can be 
represented by a specific icon, and the icons 
can be arranged to represent the actual 
network topology. The network map should be 
created using passive elements like icons for 
each device, geographical maps, and racks 
and shelves with different configurations. 
These elements help the user create a 
graphical representation of the network with 
devices as groups. 

Figure 6 shows a run-time version of an 
element management system. 



Figure 6. 
A run-time element management system 

Since the manufacturer-specific information 
can be customized and retrieved from 
templates, the whole element management 
system can be generic, and an open platform 
can accommodate multi-vendor 
interoperability. 

This type of architecture will save users a 
significant amount of time, since adding new 
devices can be done easily with tools provided 
by the element management system. 

However, a major effort is required to 
implement communication handlers for each 
protocol. This effort could be avoided if the 
industry agrees upon one standard 
management protocol. 

Distributed Object-Oriented 
Management 
The architecture proposed so far is based on 
object modeling of a device. For an object to 
communicate with its counterpart in the 
network, huge amounts of time, effort, and 
money are being devoted to implementing a 
protocol wrap-around. If the management 
system object is implemented as a client 
object and the corresponding server object is 
implemented as an actual device, a time­
consuming effort can be avoided. This is 
possible with CORBA (Common Object 

Request Broker Architecture), and it is ideal 
for network management of massive networks 
like cable which contain many elements. 

Vendor Devices and 
Networks 

Figure 7. 
Distributed object-oriented management 

usingCORBA 

With CORBA, the object exists in the device or 
agent itself. A mirror image is maintained at 
the management system. The communication 
wrap around is invisible to the developer. This 
approach has a significant impact because 
objects can be distributed to any level of 
management. As a result, any level of 
management can be applied at any level. If a 
distributed, object-oriented protocol is used, 
the architecture proposed in this paper will 
plug and play for any device a manufacturer 
can come up with. 

Conclusion 

Designing an element management system 
based on an open platform, as proposed in 
this paper, will allow operators to customize 
the system to accommodate any new device 
from one or multiple manufacturers. A 
management system based on this open 
platform architecture allows the operator to 
add new devices without developing new 
device-specific applications. Instead, the 
operator takes advantage of the open platform 
and customizes it to incorporate management 
information, fault patterns, user interfaces, and 
communications protocols of the new devices. 

1996 NCTA Technical Papers -331-


